andrew!villa transducer!theory:! loudspeaker!design! · pdf fileprioritization:! ......

36
Andrew Villa Transducer Theory: Loudspeaker Design The Dark Passengers

Upload: dophuc

Post on 21-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

         

Andrew  Villa  Transducer  Theory:  Loudspeaker  Design  

   

The  Dark  Passengers                                  

Page 2: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   2  

           

Table  of  Content  Functional  Description  ..........................................................................................................  3  Goal:  ......................................................................................................................................................  3  Listening  Purposes:  ..........................................................................................................................  3  Environment:  .....................................................................................................................................  4  Sound  Quality:  ....................................................................................................................................  4  Prioritization:  ....................................................................................................................................  5  

Technical  Description  ............................................................................................................  5  Size/Weight/Portability:  ...............................................................................................................  5  SPL  Output:  .........................................................................................................................................  6  Frequency  Response/Bandwidth:  ..............................................................................................  8  Coloration/Time  Response:  ..........................................................................................................  9  Cabinet  Design:  ..................................................................................................................................  9  Mounting:  ..........................................................................................................................................  10  Woofer  Selection:  ............................................................................................................................  10  Tweeter  Selection:  ..........................................................................................................................  17  

Crossover  Design  ..................................................................................................................  21  Type:  ...................................................................................................................................................  21  Crossover  Diagram:  .......................................................................................................................  22  

Drafting  ....................................................................................................................................  23  Overview:  ..........................................................................................................................................  23  Cut  Sheet:  ...........................................................................................................................................  24  

Testing  &  Tuning  ...................................................................................................................  24  Initial  Performance  and  Tuning:  ...............................................................................................  24  Enclosure  Optimization:  ...............................................................................................................  25  

Final  system  documentation  .............................................................................................  26  Final  Testing  Results:  ....................................................................................................................  26  Frequency  Response:  ....................................................................................................................  26  Integrated  Response:  ....................................................................................................................  26  Harmonic  Distortion:  ....................................................................................................................  26  Minimum  Phase:  .............................................................................................................................  27  Horizontal  Off-­‐Axis  Response:  ....................................................................................................  27  Vertical  Off-­‐Axis  Response:  .........................................................................................................  27  Difference  Plot:  ................................................................................................................................  28  Step  Response:  .................................................................................................................................  28  Integrated  Step  Response:  ...........................................................................................................  28  Impulse  Response:  .........................................................................................................................  29  Waterfall:    ..........................................................................................................................................  30  

Page 3: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   3  

Individual  Driver  Tests:  ......................................................................................................  31  Woofer  Frequency  Response:  .....................................................................................................  31  Tweeter  Frequency  Response:  ...................................................................................................  31  Woofer  Harmonic  Distortion:  .....................................................................................................  31  Tweeter  Harmonic  Distortion:  ...................................................................................................  32  Woofer  Minimum  Phase:  ..............................................................................................................  32  Tweeter  Minimum  Phase:  ............................................................................................................  32  Woofer  Horizontal  Off  –Axis:  ......................................................................................................  33  Tweeter  Horizontal  Off-­‐Axis:  ......................................................................................................  33  Woofer  Vertical  Off-­‐Axis:  .............................................................................................................  33  Tweeter  Vertical  Off-­‐Axis:  ............................................................................................................  34  Woofer  Step  Response:  .................................................................................................................  34  Tweeter  Step  Response:  ...............................................................................................................  34  Woofer  Impulse  Response:  ..........................................................................................................  35  Tweeter  Impulse  Response:  ........................................................................................................  35  

Bibliography  ...........................................................................................................................  36                            Functional  Description    Goal:    The  goal  is  to  create  2-­‐way  near  field  mixing  monitor  speaker  that  can  be  built  within  a  budget  of  $350.    Through  building  these  speakers,  a  better  understanding  of  how  loudspeakers  are  constructed  will  be  obtained.    Considerations  to  make  when  designing  loudspeakers  will  be  learned,  along  with  making  clear  choices  on  the  design  and  learning  how  to  achieve  them.      Listening  Purposes:      The  use  of  these  speakers  will  be  to  work  on  various  sound  design  projects.  This  will  help  in  composing  music  and  mixing  sound  effects  for  multiple  media  formats  such  as  video  games,  film,  and  commercials.  I  will  be  mixing  sound  effects  and  music  to  a  point  that  is  satisfactory  for  the  audiences  of  video  games  and  other  forms  of  multimedia,  therefore  needing  to  be  able  to  listen  backward  in  time  so  that  I  can  

