vibration infomation

Upload: murali-krishnamoorthy

Post on 04-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Vibration Infomation

    1/136

    VIBRATIONFATIGUEANALYSISOFSTRUCTURESUNDERBROADBANDEXCITATION

    ATHESISSUBMITTEDTOTHEGRADUATESCHOOLOFNATURALANDAPPLIEDSCIENCES

    OFMIDDLEEASTTECHNICALUNIVERSITY

    BY

    BLGEKOER

    INPARTIALFULFILLMENTOFTHEREQUIREMENTSFOR

    THEDEGREEOFMASTEROFSCIENCE

    INMECHANICALENGINEERING

    JUNE2010

  • 8/13/2019 Vibration Infomation

    2/136

    ii

    Approvalofthethesis:

    VIBRATIONFATIGUEANALYSISOFSTRUCTURESUNDER

    BROADBANDEXCITATION

    submittedbyBLGEKOERinpartialfulfillmentoftherequirementsforthedegreeofMasterofScience inMechanicalEngineeringDepartment,MiddleEastTechnicalUniversityby,

    Prof.Dr.Cananzgen ________________ Dean,GraduateSchoolofNaturalandAppliedSciences

    Prof.Dr.SuhaOral ________________ HeadofDepartment,MechanicalEngineering

    Assoc.Prof.Dr.SerkanDa ________________ Supervisor,MechanicalEngineeringDept.,METU

    Asst.Prof.Dr.YiitYazcolu ________________ CoSupervisor,MechanicalEngineeringDept.,METU

    ExaminingCommitteeMembers:

    Asst.Prof.Dr.ErginTnk _____________________ MechanicalEngineeringDept.,METU

    Assoc.Prof.Dr.SerkanDa _____________________ MechanicalEngineeringDept.,METU

    Asst.Prof.Dr.YiitYazcolu _____________________ MechanicalEngineeringDept.,METU

    Asst.Prof.Dr.EnderCierolu _____________________ MechanicalEngineeringDept.,METU

    Dr.VolkanParlakta _____________________ MechanicalEngineeringDept.,HacettepeUniversity

    Date: 24062010

  • 8/13/2019 Vibration Infomation

    3/136

    iii

    Iherebydeclarethatallinformationinthisdocumenthasbeenobtainedandpresented inaccordancewithacademic rulesandethicalconduct. Ialso declare that, as required by these rules and conduct, I have fullycitedandreferencedallmaterialandresults thatarenotoriginal to thiswork.

    Name,Lastname : Bilge,Koer

    Signature :

  • 8/13/2019 Vibration Infomation

    4/136

    iv

    ABSTRACT

    VIBRATIONFATIGUEANALYSISOFSTRUCTURESUNDERBROADBANDEXCITATION

    Koer,BilgeM.S.,DepartmentofMechanicalEngineeringSupervisor:Assoc.Prof.Dr.SerkanDaCoSupervisor:Asst.Prof.Dr.YiitYazcolu

    June2010,117pages

    Thebehavior of structures is totally differentwhen they are exposed to

    fluctuating loading rather than static one which is a well known

    phenomenon inengineeringcalled fatigue.When the loading isnotstatic

    butdynamic, thedynamicsof the structure shouldbe taken intoaccount

    since there isahighpossibility to excite the resonance frequenciesof the

    structureespeciallyiftheloadingfrequencyhasawidebandwidth.Inthese

    cases,thestructuresresponsetotheloadingwillnotbelinear.Therefore,in

    the analysis of such situations, frequency domain fatigue analysis

    techniquesareusedwhichtakethedynamicpropertiesofthestructureinto

    consideration.Vibrationfatiguemethodisalsofast,functionalandeasyto

    implement.

    Inthisthesis,vibrationfatiguetheoryisexamined.Throughouttheresearch

    conductedforthisstudy,theultimateaim istofindsolutionstoproblems

    arising from test application for the loadingswith nonzeromean value

    bringing a newperspective tomean stress correction techniques.A new

  • 8/13/2019 Vibration Infomation

    5/136

    v

    method isdeveloped togenerateamodified input loadinghistorywitha

    zeromeanvaluewhich leads infatiguedamageapproximatelyequivalent

    to damage induced by input loading with a nonzero mean value. A

    mathematicalprocedure isproposed to implementmean stresscorrection

    to the output stress power spectral density data and a modified input

    loadingpowerspectraldensitydataisobtained.Furthermore,thismethod

    is improved formultiaxial loadingapplications.A loadinghistorypower

    spectraldensitysetwithzeromeanbutmodifiedalternatingstress,which

    leadsinfatiguedamageapproximatelyequivalenttothedamagecausedby

    the unprocessed loading setwith nonzeromean, is extracted taking all

    stress components into account using full matrixes. The proposed

    techniques efficiency is discussed throughout several case studies and

    fatiguetests.

    Keywords: Vibration Fatigue, Mean Stress Correction, Power Spectral

    Density,FiniteElementMethod.

  • 8/13/2019 Vibration Infomation

    6/136

    vi

    Z

    YAPILARINGEN BANTLITAHRKALTINDATTREMKAYNAKLIYORULMANCELEMELER

    Koer,BilgeYksekLisans,MakineMhendisliiBlmTezyneticisi:Do.Dr.SerkanDaYardmctezyneticisi:Yrd.Do.Dr.YiitYazcolu

    Haziran2010,117sayfa

    Yaplar statik ykleme yerine dalgalanan bir yklemeye maruz

    kaldklarnda, davranlar tamamen deiiklik gsterir. Bu husus,

    mhendislikte sklkla karlalan bir durum olup yorulma olarak

    adlandrlr.Yklemestatikolmaktanziyadedinamikiseyapdinamiide

    gz nnde bulundurulmaldr nk zellikle ykleme frekans band

    genise yapnn rezonans frekanslarn tahrik etme olasl yksektir.Bu

    trdurumlarda,yapnnyklemeyekartepkisidorusalolmayacaktr.Bu

    yzden,butarzproblemlerinincelenmesinde,yapnndinamikzelliklerini

    dedikkatealanfrekanstemelliyorulmaanaliztekniklerikullanlr.Ayrca,

    titreimkaynaklyorulmayntemihzl,kullanlveuygulamaskolaydr.

