b termodinamica bioenergetica ciencias 2008

Upload: amilkar-alain-mamani

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    1/114

    La Termodinmica y la Vida

    Prof. Mirko Zimic

    [email protected]

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    2/114

    La Biologa est basada en lamateria suaveviviente

    Auto-ensamblaje

    Alta especificidadInformacin

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    3/114

    Los objetos vivientes estn

    compuestos por molculas inertesAlbert Lehninger

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    4/114

    El problema es:

    Cmo estas molculasconf ieren la admirable

    combinacin de

    caractersticas que

    denominamos vida???

    Cmo es que unorganismo vivo aparece

    ser ms que la suma de

    sus partes inanimadas???

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    5/114

    La Fsica procura entender y reducir la

    Biologa en leyes fundamentales

    Pero este es un problema muycomplicado !

    Son demasiadas las variables y resultaimposible describir un sistema de un

    nmero tan grande de partculas

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    6/114

    SOLUCIN:Descripcin estadstica del mundo aleatorio

    La ACTIVIDAD COLECTIVA de muchos objetos deMovimiento aleatorio puede ser predicho, aun cuando elmovimiento exacto de un slo objeto es desconocido

    Si todo en el nano-mundo de las clulas es aleatorio,cmo podemos realizar predicciones?

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    7/114

    TERMODINMICA

    Permite predecir la ACTIVIDADCOLECTIVA de muchos objetos de

    movimiento aleatorio, aun cuando elmovimiento exacto de un slo objeto esdesconocido

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    8/114

    Todo en el Universo estacompuesto por Materia y Energa

    Materia: - Medida de la inercia

    Energa: - Energa cintica (movimiento)- Energa potencial (reposo)

    E = M C2

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    9/114

    Trabajo

    Trabajo = Fuerza Distancia

    W = F Dx

    La unidad del trabajo es el Newton-metroconocido tambin como Joule.

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    10/114

    Trabajo mecnico

    F

    FDx

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    11/114

    Kinetic Energy

    Kinetic Energy is the energy of motion.

    Kinetic Energy = mass speed2

    2mv2

    1KE

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    12/114

    Potential Energy

    The energy that is stored is calledpotential energy.

    Examples:Rubber bands

    Springs

    Bows

    Batteries

    Gravitational Potential PE=mgh

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    13/114

    Conversin entre la Energa cintica yla Energa potencial

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    14/114

    Qu es la Bioenergtica?

    Es la disciplina que estudia los aspectosenergticos en los sistemas vivos, tanto a

    nivel molecular como a nivel celular.Interacciones moleculares

    ATP como biomolcula almacenadora de

    energaBiocatlisis

    Reacciones acopladas

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    15/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    16/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    17/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    18/114

    Interacciones Fundamentales

    Interaccin Gravitacional (masa-masa)

    Interaccin Electromagntica (carga-dipolo)

    Interaccin Nuclear Dbil (electrones-ncleo)

    Interaccin Nuclear Fuerte (protones-neutrones)

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    19/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    20/114

    Enlace Covalente

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    21/114

    Las interacciones Inicas se dan

    entre partculas cargadas

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    22/114

    PUENTE DE

    HIDRGENO

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    23/114

    Participacin de los Puentes de Hidrgeno:Replicacin, Transcripcin y Traduccin

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    24/114

    Las interacciones dbiles dirigen elproceso de docking molecular

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    25/114

    El efecto hidrofbico colabora enel plegamiento de las protenas

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    26/114

    Revisin de algunos conceptosTermodinmicos

    Sistemas termodinmicos

    Equilibrio termodinmico

    Temperatura

    Calor

    Entalpa

    Energa Libre

    Entropa

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    27/114

    Clasificacin de los sistemastermodinmicos

    Sistemas AbiertosIntercambian materia y energa con el exterior

    Sistemas CerradosSlo intercambian energa con el exterior

    Sistemas AisladosNo tienen ningun tipo de intercambio con el

    exterior

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    28/114

    Equilibrio Termodinmico

    Un sistema se encuentra en equilibriotermodinmico cuando la distribucin

    espacial y temporal de la materia y laenerga es uniforme

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    29/114

    En el equilibrio termodinmico sereducen las gradientes y con ello se

    reduce la energa potencial

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    30/114

    Qu esta ms fro?El metal o la madera?