Page 4: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   4  

hear  the  mistakes  that  I  have  made  and  go  back  to  fix  them.    To  achieve  listening  back,  the  speakers  will  need  to  have  a  flat  frequency  response  in  order  to  reproduce  the  majority  of  the  frequency  spectrum  accurately1.  The  unreality  of  the  speaker  sound  is  hi-­‐fidelity,  making  them  capable  of  accurately  producing  original  sounds.  This  is  excellent  for  creating  and  editing  quality  sound  effects.  To  listen  for  enjoyment,  I  will  use  a  different  set  of  loudspeakers.      Environment:    The  location  that  my  speakers  will  be  is  a  medium  sized,  carpeted  and  furnished  room.  This  location  will  resemble  that  of  potential  audiences  of  my  work,  mixing  in  a  similar  location  replicating  what  they  will  hear.  The  background  noise  in  this  location  will  be  that  similar  to  a  family  living  room  or  a  home  office,  which  would  be  very  minimal  such  as  the  hum  of  the  computer,  or  cars  faintly  driving  by.  I  want  to  put  the  2-­‐way  loudspeakers  on  top  of  a  mixing  console  or  on  a  desk,  which  will  result  in  a  more  flat  and  fast  response2.  Since  I  am  a  semester  from  graduating,  there  will  be  a  lot  of  moving  in  the  near  future.  Due  to  this  fact,  I  want  my  speakers  to  be  very  portable  and  capable  of  travel.  The  size  of  the  speaker  boxes  will  be  small  enough  to  fit  in  my  car  and  on  my  desk,  but  big  enough  to  have  a  well  placed  LF  roll-­‐off.      Visual  Aesthetics:  The  plan  is  to  give  the  speakers  a  personal  artistic  look  by  having  the  outer  enclosure  made  of  MDF,  painted  in  white  with  a  red  splatter  design  on  the  front  baffle  and  two  side  walls,  giving  it  a  unique  look  that  matches  that  of  the  show  “Dexter”.      Due  to  lack  of  skill  in  woodwork  and  limited  funds,  the  popular  rectangle  shape  will  be  the  design  for  my  enclosures.  The  rectangle  shape  staggers  the  resonances  unlike  the  cube  shape  that  would  stack  the  resonances  on  top  of  each  other3.  The  weight  of  the  speakers  will  be  of  a  mass  that  isn’t  too  heavy  or  uncomfortable  to  pick  up,  but  will  be  heavy  enough  that  the  enclosure  doesn’t  move  from  the  cabinet  resonance.  The  speakers  will  be  of  medium  size.  This  makes  it  easy  to  fit  on  a  desk  and  be  easily  transported,  and  will  be  large  enough  with  produce  low  frequencies  that  my  work  will  entail.  With  the  materials  of  MDF  and  plywood  to  build  the  enclosures,  the  lifetime  for  these  speakers  should  be  5-­‐6  years.      Sound  Quality:    The  speakers  will  have  qualities  of  robustness  giving  it  stability  of  performance  with  usual  listener  movements  and  listening  environments.  The  sound  quality  will  match                                                                                                                  1Moulton, David. "Part IV About Recording Production and Studio Operations." In Total recording: the complete guide to audio production. Sherman Oaks, Calif.: KIQ Productions, 2000. 313.

2Newell, Philip Richard, and K. R. Holland. "Form Follows Function." In Loudspeakers: for music recording and reproduction. Oxford: Focal, 2007. 255. 3 Murphy, John L.. "Enclosure Design and Construction." In Introduction to loudspeaker design. Escondido, CA: True Audio, 1998. 86-89.

Page 5: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   5  

that  of  anchor  loudspeakers  and  as  a  reference  and  reality  check.  They  will  be  hi-­‐fi  with  low  levels  of  non-­‐linear  distortion  and  fast  time  response.  They  will  be  used  for  critical  listening  and  uncovering  faults  in  sound  recordings4.      Prioritization:  

Between  the  levels  of  SPL,  Size/Weight,  Fidelity  (LF),  and  cost,  my  focus  will  be  equally  on  cost,  size,  and  LF.  The  SPL  will  be  my  least  prioritized.  I  chose  this  because  the  size  and  LF  play  a  huge  factor  in  my  design  choice.  The  cost  is  a  personal  choice  but  also  correlates  with  how  large  of  a  design  I  can  go.  The  emphasis  on  size  makes  my  speakers  more  portable,  easier  to  for  use  as  mixing  monitors  that  sit  on  the  console.  The  importance  on  hi-­‐fidelity  creates  a  flatter  frequency  response  and  a  more  realistic  sound  for  mixing.        

             Technical  Description    Size/Weight/Portability:  In  order  to  build  desk  monitors  for  mixing  purposes,  the  right  dimensions  have  to  be  made.  To  get  the  low  frequencies  that  my  mixing  will  require,  the  ideal  max  size  of  the  speakers  will  be  dimensions  of  15"  x  10  1/2"  x  8-­‐7/8"5.  The  size  of  the  speakers  will  be  adequate  to  the  diversity  of  spaces  that  it  will  be  used  in.  For  example,  I  will  presently  be  using  them  on  a  desk  that  is  24”x”24”x30”.  In  the  future  I  plan  on  using  them  on  a  more  spaced  out  L-­‐shaped  desk  of  dimensions  that  are  30.75  inches  tall,  about  29.5  inches  wide,  and  around  20.75  inches  deep.  Being  used  in  a  medium  sized  room  of  12  ft  x  16ft  x  8  ft  will  make  the  speaker  size  ideal.  The  box  is  going  to  be  small  in  size,  so  to  get  the  desired  bass  response  that  I  want,  I  will  be  making  a  vented  enclosure.                                                                                                                    4 AES recommended practice for professional audio — Subjective evaluation of loudspeakers. 1996. Reprint, New York: Audio Engineering Society, Inc., 2007. 5  "Yamaha NS10s." Features and Specifications. http://www.rcc.ryerson.ca/media/ns10m.pdf (accessed January 26, 2014).