    Butezde,titreimkaynaklyorulmateorisiincelenmektedir.Bualmaiin

    gerekletirilen aratrma srecinde esas ama, ortalama deeri sfrdan

    farkl yklemeler iin test uygulamalarndan kaynaklanan problemleri,

    ortalama gerilme dzeltme tekniklerine yeni bir bak as getirerek

    zmektir. Ortlamas sfr olmayan bir girdi yknn sebep olduu

  • 8/13/2019 Vibration Infomation

    7/136

    vii

    yorulma hasarna yaknbir hasarmeydana getirecek ve ortalamas sfr

    olacak ekildemodifiye edilmi bir girdi yk oluturmak iin yenibir

    yntemgelitirilmitir.Ortalamagerilmedzeltmeformlnktgerilme

    g spektrum younluk datasna uygulamak iin matematiksel bir

    prosedr nerilmitir ve modifiye edilmi girdi ykleme g spektrum

    younluk datas elde edilmitir. Ayrcabu yntem, ok ynl ykleme

    uygulamalar iin de kullanlacak ekilde gelitirilmitir.Ortalamas sfr

    olmayanilenmemi girdiyksetininyarattyorulmahasarnayaknbir

    hasar oluturacak ve ortalamas sfr olacak ekilde dalga deerleri

    modifiye edilmi biryklemeg spektrumyounluk setibtngerilme

    elemanlarn dikkate alarak ve tmmatrisleri kullanarak elde edilmitir.

    nerilen tekniklerin etkinlii eitli rnek almalarla ve yorulma

    testleriyledeerlendirilmitir.

    Anahtar kelimeler: Titreim Kaynakl Yorulma, Ortalama Gerilme

    Dzeltmesi,GSpektrumYounluk,SonluElemanMetodu

  • 8/13/2019 Vibration Infomation

    8/136

    viii

    Tomydearfamily,withloveandgratitude...

  • 8/13/2019 Vibration Infomation

    9/136

    ix

    ACKNOWLEDGEMENTS

    Iamvery thankful tomy thesissupervisors,Assoc.Prof.Dr.SerkanDa,

    andAsst. Prof.Dr. Yiit Yazcolu,whose valuable guidance, technical

    support,andcontributions throughout thisstudyenabledme tocomplete

    this thesiswork successfullyandgavemeenthusiasm indevelopingnew

    techniquesinscientificstudies.

    Iampleased toexpressmy special thanks tomy family for theirendless

    support and help, especially tomymotherwho supportedmemorally

    throughout my life. I also heartily thank to my fianc, and colleague,

    MehmetErsinYmer,withmydeepestappreciationforhisunderstanding,

    encouragementandwillingassistance.

    I am alsograteful toTBTAKSAGE, especially to StructuralMechanics

    Division, for their technicalguidance inacademicstudies. Iwould like to

    thanktoDr.A.SerkanGzbykandDr.zge enwho inspiredmeto

    achievenewsolutionstotheproblemsarisingfromtestapplications.Also,I

    sincerely thank to my colleagues Ahmet Akbulut and Harun Davut

    Kendzlerfortheirhelpinmanufacturingtestequipments.

    Lastly,Ioffermyregardstomycolleaguesandfriendswhosupportedme

    inanyrespectduringthecompletionofthisthesis.

  • 8/13/2019 Vibration Infomation

    10/136

    x

    TABLEOFCONTENTS

    ABSTRACT.............................................................................................................iv

    Z............................................................................................................................vi

    ACKNOWLEDGEMENTS...................................................................................ixTABLEOFCONTENTS.........................................................................................xLISTOFFIGURES................................................................................................xiiLISTOFTABLES.................................................................................................xviLISTOFSYMBOLS............................................................................................xviiCHAPTERS

    1.INTRODUCTION...............................................................................................11.1 MetalFatigueDamage............................................................................11.1.1 PropertiesofFatigueFailure...........................................................21.1.2 MajorFatigueDamageAccidentsDuringInService..................51.2 ScopeoftheThesis..................................................................................91.3 OutlineoftheThesis.............................................................................102.LITERATURESURVEY...................................................................................132.1 HistoricalOverviewofFatigue...........................................................132.2 BackgroundofVibrationFatigue........................................................163.FATIGUETHEORY.........................................................................................243.1 TimeDomainFatigueApproaches.....................................................253.1.1 StressLife(SN)Approach............................................................253.1.2 StrainLifeApproach......................................................................373.1.3 CrackPropagationApproach.......................................................373.2 FrequencyDomainApproach.............................................................373.2.1 NarrowBandApproach................................................................48

  • 8/13/2019 Vibration Infomation

    11/136

    xi

    3.2.2 EmpiricalCorrectionFactors........................................................503.2.3 SteinbergsSolution........................................................................513.2.4 DirliksEmpiricalFormulation....................................................52

    4.ANEWMETHODFORGENERATIONOFALOADINGHISTORY

    WITHZEROMEAN............................................................................................534.1 Theory.....................................................................................................554.2 CaseStudy..............................................................................................574.2.1 FiniteElementAnalyses................................................................59

    5.GENERATIONOFAZEROMEANEXCITATIONFORMULTIAXIAL

    LOADING ....................................................................................................705.1 Theory.....................................................................................................715.2 CaseStudies...........................................................................................745.2.1 CaseStudyITestComparison..................................................745.2.2 CaseStudyIIMultiaxialLoading............................................90

