new lrfd design of precast concrete pipe pipe... · 2016. 3. 1. · lrfd design of precast concrete...

Post on 02-Sep-2020

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

LRFD Design of Precast Concrete Pipe

Josh Beakley – ACPA Director of Technical ServicesSeptember 16th 2010September 16 , 2010

www.concrete-pipe.org

22

Design Options12 10 Reinforced Concrete Pipe12.10 Reinforced Concrete Pipe• 12.10.1• “The structural design of the type of

pipes indicated above may proceed p p y pby either of two methods.”

www.concrete-pipe.org

3

12 10 Reinforced Concrete Pipe12.10 Reinforced Concrete Pipe• “The direct design method at the g

strength limit state as specified in Article 12.10.4.2 or

• The indirect design method at the service limit state as specified in Article 12.10.4.3”

www.concrete-pipe.org

4

Indirect Design MethodIndirect Design Method

5

Direct Design per AASHTO Section 12Section 12

6

Load FactorsLoad Load Factor

Standard LRFDMinimum MaximumMinimum Maximum

Dead 1.3 0.90 1.25Water 1.3 1.0 1.0E th V ti l 1 3 0 90 1 30Earth – Vertical 1.3 0.90 1.30Earth -Horizontal

1.3 0.90 1.35

Live 1.3 x 1.67 = 2.17 0.0 1.75*

* A multiple presence factor is included in the total load A multiple presence factor is included in the total load

7

www.concrete-pipe.org

8

Per AASHTO LRFD

www.concrete-pipe.org

9

Per AASHTO Standard Specifications

www.concrete-pipe.org

10

Reason for Differences Between LRFD and Standard SpecificationLRFD and Standard Specification Allowable Fill Heights• Increase in live load concentration 1.15H versus 1.75H distribution

• Increase in impact factor 0.33 to 0 at 8 feet versus 0.30 to 0 at 3

feet• C-wall used in the LRFD tables

versus B-wall in the Standard tables

www.concrete-pipe.org

LRFD Fill Height Example

www.concrete-pipe.org

12

Gi enGiven:• Di = 48 in.i

• t = D/12 + 1.75= 5 75 in5.75 in.

• Do = Di + 2t= 59 5 in= 59.5 in.

• H = 5 ft.120 f• w = 120 pcf

• Type 2 Installation

Soil Load

www.concrete-pipe.org

14

15

AASHTO LRFD 12 10 2 1AASHTO LRFD 12.10.2.1• WE = Fe w Bc HE e c Fe = Soil-structure Interaction Factor w = unit weight of soil (pcf)u t e g t o so (pc ) Bc = outside diameter of pipe (ft) H = height of fill over the pipe (ft)H height of fill over the pipe (ft)

www.concrete-pipe.org

16

AASHTO LRFD 12 10 2 1AASHTO LRFD 12.10.2.1• “Standard installations for both

embankments and trenches shall be designed for positive projection, embankment loading conditions where Fe shall be taken as the vertical arching factor VAF specifiedvertical arching factor, VAF, specified in Table 12.10.2.1-3 for each type of standard installation ”standard installation.

www.concrete-pipe.org

17

AASHTO LRFD 12.10.2.1

18

Embankment InstallationEmbankment Installation

FrictionalSoil Prism

ForcesPrism

N t l G dNatural Ground

19

Calculate soil load on the pipe:Calculate soil load on the pipe:

• Prism loadPrism load PL = w[H + (Do(4 –π))/96] Do/12 PL = 3292 lbs/ftPL 3292 lbs/ft

• Vertical Arching Factor Fe = 1 4 Fe = 1.4

• Soil loadW F * PL WE = Fe * PL WE = 4608 lbs/ft

Fluid Load

www.concrete-pipe.org

21

AASHTO LRFD 12.10.2.2 – Pipe Fluid WeightFluid Weight• “The unfactored weight of fluid, WF, in g , F,

the pipe shall be considered in design based on a fluid weight of 62.4 lb./ft3, unless otherwise specified.”

www.concrete-pipe.org

22

Calculate fluid load in the pipe:U it i ht f t• Unit weight of water γw = 62.4 pcf

• Volume of water V = π[Di/(2*12)] 2 * 1 V = 12.56

• Fluid load WF = γw * V WF = 784.1 lbs/ftF

Live Load

www.concrete-pipe.org

24

AASHTO HL-93 Load

• Per Article 3.6.1.2.1, vehicular live ,loading on roadways or bridges shall consist of a combination of the: Design truck or design tandem Design lane load

• Per article 3.6.1.2.2, Design truck = 32 kip axles

• Per article 3.6.1.2.2, Design tandem = 25 kip axleskip axles

25

AASHTO LRFD 3.6.1.2.5 – Tire Contact AreaContact Area• “The tire contact area of a wheel

consisting of one or two tires shall be assumed to be a single rectangle, whose width is 20.0 in. and whose length is 10.0 in.”