Chart  Prioritization  

Cost    

LF  

Size  

SPL  

Page 6: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   6  

 The  weight  of  the  cabinet  should  be  around  15-­‐20  lbs.,  due  to  the  size  and  thickness  of  materials.  The  amount  of  weight  will  be  under  my  weight  carrying  capacity.  This  will  help  for  its  portability.  To  test  the  weight-­‐to-­‐portability  ratio,  I  moved  around  my  microwave  that  is  the  closest  size/weight  to  my  speakers,  being  of  40  lbs.,  which  fit  nicely  on  my  desk  when  tilted  vertically.  This  size  will  work  well  in  long  distance  travels  in  the  back  of  my  car.  The  materials  of  the  external  ½”  MDF  and  internal  ½”  plywood  will  make  the  speakers  robust  and  be  able  to  withstand  extremities  in  the  music/sfx  that  will  be  played  through  them.      SPL  Output:  For  the  purpose  of  mixing  music  and  sfx  in  multiple  formats  of  media,  using  the  THX  average  SPL  of  85  dB  and  20  dB  of  headroom  would  be  ideal  for  my  speaker  design6.  Using  those  standards,  I  want  my  maximum  SPL  to  be  at  105  dB  and  my  minimum  to  be  at  95  dB,  easily  reaching  that  level  without  distortion  or  malfunction.  Using  NIOSHA  guideline,  my  action  level  when  I  am  mixing  will  be  at  a  maximum  of  85  dB,  giving  me  a  total  of  9  hours  of  exposure  before  hearing  damage  takes  in7.  To  find  my  preferred  mixing  levels  I  listened  to  multiple  types  of  music  and  film/video  game  sound  at  different  times  of  the  day.  Then  recorded  the  results  and  calculated  the  averages  that  are  shown  below.      

     

                                                                                                               6  "Thx Technology." THXcom THX Reference Level Comments. http://www.thx.com/consumer/thx-technology/thx-reference-level/ (accessed January 26, 2014).  7  Plummer, Christopher . "SPL Cheat Sheet." Lecture, Transducer Theory from Michigan Tech, Houghton, January 24, 2014.  

Page 7: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   7  

Based  on  these  results,  if  I  am  not  able  to  reach  a  max  SPL  of  106  dB,  then  95  dB  will  be  an  acceptable  minimum  to  my  listening  tastes,  given  that  songs  and  sfx  will  have  pikes  in  their  audio  files.      For  the  loudspeaker  sensitivity,  given  that  I  use  the  THX  standard  of  85  dB,  my  listening  habits  will  be  at  a  distance  of  1-­‐3  meters  from  the  speakers.  Adding  in  the  headroom  of  20  dB  from  the  amp  and  taking  into  consideration  of  the  inverse  square  law,  there  would  be  a  6  dB  loss  at  2m,  which  is  where  I  will  be  mixing,  all  equaling  to  a  sensitivity  of  92  dB  SPL  1w/1m.  If  that  sensitivity  level  is  not  reachable,  then  I  should  be  able  to  reach  the  average  of  85-­‐92  dB.  The  graph  below  explains  the  relationship  of  the  inverse  square  law,  based  on  my  preferred  mixing  distance.    

 

Page 8: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   8  

For  the  power  of  my  speaker,  I  am  generally  looking  for  at  a  100-­‐watt  amp.  With  a  100-­‐watt  amp  I  will  be  able  to  hear  those  high  peaks  in  my  music  and  sound  effects,  allowing  for  enough  comfortable  room  to  mix  in.  If  100-­‐watt  amp  is  not  obtainable,  I  am  willing  to  go  in  the  range  between  80-­‐100  watts.  Here  is  a  dBW  graph  that  shows  the  amount  of  headroom  I  will  have  depending  on  the  wattage  of  amp  that  is  chosen.        Frequency  Response/Bandwidth:  An  ideal  frequency  response  for  mixing  speakers  is  a  flat  frequency  response.  That  is  the  type  of  voicing  that  is  desired  for  my  speakers.  I  would  like  to  achieve  the  perceived  low  bass,  since  I  am  building  a  smaller  pair  of  speakers  that  may  not  satisfy  my  LF  needs.  My  bandwidth  that  I  want  to  achieve  would  be  a  low  frequency  that  can  support  something  as  low  as  a  bassoon,  which  it’s  lowest  note  plays  at  a  frequency  of  40Hz.  Because  of  my  limited  budget,  I  am  willing  to  sacrifice  some  LF  and  go  between  60-­‐70  Hz.  The  desired  low  frequency  that  I  want  to  achieve  is  of  40  Hz.  Based  on  a  LF  frequency  experiment  that  I  did,  listening  to  multiple  recordings  and  using  a  low  pass  filter  on  the  audio  tracks,  I  was  able  to  find  the  average  LF  roll-­‐off  that  is  acceptable  to  my  needs  and  budget.  The  minimum  LF  roll-­‐off  that  I  will  accept  is  that  of  65  Hz.  Below  are  the  results  of  using  an  18  gain/slope  to  resemble  that  of  a  vented  box.  To  be  able  to  use  my  speakers  efficiently,  a  high  frequency  roll-­‐off  of  20  kHz  would  work  very  well.    

