ae 452 aeronautical engineering design ii

20
AE 452 Aeronautical Engineering Design II Air Loads Prof. Dr. Serkan ร–zgen Dept. Aerospace Engineering February 2017

Upload: others

Post on 20-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

AE 452 Aeronautical Engineering Design IIAir Loads

Prof. Dr. Serkan ร–zgen

Dept. Aerospace Engineering

February 2017

Maneuver loads

2

Level turn

3

โ€ข The greatest air loads on an airplane usually come from thegeneration of lift during high-g maneuvers.

๐‘› = ๐ฟ ๐‘Š, load factor and ๐‘› =1

๐‘๐‘œ๐‘ ๐œ™

โ€ข The largest load the airplane is expected to encounter is called the limit load and the corresponding load factor is called the limit load factor.

โ€ข Ultimate load factor or the design load factor is the limit loadmultiplied by a factor of safety to account for material andworkmanship quality, design errors, uncertainty, etc.

โ€ข Factor of safety = 1.5 nultimate=1.5*nlimit.

Typical limit load factors

4

Level turn

5

โ€ข Stall limit for the maximum load factor (instantaneous turn):

๐ฟ = ๐‘›๐‘š๐‘Ž๐‘ฅ๐‘Š,๐ฟ = 1 2๐œŒโˆž๐‘‰๐‘ ๐‘ก๐‘Ž๐‘™๐‘™2 ๐ถ๐ฟ,๐‘š๐‘Ž๐‘ฅ๐‘†

๐‘›๐‘š๐‘Ž๐‘ฅ = 1 2๐œŒโˆž๐‘‰๐‘ ๐‘ก๐‘Ž๐‘™๐‘™

2 ๐ถ๐ฟ,๐‘š๐‘Ž๐‘ฅ

๐‘Š ๐‘†

โ€ข The speed at which the maximum lift is equal to the allowablestructural load factor is the corner speed and provides themaximum turn rate for a given altitude.

โ€ข Modern fighters have a corner speed around 300-350 knots.

Level turn

6

โ€ข Corresponding turn rate:

๐œ“ =๐‘” ๐‘›2 โˆ’ 1

๐‘‰โˆžโ€ข Corresponding turn radius:

๐‘… =๐‘‰โˆž2

๐‘” ๐‘›2 โˆ’ 1

V-n diagram

7

โ€ข V-n diagram depicts allowable load factors as a function of airspeed.

V-n diagram

8

โ€ข Corner velocity: the slowest speed at which the maximum loadfactor can be reached without stalling.

โ€ข Dive speed: represents the maximum dynamic pressure, qโˆž. The point representing maximum qโˆž and nlimit is important forstructural design. Exceeding Vdive may result in phenomena likewing divergence, control surface reversal, etc.

๐‘‰๐‘‘๐‘–๐‘ฃ๐‘’ = 1.5 โˆ— ๐‘‰๐‘๐‘Ÿ๐‘ข๐‘–๐‘ ๐‘’ or ๐‘‰๐‘‘๐‘–๐‘ฃ๐‘’ = 1.2 โˆ— ๐‘‰๐‘š๐‘Ž๐‘ฅ for subsonic airplanes

๐‘€๐‘‘๐‘–๐‘ฃ๐‘’ = ๐‘€๐‘š๐‘Ž๐‘ฅ + 0.2 for supersonic airplanes

Sustained turn

โ€ข An aircraft will probably not be able to maintain speed andaltitude while turning at the maximum instantaneous turn rate.

โ€ข Sustained turn rate is usually specified in terms of themaximum load factor at a given flight condition that the aircraftcan sustain, e.g. 4-5g at M=0.9 at 30000 ft.

๐‘‡ = ๐ท, ๐ฟ = ๐‘›๐‘Š โ‡’ ๐‘› =๐‘‡

๐‘Š

๐ฟ

๐ท

โ€ข Load factor in a sustained turn increases when T/W and L/D increases.

9

Aerodynamic and structural limitson turn performance

10

Aerodynamic and thrust limitson turn performance

11

Pull-up maneuver

โ€ข At ๐‘ก = 0 ๐œƒ = 0 :

๐น๐‘Ÿ = ๐ฟ โˆ’๐‘Š = ๐‘Š ๐‘› โˆ’ 1 = ๐‘š๐‘‰โˆž2

๐‘…=

๐‘Š

๐‘”

๐‘‰โˆž2

๐‘…

โ€ข Solving for turn radius:

๐‘… =๐‘‰โˆž2

๐‘”(๐‘›โˆ’1)

โ€ข Solving for turn rate:

๐œ“ =๐‘‰โˆž

๐‘…=

๐‘”(๐‘›โˆ’1)

๐‘‰โˆž

12

Pull-down maneuver

โ€ข At ๐‘ก = 0 ๐œƒ = 0 :

๐น๐‘Ÿ = ๐ฟ +๐‘Š = ๐‘Š ๐‘› + 1 = ๐‘š๐‘‰โˆž2

๐‘…=

๐‘Š

๐‘”

๐‘‰โˆž2

๐‘…

โ€ข Solving for turn radius:

๐‘… =๐‘‰โˆž2

๐‘”(๐‘›+1)

โ€ข Solving for turn rate:

๐œ“ =๐‘‰โˆž

๐‘…=

๐‘”(๐‘›+1)

๐‘‰โˆž

13

Gust loads

14

โ€ข The loads experienced when the airplane encounters a stronggust (when flying close to a thunderstorm or during clear air

turbulence encounter) may exceed the maneuver loads.

Gust loads

15

โ€ข When an airplane encounters a gust, the effect is to increasethe angle of attack:

ฮ”๐›ผ = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘ˆ

๐‘‰โˆžโ‰ˆ

๐‘ˆ

๐‘‰โˆž

โˆ†๐ฟ = ๐‘žโˆž๐‘† ๐ถ๐ฟ๐›ผโˆ†๐›ผ =1

2๐œŒโˆž๐‘‰โˆž๐‘†๐ถ๐ฟ๐›ผ๐‘ˆ

โˆ†๐‘› =โˆ†๐ฟ

๐‘Š=

๐œŒโˆž๐‘‰โˆž๐ถ๐ฟ๐›ผ๐‘ˆ

2 ๐‘Š ๐‘† load factor due to a gust

increases for aircraft with low wing loading!

Gust loads

16

โ€ข The assumption that an airplane instantly encounters a gustand this gust instantly effects the airplane is unrealistic.

โ€ข Gusts follow cosine-like intensity increase allowing aircraftmore time to react. This reduces the acceleration experiencedby the airplane.

Gust loads

17

โ€ข Gust velocity:

๐‘ˆ = ๐พ๐‘ˆ๐‘‘๐‘’ , ๐พ: gust alleviation factor

๐พ =0.88๐œ‡

5.3+๐œ‡, subsonic flight

๐พ =๐œ‡1.03

6.95+๐œ‡1.03, supersonic flight

๐œ‡ =2 ๐‘Š ๐‘†

๐œŒโˆž๐‘” ๐‘๐ถ๐ฟ๐›ผ, mass ratio

๐‘ˆ๐‘‘๐‘’ = 30 ๐‘“๐‘ก/๐‘ , standard vertical gust, produces n=3g loadfactor, suitable for CS23 airplanes.

Gust loads

18

Gust loads

19

Gust loads

20