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    31/114

    Temperatura

    Es la medida de la energa cinticainterna de un sistema molecular

    Ek= N K T /2

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    32/114

    Cool Hot

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    33/114

    Qu es el cero absoluto?

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    34/114

    Escalas de temperatura

    Fahrenheit Celsius Kelvin

    Boiling Point

    of Water

    Freezing Point

    of Water

    Absolute Zero

    212F

    32F

    -459F

    100C

    0C

    -273C

    373 K

    273 K

    0 K

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    35/114

    Los estados de la materia

    Slido Lquido

    Gas Plasma

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    36/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    37/114

    Calor

    Es la energa cinticaque se propaga debido a

    un gradiente de

    temperatura, cuyadireccin es de mayortemperatura a menor

    temperatura

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    38/114

    El flujo del calor

    T= 100oC

    T= 0oC

    TemperatureProfile in Rod

    HeatVibrating copper atom

    Copper rod

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    39/114

    Reversibilidad

    Reversibilityis the ability to run a processback and forth infinitely without losses.

    Reversible ProcessExample: Perfect Pendulum

    Irreversible ProcessExample: Dropping a ball of clay

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    40/114

    Procesos reversibles

    Examples:Perfect Pendulum

    Mass on a SpringDropping a perfectly elastic ball

    Perpetual motion machines

    More?

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    41/114

    Procesos irreversibles

    Examples:Dropping a ball of clay

    Hammering a nail

    Applying the brakes to your car

    Breaking a glass

    More?

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    42/114

    Primera Ley de la Termodinmica

    La energa no se crea ni se destruye, slo

    se transforma

    Q = W + dE

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    43/114

    First Law: Energy conservation

    Internal energy (E).-Total energy content of a system. Itcan be changed by exchanging heat or work with thesystem:

    EHeat-upthe system

    Do work onthe system

    ECool-offthe system

    Extract work fromthe system

    DE = q + ww

    -PDV

    w

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    44/114

    Entalpa

    H=E+PVLa entalpa es la fraccin de la energa

    que se puede utilizar para realizar

    trabajo en condiciones de presin yvolumen constante

    dH0 proceso endotrmico

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    45/114

    Entropa

    S = K Ln(W)La entropa es la medida del grado de

    desorden de un sistema molecular

    S1 > S2

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    46/114

    La entropa es la medida del gradode desorden de un sistema

    Di d d Li id

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    47/114

    Ordered Solid

    Disordered Liquid

    H d h li id

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    48/114

    Hard-sphere crystal

    Hard-sphere liquid

    Hard-sphere freezing is drivenby entropy !

    Higher Entropy

    Lower Entropy

    S d d l di i

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    49/114

    Segunda Ley de la Termodinmica

    En todo sistema

    aislado, la entropasiempre aumenta

    hasta alcanzar elestado de equilibrio

    dS>=0 (dS>=dQ/T)

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    50/114

    Ordering and 2ndlaw of thermodynamics

    - Condensation into liquid (more ordered).

    -Entropy of subsystem decreased

    -Total entropy increased! Gives off heat to room.

    System in thermal contact with environment

    Equilibration

    Initially high Cools to room

    Algunos eventos bioqumicos contradicen

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    51/114

    Algunos eventos bioqumicos contradicenla segunda ley de la termodinmica?