    6.CONCLUSIONSANDDISCUSSION.........................................................102REFERENCES.....................................................................................................106

    APPENDICES

    A.TESTFIXTURE...............................................................................................113

    B.COMPARISONOFSOLIDANDSHELLFEM..........................................116

  • 8/13/2019 Vibration Infomation

    12/136

    xii

    LISTOFFIGURES

    FIGURES

    Figure1.1Schematicsectionthroughafatiguefractureshowingthethree

    stagesofcrackpropagation[4].............................................................................3Figure1.2StageI:CrackInitiation....................................................................3Figure1.3Afatiguefailuresurface[52]............................................................4Figure1.4Failureofarailwaytrackcomponent[52].....................................5Figure1.5LusakaAccident,1977[8]................................................................6Figure1.6ChicagoAccident,1979:a)Anamateurphoto,as theaircraft

    rollingpasta90bankangle,b)explosionastheairplaneimpacts[9]..........7Figure1.7ACrackedFlangeofAmericanAirplane[8]................................8Figure1.8AlohaAccident,1988[10]................................................................9Figure1.9OutlineoftheThesis........................................................................12Figure3.1TimeDomainvs.FrequencyDomainSchematicRepresentation

    .................................................................................................................................24Figure3.2StressCycles;(a)fullyreversed,(b)offset...................................26Figure3.3StandardformofthematerialSNcurve[52]............................27Figure3.4SNcurvesforferrousandnonferrousmetals[52]..................28Figure3.5MeanStressModificationMethods[1].........................................31Figure3.6BlockLoadingSequence................................................................33Figure3.7BroadbandRandomLoading........................................................34Figure3.8RainflowCycles[52].......................................................................35Figure 3.9 Rainflow Counting Example: a) TimeHistory b) Reduced

    Historyc)RainflowCount[52]..........................................................................36Figure3.10FourierTransformation................................................................40

  • 8/13/2019 Vibration Infomation

    13/136

    xiii

    Figure3.11SchematicRepresentationofPowerSpectralDensity.............41Figure3.12TimeHistoriesandPSDs.............................................................42Figure3.13ProbabilityDensityFunction......................................................44Figure3.14PSDMomentsCalculation...........................................................47Figure3.15ExpectedZerosandExpectedPeaksintheTimeHistory......47Figure3.16NarrowBandSolution.................................................................49Figure4.1PlateSubjectedtoBaseExcitation................................................55Figure4.2InputAccelerationLoadingTimeHistory..................................58Figure4.3InputAccelerationLoadingPSD..................................................59Figure4.4FirstModeShape(1stBending)oftheCantileverBeam............60Figure4.5SecondModeShape(1stTorsion)oftheCantileverBeam........60Figure4.6ThirdModeShape(2ndBending)oftheCantileverBeam.........61Figure4.7FourthModeShape(2ndTorsion)oftheCantileverBeam........61Figure4.8FifthModeShape(3rdBending)oftheCantileverBeam...........62Figure4.9FrequencyResponseAnalysisResultsof theCantileverPlate

    forFirstFiveNaturalFrequenciesfornode511(LogarithmicScale)...........63Figure4.10LoadandBoundaryConditionsofStaticAnalysis..................64Figure4.11StaticvonMisesStressontheCantileverPlate........................64Figure 4.12 Modified Input Loading and Original Input Loading for

    CantileverPlate.....................................................................................................66Figure4.13FatigueLifeforthePlate(inseconds): a)withoutMeanStress

    Correction..............................................................................................................66Figure4.14FiniteElementModelofDisplayingthePlateNodeNumbers

    .................................................................................................................................68Figure5.1Dimensionsofthetestspecimen(Dimensionsin[mm])..........74Figure5.2Verticaltestconfiguration.............................................................76Figure5.3Horizontaltestconfiguration........................................................76

  • 8/13/2019 Vibration Infomation

    14/136

    xiv

    Figure5.4AccelerationInputPSD..................................................................77Figure5.5OriginalandcorrectedaccelerationinputPSDs........................78Figure 5.6 Differencebetween corrected andoriginal acceleration input

    PSDs(Corrected Original)................................................................................78Figure5.7Finiteelementmodel......................................................................79Figure5.8Fatiguelifefortheplate:withoutmeanstresscorrection.........80Figure5.9Fatiguelifefortheplate:withoutmeanstresscorrection(close

    up)...........................................................................................................................80Figure5.10Fatiguelifefortheplate:withmeanstresscorrection.............81Figure5.11Fatigue lifefortheplate:withmeanstresscorrection (close

    up)...........................................................................................................................81Figure 5.12 Fatigue life for the plate:withmean stress correction via

    proposedmethod.................................................................................................82Figure 5.13 Fatigue life for the plate:withmean stress correction via

    proposedmethod(closeup)...............................................................................82Figure 5.14 Fatigue life for the plate: without mean stress correction

    (closeup,logarithmicscale)...............................................................................84Figure5.15Fatigue lifefortheplate:withmeanstresscorrection (close

    up,logarithmicscale)...........................................................................................84Figure5.16Fatigue life for theplate:withproposedmethod (closeup,

    logarithmicscale)..................................................................................................85Figure5.17Damagedspecimen1:withoutmeanstress..............................87Figure5.18Damagedspecimen1:withoutmeanstress (closeup)..........87Figure5.19Damagedspecimen2:withmeanstress....................................88Figure5.20Damagedspecimen2:withmeanstress(closeup).................88Figure5.21Damagedspecimen3:withproposedmethod.........................89Figure5.22Damagedspecimen3:withproposedmethod(closeup)......89