Genre of Music    Noticeable Bass Loss  

Acceptable Bass Loss  

Unacceptable Bass Loss  

Page 9: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   9  

Rap/Hip-Hop     50 Hz   60 Hz   70 Hz  

Punk/Hardcore     40 Hz   60 Hz   70 Hz  

Folk/Rock     55 Hz   70 Hz   80 Hz  

Funk/Disco     55 Hz   60 Hz   70 Hz  

Old Country     60 Hz   70 Hz   80 Hz  

Fight Scene     50 Hz   70 Hz   80 Hz  

Scary/Horror     55 Hz   65 Hz   75 Hz  

Racing Game     50 Hz   60 Hz   80 Hz  

Film Score     50 Hz   60 Hz   70 Hz    Coloration/Time  Response:    My  design  is  to  be  that  of  a  smaller  pair  of  loudspeakers,  making  my  low  frequency  capabilities  limited.  To  make  up  for  this,  I  want  to  extend  my  low  frequency  response  to  get  that  bass  that  I  was  missing  from  my  small  box  design.  To  do  this  I  will  be  constructing  a  vented  enclosure,  which  will  result  in  a  worse  transient  response  but  I  am  willing  to  trade  that  off  for  the  extended  low  frequency  response  that  vented  boxes  provide.  In  terms  of  coloration,  the  design  of  these  speakers  should  avoid  noticeable  coloration  of  sound.  It  is  desired  for  these  speakers  to  have  as  flat  of  a  frequency  response  as  possible  in  order  to  play  back  sounds  in  their  purest  form.      To  achieve  such  coloration,  I  plan  on  my  enclosure  to  have  a  dead  internal  reflection,  otherwise,  any  reflections  and  resonances  occurring  within  the  box  are  likely  to  pass  outside  through  the  cone  and  combine  with  the  directly  radiating  sound  in  such  a  manner  that  will  result  in  undesirable  coloration8.  To  make  this  certain,  I  will  be  applying  absorbent  lining  foams  or  fibrous  materials  in  between  the  inside  of  the  two  loudspeaker  enclosures,  making  them  non-­‐reflective  as  reasonably  possible.      Cabinet  Design:    

                                                                                                               8  Philip Newell, and Keith Holland, Loudspeakers For Music Recording And Reproduction, (Burlington, MA: Elsevier Ltd. , 2007), 86.

Page 10: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

10  

The  design  of  my  cabinet  will  ideally  have  no  vibrations  so  that  there  is  no  coloration  created  in  the  overall  sound  output.  In  order  to  prevent  the  vibration  of  my  cabinets,  but  based  on  my  woodworking  skills,  I  am  going  to  build  a  cabinet  shape  that  resembles  model  “K”,  a  rectangular  shape.  It  has  a  reasonable  flat  response  and  will  decrease  the  effects  of  corner  diffraction  and  standing  waves,  more  than  the  cube  shape.  The  diagram  shows  the  different  shapes  and  their  frequency  responses9.              Internally,  to  reduce  vibration  and  the  effects  of  coloration  from  the  cabinets,  I  plan  on  installing  1/8”  vinyl  in  between  the  internal  and  external  enclosures.  Due  to  the  small  size,  there  will  not  be  any  bracing  and  the  structure  will  be  strong  enough  with  just  the  ½”  plywood,  ½”  MDF,  and  1/8”  vinyl  that  is  place  in  between  the  two  boards.              

 Mounting:    With  experimenting  between  the  types  of  power  response,  my  preference  would  be  that  of  a  narrow  dispersion  so  that  the  sound  hits  me  directly.  Since  I  am  the  only  one  who  will  generally  be  using  these  speakers,  wide  dispersion  can  be  ruled  out.          Woofer  Selection:  In  a  low  frequency  driver  I  am  looking  for  one  that  has  a  roll-­‐off  at  a  relatively  low  frequency  and  has  a  flat  response  with  and  a  break-­‐up  in  the  high  frequency  range  that  is  high  enough  to  get  a  good  cross-­‐over  point.  The  cost  of  the  driver  needs  to  be  $50-­‐$60.  There  was  one  woofer  driver  that  I  found  that  had  a  decent  price  and  a  quality  that  was  satisfactory.        

                                                                                                               9  Philip Newell, and Keith Holland, Loudspeakers For Music Recording And Reproduction, (Burlington, MA: Elsevier Ltd. , 2007), 89.  