    Second La of Thermod namics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    52/114

    Second Law of Thermodynamicsnaturally occurring processes are

    directionalthese processes are naturally irreversible

    E Lib d Gibb

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    53/114

    Energa Libre de Gibbs

    G=H-TSLa energa libre esla fraccin de la

    energa que sepuede utilizar pararealizar trabajo en

    condiciones depresion, volumen y

    temperaturaconstante

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    54/114

    Lo importante es la variacin de la

    energa libre

    dG0 proceso endergnico

    dG

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    55/114

    G= H - T SG+ (exergnico) H +(endotrmico)

    G (endergnico) H- (exotrmico)S +(sube entropa)S (baja entropa)

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    56/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    57/114

    Table 3.2

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    58/114

    La paradoja del Demonio de Maxwell

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    59/114

    La paradoja del Demonio de Maxwell

    Segunda ley: Entropa y desorden

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    60/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    61/114

    Las Enzimas o biocatalizadores

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    62/114

    Las Enzimas o biocatalizadores,reducen la Energa de Activacin

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    63/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    64/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    65/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    66/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    67/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    68/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    69/114

    La molcula de ATP

    Los seres vivos utilizan lamolcula de ATP comomedio principal para

    almacenar energapotencial proveniente dela degradacin de los

    alimentos

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    70/114

    La manera de utilizarse la energa en la

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    71/114

    La manera de utilizarse la energa en lamolcula de ATP es mediante la separacin deun grupo fosfato el cual est unido mediante

    un enlace covalente de alta energa

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    72/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    73/114

    La sntesis deATP ocurredurante la

    gliclisis y larespiracincelular en lamitocondria

    usualmente

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    74/114

    En las plantas, la sntesis

    de ATP ocurre asistida porluz durante la fotosntesis,la cual es luego empleada

    en las denominadasreacciones oscuras. Este esun ejemplo de

    transformacin de energaradiante en energaqumica.

    El ATP participa en una serie de

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    75/114

    El ATP participa en una serie dereacciones acopladas

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    76/114

    Diversas molculasbiolgicas requieren lacapacidad de moverse

    para cumplir susfunciones Por lotanto hace falta energa

    para realizar estafuncin.

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    77/114

    La fuente de energapara el movimiento

    molecular esfundamentalmente el

    ATP

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    78/114

    El ATP contribuye a diversos

    tipos de reacciones

    El ATP suele participar en el

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    79/114

    El ATP suele participar en elcorrecto plegamiento de las

    protenas

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    80/114

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    81/114

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    82/114

    First Law: Energy conservation

    Internal energy (E).-Total energy content of a system. Itcan be changed by exchanging heat or work with thesystem:

    EHeat-upthe system

    Do work onthe system

    ECool-offthe system

    Extract work fromthe system

    DE = q + ww

    -PDV

    w

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    83/114

    A more useful concept is: ENTHALPY (H)

    H = E + PVAt constant

    pressurePVVPwVP-qH p DDDD

    DE

    00

    Only P-V work involved w= 0(as in most biological systems)

    So

    pqHD

    At constant pressure, the enthalpy change in a process isequal to amount of heat exchanged in the process by the

    system.

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    84/114

    We have

    H = E + PV

    DH = DE + PDV + VDPDP = 0DV 0

    in biologicalsystems

    0 0

    DH DEat DP = 0 and since DV 0

    Q:How is this energy stored in the system?

    1) As kinetic energyof the molecules. In isothermal (DT =0) processes this kinetic energy does not change.

    2) As energy stored in chemical bonds and interactions. Thispotential energy could be released or increased in chemical

    reactions

    A:

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    85/114

    Second Law: Entropy and Disorder

    Energy conservation is nota criterion to decide if a process willoccur or not:

    Examples

    q

    HotT ColdT T T

    DE = DH = 0This rxn occurs in onedirection and not in theopposite

    these processesoccur because

    the final state( with T = T &P = P) are themost probable

    states of thesesystems

    Let us study a simpler case

    tossing 4 coins

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    86/114

    All permutations of tossing 4 coins

    1way to obtain 4 heads4ways to obtain 3 heads, 1 tail6ways to obtain 2 heads, 2 tails4ways to obtain 1 head, 3 tails

    1way to obtain 4 tails

    Macroscopic states

    HT THH HT TH THTTH HT

    T TH HTHTH

    2!2!