  • 8/13/2019 Vibration Infomation

    15/136

    xv

    Figure5.23Fintypeaerodynamicsurface.....................................................91Figure5.24FEMofthefintypeaerodynamicsurface.................................92Figure5.25Inputtimehistoryinxaxis.........................................................92Figure5.26InputPSDinxaxis.......................................................................93Figure5.27Inputtimehistoryinyaxis.........................................................93Figure5.28InputPSDinyaxis.......................................................................94Figure5.29Inputtimehistoryinzaxis.........................................................94Figure5.30InputPSDinzaxis.......................................................................95Figure5.31CorrectedandOriginalInputPSDsinxaxis...........................96Figure5.32CorrectedandOriginalInputPSDsinyaxis...........................96Figure5.33CorrectedandOriginalInputPSDsinzaxis...........................97Figure5.34Fatiguelifeforthefin:withoutmeanstresscorrection...........98Figure5.35Fatiguelifeforthefin:withmeanstresscorrection.................98Figure5.36Fatiguelifeforthefin:correctedwiththeproposedmethod 99Figure5.37Fatiguelifeforthefin:withoutmeanstresscorrection (close

    up)...........................................................................................................................99Figure5.38Fatiguelifeforthefin:withmeanstresscorrection (closeup)

    ...............................................................................................................................100Figure5.39Fatigue life for the fin:with theproposedmethod (closeup)

    ...............................................................................................................................100FigureA.1TestFixture...................................................................................113FigureA.2TestFixtureSpecimenAssemblyTypes................................114FigureA.3FirstModeShapeoftheTestFixture........................................114FigureA.4SecondModeShapeoftheTestFixture...................................115FigureA.5ThirdModeShapeoftheTestFixture......................................115FigureB.1PlateDimensions...........................................................................116

  • 8/13/2019 Vibration Infomation

    16/136

    xvi

    LISTOFTABLES

    TABLES

    Table4.1DimensionsofthePlate...................................................................55Table4.2ComparisonsofFatigueLifeValues..............................................68Table5.1InputPSDData.................................................................................77Table5.2Lifevaluesfromanalysis.................................................................83Table5.3Lifevaluesfromtests.......................................................................86Table5.4Meanvalueoflifefromtests...........................................................86Table5.5Comparisonoflifevaluesfromtestandanalysis........................90TableB.1ConstantAfora/b=5.......................................................................116

    TableB.2NaturalFrequenciesErrors............................................................117

  • 8/13/2019 Vibration Infomation

    17/136

    xvii

    LISTOFSYMBOLS

    S :Stress

    nN, :Numberofcycles

    a :Cracksize

    aS :Alternatingstressamplitude

    rS :Stressrange

    mS :Meanstress

    maxS :Maximumstressamplitude

    minS :Minimumstressamplitude

    R :Stressratio

    b :Basquinexponent

    C :Materialconstant

    oS :Fatiguelimit

    eS :Endurancelimit

    iK :Stressconcentrationfactor

    fK :Fatiguestrengthconcentrationfactor

    q :NotchSensitivity

    ak

    :Surfaceconditionmodificationfactorbk :Sizemodificationfactor

    ck :Loadmodificationfactor

    dk :Temperaturemodificationfactor

    ek :Reliabilityfactor

    fk :Miscellaneouseffectsmodificationfactor

  • 8/13/2019 Vibration Infomation

    18/136

    xviii

    '

    eS :Laboratorytestspecimenendurancelimit

    aS :Alternatingstress

    '

    aS :Equivalentalternatingstress

    mS :Meanstress

    uS :Ultimatetensilestrength

    yS :Tensileyieldstrength

    [ ]DE :Expecteddamage

    PSD :Powerspectraldensity

    pT :Period

    )(ty :Timehistory

    nno BAA ,, :Fouriercoefficients

    PSD :Powerspectraldensity

    )(fy :Frequencyspectrumoftimehistory

    FFT :FastFourierTransform

    IFFT :InverseFourierTransform

    )(fH :Transferfunction

    )(* fH :Complexconjugateoftransferfunction

    )(fGr

    :ResponsestressPSD

    )(fGi :InputaccelerationPSD

    )(Sp :Probabilitydensityfunction(PDF)ofrainflowstressranges

    nm :ThenthspectralmomentofthePSDofstress

    )(PE :Expectednumberofpeakspersecond

    )0(E :Expectednumberofupwardzerocrossingspersecond

    :Irregularityfactor

    )(fGrm :ModifiedoutputstressPSD

  • 8/13/2019 Vibration Infomation

    19/136

  • 8/13/2019 Vibration Infomation

    20/136

    1

    CHAPTER1

    INTRODUCTION

    The aerospace industrys increasing demands for durability, safety,

    reliability, long life and low cost lead in high interest in studies for

    improvingstrength,quality,productivity,and longevityofcomponents in

    engineeringscience.Consequently,theseproductsshouldbedesignedand

    tested for sufficient fatigue resistance over a desired range of product

    populationstosatisfytheneeds.

    1.1 MetalFatigueDamage

    Thebehavior ofmachine partsbecomes totally differentwhen they aresubjected to fluctuating loading rather than static one. Often, machine

    membersfailundertheexcitationofrepeatedoralternatingstresses;yetthe

    most careful analysis shows that the actualmaximum stresses are well

    below the ultimate strength of the material, and quite frequently even

    below the yield strength. Themost distinguishing characteristic of these

    failuresisthatthestressesrepeat inacyclicmannervery largenumberoftimes. Such a failure is called a fatigue failure [1]. In otherwords,metal

    fatigueistheprogressiveandlocalizedstructuraldamagethatoccurswhen

    amaterialissubjectedtoalternating,cyclic,varyingloading.

