28. alternating current circuits

36
28. Alternating Current Circuits 1. Alternating Current 2. Current Elements in AC Circuits 3. LC Circuits 4. Driven RLC Circuits & Resonance 5. Power in AC Circuits 6. Transformers & Power Supplies

Upload: marla

Post on 12-Feb-2016

170 views

Category:

Documents


1 download

DESCRIPTION

28. Alternating Current Circuits. Alternating Current Current Elements in AC Circuits LC Circuits Driven RLC Circuits & Resonance Power in AC Circuits Transformers & Power Supplies. Why does alternating current facilitate the transmission and distribution of electric power?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 28.  Alternating Current Circuits

28. Alternating Current Circuits

1. Alternating Current 2. Current Elements in AC Circuits3. LC Circuits4. Driven RLC Circuits & Resonance5. Power in AC Circuits6. Transformers & Power Supplies

Page 2: 28.  Alternating Current Circuits

Why does alternating current facilitate the transmission and distribution of electric power?

EM induction allows voltage transformation.

Page 3: 28.  Alternating Current Circuits

28.1. Alternating Current

Reminder: All waves can be analyzed in terms of sinusoidal waves (Fourier analysis Chap 14).

Sinusoidal wave (Chap 13) :

2p

rms

VV

2p

rms

II

Angular frequency : 2 f [] = rad/s

sinp VV V t sinp II I t

= phase

= / 6

Vp sin

2 22 2

0 0

1 1 1sin cos2 2 2

x dx x dx

Page 4: 28.  Alternating Current Circuits

Example 28.1. Characterizing Household Voltage

Standard household wiring supplies 110 V rms at 60 Hz.

Express this mathematically, assuming the voltage is rising through 0 at t = 0.

2p rmsV V 156V

1377s2 f 2 60 Hz

sinpV V t

0 0V t 0 sinpV

0 sinpV V t 156 sin 377 Vt

Page 5: 28.  Alternating Current Circuits

28.2. Current Elements in AC Circuits

Resistors

Capacitors

Inductors

Phasor Diagrams

Capacitors & Inductors: A Comparison

Page 6: 28.  Alternating Current Circuits

Displacing Functions

f x xg

xx

fg g is moved to the right (forward) by to give f.

sin cos

cosn2

si x x

Displacement: sin is cos moved forward by /2.Phase: sin lags cos by /2.

sin sincos2

x x x

Derivative: moves sinusoidal functions backward by /2.

phase is increased by /2.

cossin2

sinx dx x x Integral: moves sinusoidal functions forward by /2.

phase is decreased by /2.

Page 7: 28.  Alternating Current Circuits

Resistors

V tI

R sinpV

tR

I & V in phasesinpI I t pp

VI

R

rmsrms

VIR

+VR

I

+

sin 0pV t I R 0RV t V When V(t) > 0 :

Page 8: 28.  Alternating Current Circuits

Capacitors

q C V t sinpCV t

d qId t

cospCV t

sin2pI C V t

I leads V by 90

p pI C V p

C

VX

1CX

C Capacitive reactance

CX

0CX as DC: open ckt.

0CX as HF: short ckt.

I peaks ¼ cycle before V

d VCd t

+VC

I

+

0CV t V sin 0pqV tC

When V(t) > 0 :

Page 9: 28.  Alternating Current Circuits

Inductors

sinpVd I td t L

sinpVt d t

L cospV

tL

sin2

pVI t

L

I trails V by 90

pp

VI

L p

L

VX

LX L Inductive reactance

LX

0 0LX as DC: short ckt.

LX as HF: open ckt.

I peaks ¼ cycle after V

1I V t d tL

I

+

0LV t E

sin 0pd IV t Ld t

When V(t) > 0 :

L

+

Page 10: 28.  Alternating Current Circuits

Table 28.1. Amplitude & Phase in Circuit Elements

Circuit Element Peak Current vs Voltage Phase Relation

Resistor

Capacitor

Inductor

pp

VI

R

pp

C

VI

X

1 /pVC

pp

L

VI

X pV

L

V & I in phase

V lags I 90

V leads I 90

Page 11: 28.  Alternating Current Circuits

GOT IT? 28.1.A capacitor and an inductor are connected across separate but identical electric generators,and the same current flows in each.

If the frequency of the generators is doubled, which will carry more current?

p C pI V C

pp L

VI

L

Ans. is capacitor

2p C pI V C

2p

p L

VI

L

2 p CI

12 p LI

Page 12: 28.  Alternating Current Circuits

Example 28.2. Equal Currents?

A capacitor is connected across a 60-Hz, 120-V rms power line,

and an rms current of 200 mA flows.

(a) Find the capacitance.

(b) What inductance, connected across the same powerline,

would result in the same current?

(c) How would the phases of the inductor & capacitor currents compare?