Page 11: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

11  

Woofer  Name   Freq  Range   Power  Handling  

f(3)   Sensitivity   Diameter   Price  

DARS180-­‐8  7”  Paper  Woofer   45  Hz  -­‐8  kHz   90  W   53Hz   89  dB   7”   $51.75  

SB17NRXc35-­‐8,  6.5”   38  Hz  -­‐  3.5  kHz   60  W   46  Hz   89  dB   6.5”   $62.40  

FounTeck  FW168  6.5”  Aluminum     40  Hz  -­‐  4kHz   45  W  (rms)   47  Hz   87.3  dB   6.5”   $46.00  

ScanSpeak  18W/8434G-­‐00  Discovery   45  Hz  -­‐  8  kHz   170  W  max   48  Hz   88.7  dB   7”   $67.90  

SB17MFC35-­‐8  6"  Polypropylene  Cone   35  Hz  -­‐  3  kHz   60  W   45  Hz   88  dB   6”   $65.05  

   

1. The  Dayton  Audio  RS180-­‐8  7”  Paper  woofer  I  have  modeled  this  woofer  model  and  have  It  has  an  f3  of  53  Hz,  which  is  close  to  the  max  LF  roll-­‐off  that  I  will  accept.  Tuning  the  box  at  55  Hz  and  with  a  size  of  .47  cu  ft,  it  seems  that  the  box  size  would  be  too  small  to  give  quality  sound  for  a  vented  enclosure  and  would  not  be  satisfying  to  my  taste.            

 Woofer  Name   Frequency  

Range  Diameter   Sensitivity   Power  Handling   Price  

Dayton  Audio  RS180-­‐8  7”   45-­‐8  kHz   7”   89  dB   90  W   $51.75  

         

Page 12: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

12  

   

       

Page 13: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

13  

2.  The  SB  Acoustics  SB17NRXC35-­‐8,  6.5"  Woofer.  I  found  a  slightly  more  expensive  woofer  that  is  a  lot  better  than  the  previous  woofer.  It  has  a  wider  frequency  range,  allowing  lower  frequencies  to  be  produced.  According  to  the  model,  if  I  increase  the  size  of  the  enclosure  and  lower  the  box  frequency,  I  can  get  an  f3  of  46  Hz  with  a  flat  response.  With  the  HF  range  going  to  35  KHz,  the  crossover  point  could  be  lower  in  frequency.  

Woofer  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling   Price  

SB17NRXc35-­‐8,  6.5”   38  Hz  -­‐  3.5  kHz   6.5”   89  dB   60  W   $62.40  

                                     

 

Page 14: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

14  

     3.  The  FounTeck  FW168  6.5”  Aluminum  Cone  is  the  woofer  I  have  decided  to  choose.  With  a  cheaper  price  and  smaller  design,  this  woofer  has  an  excellent  resonating  frequency  and  a  decent  sensitivity.  The  frequency  Response  is  fairly  smooth  besides  the  peak  that  starts  at  4  kHz.  The  modeling  of  the  woofer  in  WinSpeakerz  showed  me  that  with  a  box  volume  of  .5  cu  ft  and  a  box  frequency  of  47  Hz,  I  could  get  an  f3  of  47  Hz.  I  am  willing  to  sacrifice  a  little  box  frequency  in  order  to  decrease  my  box  size.  Also,  the  design  of  this  woofer  is  more  aesthetically  pleasing  to  the  eye.    

Woofer  Name   Frequency  Range  

Diameter   Sensitivity   Power  Handling   Price  

FounTeck  FW168  6.5”  Aluminum    

40  -­‐  4kHz   6.5”   87.3  dB   45  W(rms)   $46.00  

                             

                       

Page 15: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

15  

   4.  The  Scanspeak  18W/8434G-­‐00  Discovery,  7"  Midwoofer.  This  woofer  has  a  really  smooth  frequency  response  from  about  200  Hz  -­‐  1  kHz.  Out  of  the  five  woofers  I  compared,  this  was  my  least  favorite.  It  is  the  most  expensive  and  yet  has  the  highest  resonating  frequency.  The  frequency  response  breaks  up  at  around  1  kHz,  which  is  not  good  for  the  high  frequency  crossover.  It  has  an  f3  

of  about  47,  but  the  box  size  is  .75  cu  ft,  which  I  want  to  keep  the  size  down  for  price  and  design.  It  does  have  a  good  sensitivity  and  frequency  range,  but  I  think  the  price  compared  to  the  specs,  it  doesn’t  match  up  with  a  cheaper  woofer  like  the  FounTeck.    

Woofer  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling   Price  

Scanspeak  18W/8434G-­‐00  Discovery,  7"  Midwoofer  

45  Hz  -­‐  8  kHz   7”   88.7  dB   170  W  max   $67.90  

                         

Page 16: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

16  

   

5.  SB  Acoustics  SB17MFC35-­‐8  6"  Poly  Cone  Woofer  The  frequency  range  of  this  woofer  is  the  widest  out  of  all  woofers  and  has  the  lowest  f(3)  making  it  capable  of  reaching  nice  low  frequencies.  The  frequency  response  is  pretty  smooth  from  200  Hz  -­‐  1  kHz,  but  starts  to  break  up  at  around  3  kHz.  It  is  the  smallest  woofer,  which  makes  it  good  for  my  design,  but  is  the  second  most  expensive  out  of  the  5  woofers.  The  f3  of  the  enclosure  was  45  Hz,  which  is  fairly  well,  but  the  box  size  was  .80  cu  ft,  making  it  a  little  too  large  for  my  design.    