    4!6

    Microscopic states

    1

    4

    6

    4

    14 H, 0 T

    3 H, 1 T2 H, 2 T

    1 H, 3 T

    0 H, 4 T

    The most probable

    state is also themost disordered

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    87/114

    In this case we see that DH = 0,i.e.:

    there is not exchange of heat between the system and itssurroundings, (the system is isolated ) yet, there is an

    unequivocal answer as to which is the mostprobableresult of the experiment

    The most probable state of the system is also the mostdisordered, i.e. ability to predict the microscopic outcomeis the poorest.

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    88/114

    A measure of how disordered is the final state is alsoa measure ofhow probable it is:

    16

    6P 2T2H,

    Entropyprovides that measure(Boltzmann)

    ln WkS B Number ofmicroscopicways in whicha particularoutcome(macroscopic

    state) can beattained

    BoltzmannConstant

    MolecularEntropy

    For Avogadro numbers

    of molecules

    ln W)k(NS BAvogadroR (gas constant)

    Therefore: the most probable

    outcome maximizes entropyof isolated systems

    DS > 0 (spontaneous)DS < 0 (non-spontaneous)

    Criterion for Spontaneity:

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    89/114

    The macroscopic (thermodynamic) definitionof entropy:

    dS = dqrev/T

    i.e., for a system undergoing a change from an initial stateA to a final state B, the change in entropy is calculated

    using the heat exchanged by the system between thesetwo states when the process is carried out reversibly.

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    90/114

    DS dq

    rev

    Tinitial

    fina l

    (Carried through a reversible path)

    DS C

    P

    Tinitial

    fina l

    dT (If process occurs at contant pressure

    DS C

    V

    Tinitial

    fina l

    dT (If process occurs at const ant volume

    Spontaneity Criteria

    In these equat ions, the equal sign applies for reversible

    processes. The inequalities apply for irreversible, spontaneous, processes :

    DS(system) DS(surroundings) 0

    DS(isolatedsystem) 0

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    91/114

    Free-energyProvides a way to determine spontaneity whether system is

    isolated or not

    Combining enthalpic and entropic changes

    ST-HG DDD

    What are the criteria for spontaneity?

    Take the case of DH = 0:

    ST-G DD

    < 0 > 0 DG > 0DG < 0DG = 0

    non-spontaneous processspontaneous process

    process at equilibrium

    (Gibbs free energy)

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    92/114

    Free energy and chemical equilibrium

    Consider this rxn:

    A + B C + DSuppose we mix arbitrary concentrations of products and reactants

    These are not equilibrium concentrations

    Reaction will proceed in search of equilibrium

    What is the DG is associated with this search and finding?:

    [A][B]

    [C][D]lnRTGG o DD

    is the Standard Free Energyof reactionoGD

    i.e. DG when A, B,C, D are mixed intheir standard state:Biochemistry: 1M,25oC, pH = 7.0

    11

    11lnRTGG oRxn

    DD

    o

    Rxn GG DD

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    93/114

    Now Suppose we start with equilibrium concentrations:

    Reaction will not proceed forward or backward

    0GRxnD

    Then

    eqeq

    eqeqo

    [B][A]

    [D][C]lnRTG0 D

    eqeq

    eqeqo

    [B][A]

    [D][C]lnRT-G D

    eq

    o KlnRT-G D

    RT

    oST-oH

    eq eK

    DD

    DD R

    oSRT

    oH

    eeKeq

    RT

    oG

    eq eKD

    Rearranging

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    94/114

    DD

    R

    oS

    RT

    oH

    eeKln eq

    Graph:

    R

    S

    RT

    H-Kln

    oo

    eq

    D

    D

    1-o KT

    1

    eqKln

    R

    SoD

    -DHo

    R

    Slope =

    Vant Hoff Plot

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    95/114

    1) Change in potentialenergy stored in bondsand interactions

    2) Accounts for T-dependenceof Keq

    3) Reflects: #, type, andquality of bonds

    4) If DHo< 0: T Keq

    If DHo> 0: T Keq

    1) Measure of disorderS = R ln (# of microscopic ways ofmacroscopic states can be attained)

    2) T-independent contributionto Keq

    3) Reflects order-disorder inbonding, conformational

    flexibility, solvation4) DSoKeq

    Rxn is favored

    Summary: in chemical processes

    DHo DSo

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    96/114

    Examples:

    A B

    Consider the Reaction [A]initial= 1M[B]initial= 10-5MKeq= 1000

    eq

    o KlnRT-G D

    Free energy changewhen products andreactants are present atstandard conditions

    1000lnK2981.98-G Kmolca lo

    DmolKcalo 4.076-G D Spontaneous rxn

    How about DGRxn

    [A]

    [B]lnRTGG oRxn

    D

    D

    1

    10lnK298101.984.076-G

    -5

    Kmol

    Kcal3-

    mol

    Kcal

    Rxn D

    molKcal

    Rxn 10.9-G D Even more spontaneous

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    97/114

    Another question What are [A]eqand [B]eq?

    1M101[B]A][

    -5

    [B]-1A][

    1000

    [A]

    [B]K

    eq

    eq

    eq

    eqeq [B]-11000B][

    1000B][1001 eq

    1M0.999M1001

    1000B][ eq

    0.001MA][ eq

    ThermodynamicsA h E l A i A id Di i i

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    98/114

    Another Example Acetic Acid Dissociation

    DHo~ 0

    CH3COOH + H2O CH3COO-+ H3O+

    5-

    3

    3

    -

    3eq 10~

    COOH][CH

    ]O][HCOO[CHK

    Creation of charges Requires ion solvationOrganizes H2O around ions

    At 1M concentration, this is entropically unfavorable.

    Keq~ 10-5

    If [CH3COOH]total~ 10-5

    50% ionizedPercent ionization is concentration dependent. We can favorthe forward rxn (ionization) by diluting the mixture

    If [CH3

    COOH]total

    ~ 10-890% ionized

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    99/114

    CH3COOH + H2O CH3COO-+ H3O+

    Keq [CH3 COO

    -][H 3O

    ]

    [CH3 COOH] =

    [CH3

    COO-][H3O ]

    [CH 3COOH]T2

    [CH3 COOH]T [CH3 COO-]

    [CH 3COOH]T2

    Keq

    2[CH3COOH]T

    1 with

    [CH3 COO-

    ]

    [CH 3COOH]T

    and =-Keq K

    2eq + 4[CH 3COOH]T Keq

    2[CH3

    COOH]T

    Thermodynamics

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    100/114

    CH3 -COOH total

    ThermodynamicsThi d E l A i R ti

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    101/114

    Third Example Amine Reactions

    RNH + H2O RNH2+ H3O+

    H

    H+

    DSo0

    molKcalo 14H D

    -10

    eq 10K not favorable

    Backbone Conformational FlexibilityR H

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    102/114

    NC

    R

    HO

    N

    H

    H

    C

    For the process folded unfolded(native) (denatured)

    folded

    unfoldedo

    conf.backboneW

    W

    lnRS D

    How many ways to form the unfolded state?

    Backbone Conformational Flexibility

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    103/114

    degrees of freedom = 2

    Assume 2 possible valuesfor each degree of freedom. Then

    residueisomersonalconformati4ofTotal

    For 100 amino acids4100~ 1060conformations

    These results do not take into account excluded volume effects.