(a) rms

rms

ICV

3200 10

120 2 60A

V Hz

64.42 10 F 4.42 F

(b) rms

rms

VLI

3

120200 10 2 60

VA Hz

1.59 H

(c)

rmsrms

IVC

rms rmsV L I

Capacitor: IC leads V by 90.Inductor: V leads IL by 90.

IC leads IL by 180.

Page 13: 28.  Alternating Current Circuits

Phasor DiagramsPhasor = Arrow (vector) in complex plane. Length = mag. Angle = phase.

V leads I by 90. V leads I by 90.( V lags I by 90 )

V leads I by 0.( same phase )

V I X iV V e i tV e

Page 14: 28.  Alternating Current Circuits

Capacitors Revisitedq C V i t

pCV e

d qId t

i tpCV i e

I leads V by 90

dVCdt

+VC

Vp e i t

Taking the real part as physical

cospV V t

sinpI CV t cos2pCV t

Taking the imaginary part as physical

sinpV V t

cospI CV t sin2pCV t

I i C V 2i

CV e

V I Z

1Z iC

Impedance

I

Page 15: 28.  Alternating Current Circuits

Inductors Revisited

I lags V by 90

Vp e i t

Taking the real part as physical

cospV V t

sinpVI t

L

cos

2pV

tL

Taking the imaginary part as physical

sinpV V t

cospVI t

L

sin

2pV

tL

VIi L

2iV e

L

I

L

+

i tp

d IL V ed t

p i tVI e d t

L

LZ L i

0LV t E

p i tVe

i L

Page 16: 28.  Alternating Current Circuits

Capacitors & Inductors: A Comparison

C L translator:

E B

q B

V I

Z Y

Page 17: 28.  Alternating Current Circuits

Table 28.2. Capacitors & InductorsCapacitor Inductor

Behavior in low freq limit

Defining relation; differential form

Opposes change in

Energy storage

Defining relation

Behavior in high freq limit

Reactance

Phase

qCV

BLI

dVI Cd t

d IV Ld t

V I

212EU CV 21

2BU L I

Open circuit Short circuit

Open circuitShort circuit

I leads by 90 V leads by 90

1/ CX C LX L

Admittance / Impedance 1/C CY i C Z LZ i L

Page 18: 28.  Alternating Current Circuits

Application: Loudspeaker Systems

Loudspeaker

Loudspeaker system with high & low frequency filters.

C passes High freq

L passes low freq

CQV I RC

1

CR Ii C

LL

d IV L I Rd t

Li L R I

Page 19: 28.  Alternating Current Circuits

28.3. LC CircuitsI

V+

Page 20: 28.  Alternating Current Circuits

Analyzing the LC Circuit

B EU U U 2 21 12 2L I C V

0d Ud t

d I d VL I C Vd t d t

qVC

1d V d q

d t C d t

d qId t

2

2

d I d qd t d t

2

2

10 d q d q q d qL Cd t d t C C d t

2

2 0d q qLd t C

cospq q t1L C

I

V+ 0q d IL

C d t

Page 21: 28.  Alternating Current Circuits

GOT IT? 28.2

You have an LC circuit that oscillates at a typical AM radio frequency of 1 MHz.

You want to change the capacitor so it oscillates at a typical FM frequency , 100 MHz.

Should you make the capacitor

(a) larger or

(b) smaller ?

By what factor ? 104

1L C

2

1CL

Page 22: 28.  Alternating Current Circuits

Example 28.3. Tuning a Piano

You wish to make an LC circuit oscillate at 440 Hz ( A above middle C ) to use in tuning pianos.

You have a 20-mH inductor.

(a)What value of capacitance should you use ?

(b) If you charge the capacitor to 5.0 V, what will be the peak current in the circuit ?

2

1CL

23

120 10 2 440H Hz

66.54 10 F 6.54 F(a)

(b) B p E pU U 2 21 12 2p pL I C V

p pCI VL

6

3

6.54 10 5.020 10

F VH

0.09 A 90 mA

Page 23: 28.  Alternating Current Circuits

Resistance in LC Circuits – Damping

2 21 12 2L CU L I C V

2dU I Rd t

CC

d I dVL I C Vdt d t

CqVC

CdV Id t C

2 0d I IL I q I Rd t C

0d I qL I Rd t C

2

2 0d q dq qL Rd t d t C

/ 2 cosR t Lpq t q e t (see next page)

I

VC

+

L

+

+ VR

dqId t

Page 24: 28.  Alternating Current Circuits

Resistance in LC Circuits – Damping

0q d II R LC d t

dqId t

2

2 0d q dq qL Rd t d t C

/ 2 cosR t Lpq t q e t

I

(see next page)

VC

+

L

+

+ VR

Page 25: 28.  Alternating Current Circuits

Solutions to Damped Oscillator

2

2 0d q dq qL Rdt d t C

0a tq q e 2

01 0a tL a R a q eC

Ansatz:

2 1 0L a R aC

21 42

La R RL C

/2R t L i t i tq e c e c e 21 4

2L R

L C

212R

LC L

220 2

RL

/ 2 cos sinR t Le A t B t

/20 cosR t Lq e t

24L R C

01LC

2R iL

Page 26: 28.  Alternating Current Circuits

28.4. Driven RLC Circuits & Resonance

Driven damped oscillator :

Long time: oscillates with frequency d.