  • 8/13/2019 Vibration Infomation

    21/136

    2

    1.1.1 PropertiesofFatigueFailure

    Afatiguefailurelookslikeabrittlefracture,sincethefracturesurfacesare

    flat and perpendicular to the stress axis without necking occurring.

    However,fracturecharacteristicsoffatiguefailurearequitedifferentfrom

    the staticbrittle fracture in the aspect that fatigue failure comes out in

    stages (Figure1.1). InForsythsnotation [2], [3],Stage I is the initiationof

    oneormoremicrocracksandthisstagescrackpropagationisanextension

    of the initiatedmicrocrackwithout change ofdirection.Hence, a Stage I

    crackpropagateswithinaslipbandthat isonaplaneofhighshearstress

    (Figure 1.2).The term fatigue crack initiation sometimes involves Stage I

    fatigue crack growth. A Stage I crack turns into a Stage II crack as it

    achieves a critical length. It changes itsdirection and starts topropagate

    normaltothemaximumprincipaltensilestress.Afterthetransition,Stage

    II,thecrackpropagatesthroughoutthemajorityofthecrosssection.More

    descriptive terms, microcrack and macrocrack, are sometimes used, for

    Stage I and II, respectively. Similarly, unqualified references to fatigue

    crack propagation refer tomacrocrack propagation.After two preceding

    stages, finally, the cross section so shrinks that even one load cycle is

    sufficienttoconstitutetheconditionsforfailure.Thisprocessissometimes

    called Stage III and canbe resulted from crack propagationbybrittle

    fracture,ductilecollapseorboth.

  • 8/13/2019 Vibration Infomation

    22/136

    3

    Figure1.1Schematicsectionthroughafatiguefractureshowingthe

    threestages

    of

    crack

    propagation

    [4].

    Figure1.2StageI:CrackInitiation

  • 8/13/2019 Vibration Infomation

    23/136

    4

    Most of the static failures give a visible warning in advance, such as

    developinga largedeflectionduetotheexceedingofyieldstrengthofthe

    material,before the total fracture occurs. However, fatigue failures are

    suddenand totalusuallywithoutawarning, thereforedangerous.Figure

    1.3 showsapost fatigue failure surface at thepointof failure.Figure 1.4

    showsafailurecrackwhichoccursforarailwaycomponent.

    Figure1.3Afatiguefailuresurface[52]

  • 8/13/2019 Vibration Infomation

    24/136

    5

    Figure1.4Failureofarailwaytrackcomponent[52]

    1.1.2 MajorFatigueDamageAccidentsDuringInService

    The first known disastrous fatigue failure accident is the France railway

    accidenttakesplacein1842[5].Thebodyoftheleadingenginefallsdown

    since the front axle of the front, fourwheeled engine collapses suddenly

    because of metal fatigue. Then, the second enginebreaks up. Follower

    carriagespassoverruinwhichstartsafireandresultsinmajorlossoflife.

    Thesekindsoffailuresoccurringonrailwaytransportationpushscientists

    startextensiveexaminationsonthenatureofmetalfatigue[5],[6],[7].

    Comet I aircraft GALYP disintegrates after 3680 flight hours and 1286

    flightcyclesat30,000feetaltitudein1954sincefatiguecrackinitiatesatthe

    cornerofautomaticdirectionfindingwindow[8].

  • 8/13/2019 Vibration Infomation

    25/136

    6

    ABoeing707300runbyDANAirlosesthecontrolofpitch,then,theright

    handhorizontalstabilizerandelevatorseparatesinflightafter16,723flight

    cyclesand47,621hoursin1977(Figure1.5).Therearspartopchordandis

    exposed to longterm fatigue damage. Besides, the redundant fail safe

    structurecannotsupporttheflightloadsforaperiodlongenoughtoenable

    thefatiguecracktobedetectedduringaroutineinspection[8].

    Figure1.5LusakaAccident,1977[8]

    Left engine and pylon of Douglas DC10No.22, operatedbyAmerican

    Airlines, separates from thewingas theairplane liftsoff the runwayon

    takeoff and the airplane crashes, in Chicago, in 1979. The accident

  • 8/13/2019 Vibration Infomation

    26/136

    7

    investigation [9] shows that captains control panel isdisabledwhen the

    engineseparates.Theseveredhydraulic linesallowed theslatson the left

    wing to gradually retract. The stall speed on the left wing increases

    noticeably.Astheaircraftsspeeddecreases,theleftwingaerodynamically

    stallsduetoitscleanconfiguration,whiletherightwingcontinuestogain

    liftwhileitsslatsarestillintakeoffposition.Sinceonewingstallsandthe

    otherwing generates full lift continuously, the airplane eventually rolls

    past a 90bank, and fallsdown to ground (Figure 1.6 Figure 1.7).The

    reason of the crash is stated as the crackwhich occurs due to improper

    maintenance.

    a) b)Figure1.6ChicagoAccident,1979:a)Anamateurphoto,astheaircraft

    rollingpasta90bankangle,b)explosionastheairplaneimpacts[9]

  • 8/13/2019 Vibration Infomation

    27/136

    8

    Figure1.7ACrackedFlangeofAmericanAirplane[8]

    Boeing737200aircraftMSN152belongingtoAlohaAirlinesisexposedto

    explosivedecompressionat24,000feetaltitudeafter89,681flightcycles in

    1988 (Figure 1.8). The accident is causedby fatigue failurewhich takes

    placeinlapspliceatoneofthestringersthatisacoldbondedandriveted

    joint. Fatigue failure occurs because of knife edge effect due to deep

    countersunkandthereforesubsequentmultiplesitedamage[8].