Woofer  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling   Price  

SB17MFC35-­‐8  6"  Poly  Cone  Woofer   35  Hz  -­‐  3  kHz   6”   88  dB   60  W   $65.05  

                                                     

Page 17: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

17  

   Tweeter  Selection:    My  desired  tweeter  is  one  that  has  a  flat  frequency  response  into  the  high  frequency,  to  match  that  of  my  woofer.  Having  a  high  power  handling  will  be  beneficial  with  the  sharp,  fast  peaks  in  the  sound  files  due  to  action  and  sfx’s.  Having  an  f(s)  that  is  relatively  low  will  help  with  the  placement  of  the  crossover  point.    

Tweeter  Name   Freq.  response   Diameter   f(s)   Sensitivity   Power  handling   Price  

Dayton  Audio  RS28F-­‐4   1,200  Hz-­‐20  kHz   1-­‐⅛”     530.9  Hz   88  dB   100  W   $54.75  

 Morel  MDT  12  1-­‐1/8"  Neodymium  

1,500  Hz-­‐20Hz   1-­‐⅛”   780  Hz   89  dB   120  W   $34.  40  

SB26ADC-­‐C000-­‐4  Aluminum  Dome  

1  kHz-­‐  20  kHz   1-­‐⅛”   680  Hz   90dB   120  W   $39.00  

 Vifa  NE25VTA   716  Hz-­‐  25  kHz   1”   716  Hz   87.6  dB   160  W  max   $39.60  

Vifa  XT25TG30-­‐04    

1,500  Hz-­‐  40  KHz  

1”   530  Hz   91.1  dB   N/A   $32.70  

 1. Dayton  Audio  RS28F-­‐4  

 Although  this  tweeter  is  a  bit  pricey  for  my  budget,  it  has  an  excellent  f(s)  allowing  for  a  lower  frequency  crossover,  and  has  a  flat  frequency  response  making  it  go  well  with  any  decent  woofer.  It  also  has  an  excellent  amount  of  power  handling  and  sensitivity  and  a  wide  range  frequency  response.  The  off-­‐axis  response  is  not  too  different  from  the  on-­‐axis  response.  The  only  downfall  is  the  price.        

 

Page 18: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

18  

 2. Morel  MDT  12  1-­‐1/8"  Neodymium  Tweeter    

With  a  price  that  is  about  $20  cheaper,  there  are  only  a  few  things  that  are  different  from  the  previous  tweeter.  The  higher  f(s)  makes  the  crossover  frequency  lower.  This  tweeter  is  still  decent  for  its  price  because  it  has  a  very  high  power  handling,  able  to  take  those  sudden  peaks  of  SPL  and  a  sensitivity  that  is  excellent  as  well.    

Tweeter  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling  

f(s)   Price  

 Morel  MDT  12  1-­‐1/8"  Neodymium  Tweeter  

1,500  -­‐  20,000  Hz   1-­‐⅛”   89  dB   120  W   780  Hz   $34.40    

                 

Page 19: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

19  

          3.  SB26ADC-­‐C000-­‐4  Aluminum  Dome  Tweeter  This  has  a  very  flat  frequency  response  that  is  appealing  and  it  stays  within  +/-­‐  2  dB  of  90  dB  from  1  kHz-­‐20  kHz,  making  it  perfect  for  its  use.    This  tweeter  exceeds  the  previous  one,  not  just  with  frequency  response  but  with  price  as  well.  The  f(s)  is  a  little  bit  higher,  making  the  HF  crossover  point  a  little  worse.    

Tweeter  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling   f(s)   Price  

SB26ADC-­‐C000-­‐4  Aluminum  Dome  

1  kHz-­‐  20  kHz   1-­‐⅛”   90  dB   120  W   680  Hz   $39.00    

   

   4.  Vifa  NE25VTA,  1"  Aluminum  Dome  Tweeter,  4  ohm  Aesthetically,  this  tweeter  is  the  most  unique  looking  out  of  all  the  compared  5.  The  frequency  response  of  this  tweeter  is  fairly  flat  from  about  800  Hz  -­‐  5  kHz  and  then  starts  to  dip  before  the  break-­‐up.  It  is  a  decent  tweeter,  but  is  not  the  best.  It  is  a  little  more  expensive  but  has  a  lot  wider  frequency  range  and  much  higher  power  handling  level.    