Resonance if d = 0.

I

VC +

L

+

+ VR

+

0d I qV I R Ld t C

0dd

IV I R i L Ii C

1d

d

V I R i LC

2021dd

Z R i L

Page 27: 28.  Alternating Current Circuits

Resonance in the RLC Circuit

1/C p

C pd

VI

C L p

L pd

VI

L L p L pV V if

1d

d

LC

2 20d i.e.,

VC & VL are 180 out of phase.

2021dd

V I R i L

L dV i L I

202C Ld

V V

L CV V V I R

Page 28: 28.  Alternating Current Circuits

GOT IT? 28.3

You measure the capacitor & inductor voltage in adriven RLC circuit,

and find 10 V for the rms capacitor voltage

and 15 V for the rms inductor voltage.

Is the driving frequency

(a) above or

(b) below resonance ?

VCp < VLp 1 /

C pC p

d

VI

C L p

L pd

VI

L

1d

d

LC

21dLC

Page 29: 28.  Alternating Current Circuits

Frequency Response of the RLC Circuit

Series circuit same I phasor for all.

VR in phase with I.

VC lags I by 90.

VL leads I by 90.

Q d II R L VC d t

22 1Z R L

C

1I R i Li C

p pV I Z

High Q

Low Q

See Prob 71 for definition of Q.

tan L p C p

R p

V VV

L CX XR

1LC

R

At resonance, = 0.

1Z R i LC

2021L

R

Page 30: 28.  Alternating Current Circuits

Example 28.4. Designing a Loud Speaker System

Current flows to the midrange speaker in a loudspeaker system through a 2.2-mH inductor in series with a capacitor.

(a)What should the capacitance be so that a given voltage produces the greatest current at 1 kHz ?

(b) If the same voltage produces half this current at 618 Hz,what is the speaker’s resistance ?

(c) If the peak output voltage of the amplifier is 20 V, what will be the peak capacitor voltage be at 1 kHz ?

(a) Greatest I is at resonance: 20

1LC

20

1CL

23 3

1

2.2 10 2 10H Hz

611.5 10 F 11.5 F

Page 31: 28.  Alternating Current Circuits

(b) If the same voltage produces half this current at 618 Hz, what is the speaker’s resistance ?

22 1Z R L

C

p pV I Z At resonance: Z R

2p

p

IZ I R

22 1 2R L R

C

1 13

R LC

36

1 12 618 2.2 102 618 11.5 103

Hz HHz F

8.0

(c) If the peak output voltage of the amplifier is 20 V,

what will be the peak capacitor voltage be at 1 kHz ?

p pV I RPeak voltage is at resonance (1 kHz).

C p p CV I X 1pVR C

3 6

20 18.0 2 10 11.5 10

VHz F

35V

Page 32: 28.  Alternating Current Circuits

28.5. Power in AC Circuits

P I V

sin sinp pP I t V t

sin sinp pI t V t

sin sinp pI V t t

sin cos cos sin sinp pI V t t t

2sin cos cos sin sinp pI V t t t

1 cos2 p pP I V cosrms rmsI V

Power factor

Capacitor: I leads V by 90 , P = 0

Resistor: I & V in phase , P > 0

I & V out of phase , P

Dissipative power = I2 R large power factor reduces I & hence heat loss.

Page 33: 28.  Alternating Current Circuits

Conceptual Example 28.1. Managing Power Factor

You’re chief engineer of a power company.

Should you strive for a high or a low power factor on your lines?

cosrms rmsP I V

Power factor

Generator : fixed Vrms .

To maintain fixed <P>, Irms cos = const.

Smaller power factor higher Irms .

higher power loss.

Ans.: keep power factor close to 1.

Page 34: 28.  Alternating Current Circuits

Making the Connection

Transmission losses on a well-managed electric grid average about 8% of the total power delivered.

How does this figure change if the power factor drops from 1 to 0.71?

To deliver the same power

cosrms rmsP I V

0.71newII 1.4 I

Transmission losses: 2L rmsP I R 2

, 1.4L new LP P 2 LP

( doubles to 16% )

Page 35: 28.  Alternating Current Circuits

28.6. Transformers & Power Supplies

Transformer: pair of coils wound on the same (iron) core.

sec secondary ondary

primary primary

V NV N

Works only for AC.

Page 36: 28.  Alternating Current Circuits

Direct-Current Power SuppliesDiode passes + half of each cycle

Diode cuts off half of each cycle

Diode

RC (low freq) filter