  • 8/13/2019 Vibration Infomation

    28/136

    9

    Figure1.8AlohaAccident,1988[10]

    1.2 ScopeoftheThesis

    Lifetimepredictionassessmentforcomponentsunderrandomloadingisan

    importantconcerninengineering.Thestudycarriedoutinthisthesisaims

    to investigate vibration fatigue approach. Throughout the research, the

    ultimate goal is to bring new perspectives to mean stress correction

    techniquesandfindsolutionstoproblemsarisingfromtestapplicationsfor

    theloadingswithnonzeromeanvalues.

    Infatiguecalculations,meanstresseffectresultingfromthemeanvalueof

    the loading can be taken into account rather easily but experimental

    verification is troublesome because any mean value of an acceleration

    excitationother than 1g in thedirectionofgravity isdifficult to simulate

    withtraditionaltestingequipmentslikevibrationshakers.Toovercomethis

    situation,amethodisdevelopedtocreateamodifiedinputloadinghistory

  • 8/13/2019 Vibration Infomation

    29/136

    10

    withazeromeanwhichcauses fatiguedamageapproximatelyequivalent

    to that createdby input loadingwith a nonzeromean.Amathematical

    procedure isproposed to implementmean stresscorrection to theoutput

    vonMisesstresspowerspectraldensitydata.Furthermore,thismethod is

    extendedtogeneratealoadinghistorysetinmultiaxiswithzeromeanbut

    modifiedalternatingstress,which leads in fatiguedamageapproximately

    equivalent to the damage causedby the unprocessed loading set with

    nonzero mean, taking all stress components into account using full

    matrices. The efficiency of proposed solutions is discussed throughout

    severalcasestudiesandfatiguetests.

    1.3 OutlineoftheThesis

    Chapter1beginswithpreliminaryinformationonfatiguedefinition,metal

    fatigue mechanism, fatigue failure and the importance of design

    considering fatigue criterion illustrating major fatigue accidents duringservice.

    InChapter2, theemphasis ison literaturesurvey.Historicaloverviewof

    fatiguetheorywiththemilestonesofthefatiguephenomenonispresented

    in this chapter in a chronological order. Furthermore, a subchapter is

    completely separated to investigate the progress in vibration fatigueapproachmentioningtheresearchandstudiescarriedoutinthisfield.

    Chapter 3 is devoted to fatigue theory. Time domain methods and

    frequencydomainmethodsarediscussed.Stresslifeapproachisexamined

    indetailwheremeanstresseffectsonfatiguelifeandcountingmethodsare

  • 8/13/2019 Vibration Infomation

    30/136

    11

    presented.Besides,stresslifeapproachandcrackpropagationapproachare

    mentionedbriefly.Moreover,frequencydomainvibrationfatiguetheoryis

    examined indetailwhere narrowband solutions andwideband solutions

    arediscussed.

    InChapter4,anewmethod forgenerationofa loadinghistorywithzero

    mean isproposed,whoseefficiency isdiscussed throughoutacasestudy.

    The method aims to obtain zero mean loading for a structure,

    approximately equivalent in fatigue damage that is subjected to random

    loadingwithnonzeromeanmakinguseof the frequencydomain fatigue

    calculationtechniquesandoutputstresspowerspectraldensity.

    Chapter 5 is dedicated to the extension of the technique proposed in

    Chapter 4.The goal is to generate a loading historywith zeromean for

    multiaxial loading. A multiaxial input loading with zero mean but

    modified alternating stress,which creates fatigue damage approximately

    equivalent to the damage causedby the unprocessed loading set with

    nonzero mean, is extractedby means of the frequency domain fatigue

    calculation techniques and output stress power spectral density. The

    efficiencyofproposedapproach isdiscussed throughoutcasestudiesand

    fatiguetests.

    Finally,Chapter6summarizestheworkdonethroughouttheresearch,and

    evaluatestheoutcomesandcontributionstotheliterature.

    SchematicrepresentationofthethesisoutlineisgiveninFigure1.9.

  • 8/13/2019 Vibration Infomation

    31/136

    12

    Figure1.9OutlineoftheThesis

  • 8/13/2019 Vibration Infomation

    32/136

    13

    CHAPTER2

    LITERATURESURVEY

    2.1 HistoricalOverviewofFatigue

    The first fatigue examinations seems to havebeen reportedbyAlbert, a

    miningengineer,whocarriedoutsomerepeatedloadingtestsonironchain

    in1829[11].

    As railway service started to improve rapidly throughout the nineteenth

    century, fatigue failures of railway axlesbecome awidespread problem.

    This situation requires that the cyclic loading effect shouldbe taken into

    consideration. The firstmajor impact of failures resulting from repeatedstressesappears in therailway industry in the1840s. It isrecognized that

    railroadaxles failsregularlyatshoulders [12].Then, theremovalofsharp

    cornersisrecommended.

    The term fatigue is introduced to explain failures happening due to

    alternating stresses in the 1840s and 1850s. The first usage of thewordfatigue in print comes into viewby Braithwaite, although Braithwaite

    statesinhispaperthatitiscoinedbyMr.Field[13].Then,ageneralopinion

    starts todevelop insuchaway that thematerialgets tiredofbearing the

    load or repeating application of a load exhausts the capability of the

    materialtocarryloadwhichsurvivestothisday[4].

  • 8/13/2019 Vibration Infomation

    33/136

    14

    AugustWhler, aGerman railway engineer, sets and performs the first

    systematic fatigue examination from 1852 to 1870. He carries out

    experiments on fullscale railway axles and also on small scale torsion,

    bending, and axial cyclic loading test specimens for differentmaterials.

    WhlersdataforKruppaxlesteelareplottedasnominalstressamplitude

    versus cycles to failure.Thispresentation of fatigue life leads in the SN

    diagram. Furthermore,Whler indicates that the range of stress ismore

    importantthanthemaximumstressforfatiguefailure[11],[14].

    Gerber, Goodman and some other researchers examine the influence of

    meanstressinloadingthroughout1870sand1890s.