Page 20: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

20  

Tweeter  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling   f(s)   Price  

NE25VTA,  1"   716  Hz-­‐  25  kHz  

1”   87.6  dB   160  W  max   716  Hz   $39.60    

 5.  Vifa  XT25TG30-­‐04  1”  Dual  Ring  Radiator  Tweeter  This  is  excellent  for  its  price  in  comparison  with  its  very  low  f(s).  It  is  appealing  to  me  because  it  has  a  really  flat  frequency  response  and  stays  within  2  dB  of  90  dB  throughout  the  spectrum  that  it  will  be  used  in.  This  tweeter  exceeds  my  needs  and  still  manages  to  stay  within  my  budget.  It  has  the  widest  range  of  frequency,  the  highest  sensitivity,  and  the  lowest  f(s).  The  only  downfall  is  that  the  

power  handling  is  not  given.  In  comparison  of  all  the  tweeters  I  am  going  to  use  this  tweeter  for  my  speaker  design.      

Tweeter  Name   Freq.  Range   Diameter   Sensitivity   Power  Handling   f(s)   Price  

Vifa  XT25TG30-­‐04    

1,500  Hz-­‐  40  KHz   1”   91.1  dB   N/A   530  Hz   $32.70    

 

Page 21: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

21  

   Crossover  Design    Type:  My  goal  for  my  crossover  is  to  create  the  flattest  frequency  response  in  such  a  way  that  it  does  not  affect  voicing.  In  order  to  allow  my  drivers  to  be  used  over  almost  all  of  their  flat  frequency  response,  I  am  using  a  3rd  order  crossover.  As  you  can  see  in  the  chart/graph  below,  the  crossover  will  be  symmetrical  having  crossover  points  at  both  the  woofer  and  tweeter  at  2  kHz  and  a  -­‐3  dB  pad  on  the  tweeter,  resulting  in  a  reasonably  flat  response  resulting  in  +/-­‐  1.5  dB.      

 

Page 22: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

22  

Driver  Attenuation:  Due  to  the  fact  of  the  difference  in  the  sensitivities  of  my  tweeter  and  woofer,  I  am  going  to  integrate  driver  attenuation  into  the  design  of  my  crossover.  With  the  woofer  having  a  sensitivity  of  87.3  dB  and  my  tweeter  of  91  dB,  I  will  be  creating  a  3  dB  padding  of  attenuation  for  my  tweeter  in  the  crossover.  I  will  also  be  adding  a  low  pass  filter  at  the  crossover  point  of  my  woofer  in  compensation  of  the  baffle  step,  which  should  be  easy  to  fix.        Crossover  Diagram:  Here  is  a  diagram  of  a  3rd  order  crossover  that  I  will  use  that  has  a  negative  18  dB  per  octave.    

           

Page 23: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

23  

Drafting    Overview:  

                         

Page 24: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

24  

Cut  Sheet:    

   Testing  &  Tuning      Initial  Performance  and  Tuning:    The  first  initial  sweep  of  the  sum  of  my  drivers  showed  that  I  had  a  boosted  high  end  and  a  peak  between  400-­‐800  Hz,  along  with  a  sharp  peak  at  1kHz.  The  sharp  peak  at  1kHz  was  due  to  resonance  in  my  box,  so  to  fix  that  I  add  fiberglass  for  dampening.  After  this  I  started  working  on  my  woofer  to  see  if  I  can  get  rid  of  the  2db  peak  between  400-­‐800  Hz.      To  fix  this  boost  at  400-­‐800  Hz,  I  used  a  baffle  step  compensation,  which  was  just  an  inductor  in  parallel  with  a  resistor,  all  in  series  with  the  positive  line.  To  figure  out  the  values  of  my  baffle  step  compensation,  I  used  a  baffle  step  compensation  calculator  online.  With  my  baffle  step  at  the  end  of  my  woofer  circuit,  my  initial  sweep  of  this  was  a  bit  too  much,  and  brought  down  my  mid  range  a  lot.  So  my  process  of  figuring  out  what  to  do  was  first,  change  the  parts  to  larger  and  smaller  values  of  the  ones  I  already  were  using.  This  method  did  not  work,  so  instead  I  tried  

Page 25: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

25  

putting  the  baffle  step  compensation  at  the  very  beginning  of  the  positive  line  on  the  tweeter.  This  method  worked  very  well  and  resulted  in  a  smoother  mid  range  from  400-­‐1kHz.      The  issue  with  my  tweeter  was  that  there  was  a  huge  peak  at  9kHz.  To  compensate  for  this  issue,  I  tried  using  an  L  pad  system,  which  is  two  resistor,  one  in  series  with  the  positive  line  with  the  other  connected  to  that,  going  in  parallel  to  the  negative  line.    To  figure  out  the  values  of  the  resistors  I  used  an  L  pad  calculator  online,  but  that  did  not  work,  so  I  had  to  do  trial  and  error,  making  the  values  larger  and  smaller  until  I  got  values  that  worked  well.      After  I  was  able  to  fix  my  tweeter  issue,  I  ran  a  sweep  of  the  sum  and  got  a  boost  in  at  my  crossover  point  which  was  suppose  to  be  at  2kHz  at  the  time.  To  fix  this  boost  I  decided  to  lower  my  woofer  crossover  point  because  my  tweeter  is  able  to  go  as  low  as  400  Hz.  In  order  to  change  my  crossover  point  without  having  to  reconstruct  my  entire  crossover,  I  had  to  use  trial  and  error  to  see  which  specific  parts  of  my  crossover,  change  the  point  of  crossing  over  for  my  woofer  and  tweeter.  Once  I  found  the  right  components,  I  then  used  trial  and  error  again  to  figure  out  what  values  I  need  to  use  that  will  smooth  out  the  crossover  point.  After  some  lengthy  tedious  work,  I  was  able  to  smooth  out  that  boost  from  my  crossover  point.      After  all  of  my  issues  were  fixed,  I  did  another  full  sweep  of  the  sum  and  was  very  pleased  with  +/-­‐  1.6  dB  from  80-­‐20  kHz.      