www.concrete-pipe.org

26

27Calculate the Live Load Distribution through Pipe andDistribution through Pipe and Soil

28

www.concrete-pipe.org

29

www.concrete-pipe.org

30

Critical Live Load ParametersCritical Live Load Parameters

www.concrete-pipe.org

31

Live Load SpreadLive Load Spread

www.concrete-pipe.org

32Live Load Distribution for Select Granular FillFill

• For a vehicle traveling perpendicular:2 05 1 15D H 5 5 2.05 – 1.15Do < H < 5.5

From calculation above P 32 000 lb• P = 32,000 lbs

• Spread a = a + 4 + 1.15H • Spread a = 20/12 + 4 + 1 15(5 0 ft ) = 11 42 ftSpread a = 20/12 + 4 + 1.15(5.0 ft.) = 11.42 ft• Spread b = b + 1.15 H• Spread b = 10/12 + 1.15(5.0 ft.) = 6.58 ft.

Spread wheel load area at outside top of pipe• A = Spread a * Spread b =11.42 ft * 6.58 ft• A = 75.18 ft2

33

Pressure at Top of Pipe

www.concrete-pipe.org

34

Calculate Average Pressure IntensityIntensity• Impact Factorp IM = [33 (1 - .125(5 ft.)] / 100 = .124

• Average pressure intensity w = [P (1 + IM)] / Aw [P (1 + IM)] / A w = [32,000 lbs( 1+ .124)] / 75.18 ft2

w = 478 4 lbs/ ft2w = 478.4 lbs/ ft

35

www.concrete-pipe.org

36

Live Load Above the PipeLive Load Above the Pipe

www.concrete-pipe.org

37

Total Live Load Calculation

• Dimension of area parallel to longitudinal axis of pipe L = Spread a = 11 42 ft L = Spread a = 11.42 ft.

• Lesser of the outside horizontal span, Do, or spread wheel load perpendicular to longitudinal axis of pipeaxis of pipe SL = Do = 4.96 ft.

• Total Live Load WT = wLSL = 478.4 lbs/ft * 11.42 ft. * 4.96 ft. WT = 27,089 lbs.

38

Distribution of Live Load Through the Pipest but o o e oad oug t e pe

www.concrete-pipe.org

39

Total Live Load per Linear Foot ota e oad pe ea ootCalculation

Eff ti ti l th f i• Effective supporting length of pipe Le = L + 1.75(.75*Ro) Le = 11.42 ft. + 1.75(.75 * 4.96 ft.) =

17.93 ft.

• Total live load in pounds per feet WL = WT / Le = 27089 lbs. / 17.93 ft. WL = 1,511 lbs./ft.

40

D-Load Equation

www.concrete-pipe.org

41

Extra Safety Factor for Type 1 Installations

www.concrete-pipe.org

42

Extra Safety Factor for Type 1 Installations

www.concrete-pipe.org

43

E th L d B ddi F tEarth Load Bedding Factor

Interpolate for 48 in pipe BFE = 2.867

44

Live Load Bedding Factor

For 48 in pipe @ 5.0 ft of cover BFLL = 2.2

45

Calculate the D-load per Equation 12 10 4 3 1 112.10.4.3.1-1

• D0.01 = (12/D)*{[(WE + WF) / BFE] + [WL / 0.01 ( ) { ( E F) FE LBFLL]}

• D0.01 = (12/48)*{[( 4,608 + 784.14) / 2.867] + [1,511 /2.2]}

• D0.01 = 641.9 lbs./ft./ft.

46

Per AASHTO LRFD

www.concrete-pipe.org

Direct Design of Concrete Pipe Using PIPECARPIPECAR

www.concrete-pipe.org

48

www.concrete-pipe.org

49

www.concrete-pipe.org

50

12.4.2.7 – Yield stress limited to 65 ksi for smooth wire and 70 ksi for deformed welded wire fabric

www.concrete-pipe.org

5.4.2.1 – concrete strength limited to 10 ksi

5151

www.concrete-pipe.org

52

www.concrete-pipe.org

53

www.concrete-pipe.org

54

www.concrete-pipe.org

55

WE= 4608 lbs/ft

Indirect Design Method

WE 4608 lbs/ft

WF = 784.1 lbs/ft

W 1 511 lb /ftwww.concrete-pipe.org

WL = 1,511 lbs./ft.

56

48 Inch Class II (1000 lbs/ft/ft) Pipe – C-wall( ) p

Asi = 0.14 SQ. IN./FTAso = 0.08 SQ. IN./FT

www.concrete-pipe.org

so

The End

Transfer Site - http://xfer.concrete-pipe.org/Transfer Site http://xfer.concrete pipe.org/Password – “LRFDPipe”

www.concrete-pipe.org

top related