    Bauschinger [15] points out that the yield strength in compression or

    tensiondecreasesafterapplyinga loadof theoppositesign thatresults in

    inelastic deformation. It is the first indication that a single exchange of

    inelasticstraincouldalterthestressstrainbehaviorofmetals.

    EwingandHumfrey[16]studyonfatiguemechanismsinmicroscopicscale

    observing microcracks in the early 1900s. Basquin [17] represents

    alternatingstressversusnumberofcycles to failure (SN) in the finite life

    regionasalogloglinearcorrelationin1910.

    Grififth [18], an important contributor to fracture mechanics, presents

    theoretical calculations and experiments onbrittle fracturebymeans of

    glassinthe1920s.Hestatesthattherelation aS =constant,whereSisthe

    nominalstressatfractureand a isthecracksizeatfracture.

  • 8/13/2019 Vibration Infomation

    34/136

    15

    Palmgren [19] introduces a linear cumulative damagemodel for loading

    withvaryingamplitude in1924.Neuber [20]demonstratesstressgradient

    effects at notches in the 1930s.Miner [21] formulates linear cumulative

    fatigue damage criterion proposedby Palmgren in 1945 which is now

    knownasPalmgrenMinerlineardamagerule.

    Irwin [22] introduces the stress intensity factorKI,which isknownas the

    basis of linear elastic fracturemechanics and the origin of fatigue crack

    growth life calculations. The Weibull distribution [23] grants a two

    parameter and a threeparameter statistical distribution for probabilistic

    fatiguelifeanalysisandtesting.

    MansonCoffin relationship [24][25] investigates the relationshipbetween

    plastic strain amplitude at the crack tip and fatigue life. The idea is

    developed by Morrow [26]. Matsuishi and Endo [27] formulate the

    rainflowcounting algorithm to determine stress ranges for variable

    amplitudeloading.

    Elber [28] develops a quantitativemodelwhich figures crack closure on

    fatigue crack growth in 1970. Paris [29] shows that a threshold stress

    intensityfactorcouldbeobtainedforwhichfatiguecrackgrowthwouldnot

    occurin1970.

    Throughout the 1980s and the 1990s, many researchers study on the

    complexproblemof inphaseandoutofphasemultiaxial fatigue,critical

    planemodelsareproposed.

  • 8/13/2019 Vibration Infomation

    35/136

    16

    2.2 BackgroundofVibrationFatigue

    Rice [30] develops the very important relationships for the number of

    upwardmean crossings per second and peaks per second in a random

    signal expressed solely in terms of their spectralmoments of the power

    spectraldensityof thesignal.This is the firstseriouseffortatprovidinga

    solutionforestimatingfatiguedamagefrompowerspectraldensity.

    Bendat [31] presents the theoreticalbasis for the socalledNarrow Band

    solution. The expression used for the estimation of expected value of

    damage is defined only in terms of the spectralmoments of the power

    spectraldensityuptothefourthdegree.

    Manyexpressionsareproposedtoimprovenarrowbandsolution[31]and

    adapt it tobroadband type.Mostof themaredevelopedwith regards to

    offshoreplatformdesignwhere interest in the techniqueshas existed for

    manyyears.Themethodsareproducedbygeneratingsampletimehistories

    frompowerspectraldensitiesusingInverseFourierTransformtechniques.

    Thenprobabilitydensityfunctionofstressrangesisestimatedempirically.

    The solutionsofWirsching etal. [32],ChaudhuryandDover [33],Tunna

    [34],Hancock[35],andKamandDover[35]formulasareallderivedusing

    mentioned technique. They are all expressed in terms of the spectralmomentsofpowerspectraldensityuptothefourthdegree.

    Steinberg [36] presents three band technique, based on Gaussian

    distribution, for fatigue failure under random vibration for electronic

    components. It is a simplified approachwhich does not require a large

  • 8/13/2019 Vibration Infomation

    36/136

    17

    computationaleffort.Thereforeitisvaluableasatimesavingmethod.The

    proposedmethodisbasedonalargevolumeoftestdatathatwasarranged

    andrearranged toverify thatasimplification indeterminingstressranges

    distribution is usable to analyze random vibration fatigue failureswith

    reasonableaccuracy.

    Dirlik[37]developsanempiricalclosedformexpressionfordetermination

    oftheprobabilitydensityfunctionofrainflowrangesdirectlyfrompower

    spectral density. The solution is obtained using extensive computer

    simulationstomodelthesignalsusingtheMonteCarlotechnique.

    Wuetal.[38]workonagroupofspecimensmadeof7075T651aluminum

    alloytoexaminetheapplicabilityofmethodsproposedintheestimationof

    fatigue damage and fatigue life of components under random loading.

    Fatigue test results illustrate that the fatiguedamage estimatedbasedon

    thePalmgrenMiner rule canbe improvedby applyingMorrowsplastic

    work interactiondamage rule.Furthermore, randomvibration theory for

    narrow band process is utilized to estimate fatigue life where the

    probability density function of the stress amplitudes is determined by

    means of Rayleigh distribution for a zeromean narrowband Gaussian

    randomprocess.

    Bishopetal.[39]presentastateoftheartperspectiveofrandomvibration

    fatigue technology. Several design applications are presented. Time and

    frequency domain methods are investigated and compared performing

    finiteelementanalysisusingamodelofabracket,whichisfullyfixedatthe

    position of a round hole inside. Time domain and frequency domain

  • 8/13/2019 Vibration Infomation

    37/136

    18

    calculationsshowagreement ifa transientdynamicanalysis iscarriedout

    with time domain fatigue life calculations for the excitations whose

    frequencyrangeincludesthenaturalfrequenciesofthespecimen.Also,itis

    stated that the time and frequency domain processes are actually very

    similar.Theonlydifferencesarethestructuralanalysisapproachused(time

    orfrequencydomain)andthefactthatafatiguemodelerisneededasatool

    toextracttherainflowcyclehistogramfromthePSDofstress.