   Enclosure  Optimization:      The  enclosure  of  my  box  is  quite  small,  but  during  my  initial  testing  I  had  a  lot  of  resonance  at  1kHz  from  the  standing  waves.  I  started  out  doing  sweeps  with  no  dampening  material  in  the  box,  and  slowly  worked  my  way,  adding  more  dampening  material  until  the  peak  was  gone  and  I  was  pleased  with  the  sound.  The  final  stuffing  that  I  chose  was  quite  a  bit.  The  sidewall  by  the  drivers  have  fiberglass  on  them  and  so  did  back  of  the  sidewalls  near  the  porthole  has  fiberglass  as  well.  The  fiberglass  is  not  glue  at  the  moment,  because  I  may  decide  to  take  out  some  dampening  material  to  see  if  I  could  increase  the  volume  capabilities  and  depth.    

Page 26: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

26  

Final  system  documentation      Final  Testing  Results:    Frequency  Response:  

     Integrated  Response:  

 Woofer:  Yellow,  Tweeter:  Purple,  Sum:  Blue      Harmonic  Distortion:  

       

Page 27: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

27  

   Minimum  Phase:  

 Woofer:  Yellow,  Tweeter:  purple    Horizontal  Off-­‐Axis  Response:  

 Blue:  0,  Green:  15,  Yellow:  30,  Purple:  45,  Bottom  Yellow:  60      Vertical  Off-­‐Axis  Response:  

   Green:  0,  Red:  15,  Blue:  30,  Yellow:  45,  Bottom  Green:  60        

Page 28: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

28  

       Difference  Plot:  

   Step  Response:  

   Integrated  Step  Response:  

     

Page 29: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

29  

       Impulse  Response:  

                                                           

Page 30: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

30  

Waterfall:  

                             

Page 31: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

31  

Individual  Driver  Tests:    Woofer  Frequency  Response:  

     Tweeter  Frequency  Response:  

   Woofer  Harmonic  Distortion:  

             

Page 32: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

32  

Tweeter  Harmonic  Distortion:  

   Woofer  Minimum  Phase:  

   Tweeter  Minimum  Phase:  

                 

Page 33: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

33  

Woofer  Horizontal  Off  –Axis:  

   Tweeter  Horizontal  Off-­‐Axis:

   Woofer  Vertical  Off-­‐Axis:  

                 

Page 34: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

34  

Tweeter  Vertical  Off-­‐Axis:  

   Woofer  Step  Response:    

 Tweeter  Step  Response:  

               

Page 35: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

35  

Woofer  Impulse  Response:  

   Tweeter  Impulse  Response:  

                                 

Page 36: Andrew!Villa Transducer!Theory:! Loudspeaker!Design!  · PDF filePrioritization:! ... such!as!video!games,!film,!and!commercials.!I!will!be!mixing!sound!effects!and!music!

 

   

36  

Bibliography      “AES  Standards  and  Practices.”  New  York:  Audio  Engineering  Society,  Inc.  1996.  (Accessed  January  17,  2014)      Apple  Inc.  Soundtrack  Pro  3  User  Manual.  http://documentation.apple.com/en/soundtrackpro/usermanual/index.html#chapter=C%26section=6%26tasks=true  (accessed  January  18,  2014).    Moulton,  David.  Total  Recording:  The  Complete  Guide  to  Audio  Production  and  Engineering.  Sherman  Oaks,  CA:  KIQ  Productions,  2000.      Murphy,  John  L.  In  Introduction  to  Loudspeaker  Design.  Escondido,  CA:  True  Audio,  1998.    Newell,  Philip  Richard,  and  K.  R.  Holland.  Loudspeakers:  For  Music  Recording  and  Reproduction.  Oxford:  Focal,  2007.    North   Creek   Music   Systems.  Cabinet  Handbook.  2nd  Edition.  Old  Forge,    New  York:  North  Creek  Music  Systems,  1992.    Plummer,  Christopher.  “FA  4740  Transducer  Theory.”  Houghton,  Michigan,  Spring  2014.  Michigan  Technological  University.      "THX  Technology."  THX.com.  THX  Reference  Level  Comments.  http://www.thx.com/consumer/thx-­‐technology/thx-­‐reference-­‐level/  (accessed  January  26,  2014).      "Yamaha  NS10s."  Features  and  Specifications.  http://www.rcc.ryerson.ca/media/ns10m.pdf  (accessed  January  26,  2014).