    When these effects are considered the number of accessibleconfigurations for the chain is quite a bit smaller

    Wunfolded~ 1016conformations

    Backbone Conformational FlexibilityTh d i id ti

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    104/114

    Thermodynamic considerations

    16o

    conf.backbone 10lnRS D2.303161.987

    Kmolca l73

    C25at22-ST-G

    o

    mol

    Kcaloo

    conf.backbone DDIn addition other degrees of freedom may be quite important,for example

    NC

    R

    HO

    N

    H

    H

    C

    We will see thislater in more detail

    Ionization of Water

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    105/114

    ]][OHO[HK -3w

    Water is the silent, most important component in the cell

    Its properties influence the behavior and properties of all other

    components in the cell.

    H2O + H2O H3O++ OH-

    Here we concern ourselves with its ionization properties:

    O][H

    ]][OHO[HK

    2

    -

    3eq

    Since in the cell, [H2O] ~ 55M, and ionization is very weak, then

    [H2O] ~ constant, so se can definethe ionic

    product ofwater

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    106/114

    Weak Acids and BasesAll bi l i l id d b b l hi

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    107/114

    All biological acids and bases belong to this category

    Consider acetic acid

    AH A-+ H+

    The Dissociation Constant

    AH]

    [

    ]

    A

    ][

    [HK

    -

    a

    [AH]][AlogpKpH

    -

    a rearrange Henderson-Hasselbalchequation

    where, pKa= - logKa

    F i f d d id i

    Weak Acids and Bases

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    108/114

    Fraction of deprotonated acid is

    [AH]]A[

    ][AA

    f Also AAH 1 ff

    A

    Aa

    -1

    logpKpH

    f

    f

    pH

    0.5Af

    1.0

    0

    pKa

    i.e. pKais the pH at

    which the acid is50% ionized

    So, we can re-write theHenderson-Hasselbalch

    equation

    Weak Acids and BasesB d th i

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    109/114

    Based on the previous page

    90%11

    10;1pKpH

    Aa

    f

    9%;1pKpHAa

    f

    etc.0.9%,;2pKpHAa

    f

    If

    Morever the lower the pKa, the stronger the acid

    pH

    0.5Af

    1.0

    0

    strongeracid

    weakeracid

    A

    Aa

    -1logpKpH

    f

    f

    Weak Acids and Bases

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    110/114

    Some useful relationships

    fAH AH

    A AH

    H

    Ka H

    fA-

    Ka

    fAH

    Ka

    fA A

    A AH Ka

    Ka H

    Multiple Acid-Base EquilibriaC id Al i

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    111/114

    Consider Alanine

    NH3+

    CH3

    CH COOH

    Titrate a solution of ala, using a gas electrode (pH meter), and aburet to add a strong base of known concentration:

    =

    2.3

    =9.7

    pK1 pK2 pH

    (fractio

    ndeprotonated)

    mLo

    fbaseadded

    Macroscopicexperiment shows2 inflection points(2 pKs)

    Please correct in yournotes

    Multiple Acid-Base Equilibria

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    112/114

    N+CH3CH COOH

    H

    HH

    N+CH3CH COO

    H

    HH

    NCH3CH COO

    H

    H

    Cation Zwitterion Anion

    If we assume that the ionization of a given group is independentof the state of ionization of the others, then

    As we vary the pH of the solution from low to high:

    So, in fact the two inflection points seen correspond to thedeprotonation of the carboxylic group (at low pH) and thento the deprotonation of the amine group (at high pH).

    So, How can we estimate the fraction of these different species in solution?

    Multiple Acid-Base Equilibria

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    113/114

    fHAH

    fCOOH fNH3

    H

    Ka1 H

    H

    Ka2 H

    fHA

    f

    COO f

    NH3 K a1

    Ka 1H

    H

    Ka 2H

    fAH fCOOH fNH2

    H

    Ka 1 H

    Ka 2

    K a 2 H

    fA

    fCOO

    fNH2

    Ka1

    Ka1 H

    Ka 2

    Ka 2 H

    1AAHHAHAH

    ffff

  • 8/12/2019 B Termodinamica Bioenergetica Ciencias 2008

    114/114