    Liouetal.[40]studythetheoryofrandomvibrationwhichisincorporated

    into the calculationof the fatiguedamageof the component subjected to

    variableamplitudeloadingmakinguseofthefundamentalstresslifecycle

    relationship and different accumulation rules. The purpose is to derive

    readytouseformulasforthepredictionoffatiguedamageandfatiguelife

    when a component is subjected to statistically defined random stresses.

    Morrowsplasticworkinteractiondamageruleisconsidered,inparticular,

    in thederivation inwhich themaximumstresspeakshouldbe taken into

    considerationanditgivesratheraccuratefatiguelifepredictioninthelong

    liferegionandslightlyconservativelifeintheshortliferegionwiththeuse

    ofMinersrule.Moreover,aseriesoffatiguetestsareconductedandsome

    oftheanalyticalinadditiontoexperimentalresultsarepresentedtoverify

    theapplicabilityofthederivedformulas.

    Pitoisetetal.[41]makeuseofthefrequencydomainmethod,directlyfrom

    a spectralanalysis for the estimationofhighcycle fatiguedamageunder

    randomvibrationleadingmultiaxialstresses.Thismethodisderivedfrom

    anewdesignationof thevonMises stress as a randomprocesswhich is

    usedasanequivalentuniaxialcountingvariable.Also,thisapproachcanbe

  • 8/13/2019 Vibration Infomation

    38/136

    19

    generalized to include a frequencydomain formulation of themultiaxial

    rainflowmethodforbiaxialstressstates.Furthermore,aprocedureforthe

    generation ofmultiaxial stress tensor histories of a given PSDmatrix is

    described.

    Petrucci [42] studies the fatigue life prediction of components and

    structuresunderrandomloadingmainlyconcerningthegeneralproblemof

    directlyrelatingfatiguecycledistribution to thepowerspectraldensityof

    thestressrangesbymeansofclosedformexpressionsthatavoidexpensive

    digital simulations of the stress process. Themethod illustrates that the

    statisticaldistributionof fatiguecyclesdependson fourparametersof the

    PSD calculated from spectral moments making use of numerical

    simulations and theoretical considerations while the present methods,

    proposedtoobtainstresscycledistribution,arebasedontheuseofasingle

    parameterofthePSDwhich is irregularityfactor.Theproposedapproach

    givesreliableestimatesofthefatiguecycledistribution,withtheuseofthe

    rangemean countingmethod,when the stress process has narrowband

    derivatives.

    Petrucci et al. [43] develop Petruccis approximatedmethod [42] for the

    high cycle fatigue life prediction of structures subjected to Gaussian,

    stationary,wideband random loading.Fatigue lifeof componentsunderuniaxialstressstatecandirectlybeestimatedfromthestresspowerspectral

    densityofanyshape.Inparticular,approximatedclosedformralationships

    between the spectralmomentsof the stresspower spectraldensityof the

    fatiguecyclesoftheGoodmanequivalentstress,andtheirregularityfactor

    alsowithabandwidthparameteraredetermined.Theaccuracyof fatigue

  • 8/13/2019 Vibration Infomation

    39/136

    20

    lifepredictionsobtainedwith thismethod is comparedwith someof the

    frequencybased techniques in literature and found tobemore accurate

    thansomeofthem.

    Pitoiset etal. [44]dealwith frequencydomainmethods todetermine the

    highcycle fatigue life of metallic structures under random multiaxial

    loading. The equivalent vonMises stressmethod is reviewed and it is

    assumedthatthefatiguedamageundermultiaxialloadingcanbepredicted

    bycalculatinganequivalentuniaxialstressonwhich theclassicaluniaxial

    randomfatiguetheoryisapplied.Themultiaxialrainflowmethod,initially

    formulated in the time domain, canbe implemented in the frequency

    domaininaformallysimilarway.Theconsistencyoftheresultsisverified

    by means of a time domain method based on the critical plane.

    Furthermore, it is showed that frequency domain methods are

    computationally efficient and correlate fairlywellwith the time domain

    methodintermsoflocalizingthecriticalareasinthestructure.Afrequency

    domainimplementationofCrosslandsfailurecriterionisalsoproposed;it

    isfoundingoodagreementandfasterthanitstimedomaincounterpart.

    Tovo [45] studies fatiguedamageunderbroadband loadingby reviewing

    analytical solutions in the literature states and verifies the relationships

    betweenvariouscyclecountingmethodsandavailableanalyticalsolutionsofexpected fatiguedamage in the frequencydomain.Furthermore,anew

    method isdeveloped starting from knowledge ofpower spectraldensity

    distributions for rainflow damage estimation which gives accurate

    approximationsoffatiguedamageunderbothbroadbandandnarrowband

    Gaussian loading. The proposed technique is based on the theoretical

  • 8/13/2019 Vibration Infomation

    40/136

    21

    examination of possible combinations of peaks and valleys in Gaussian

    loadingandfitsnumericalsimulationsoffatiguedamagewell.

    Siddiqui et al. [46] states that a tension leg platform, a deep water oil

    exploration offshore compliant system, is subjected to fatigue damage

    significantlybecauseof thedynamic excitations causedby the oscillating

    waves and wind over its design life period. The reliability estimation

    against fatigue and fracture failuredue to random loading considers the

    uncertainties associatedwith the parameters and procedures utilized for

    the fatigue damage assessment. Calculations for fatigue life estimation

    require a dynamic response analysis under various environmental

    loadings.Anonlineardynamicanalysisoftheplatformisimplementedfor

    responsecalculations.Theresponsehistoriesareemployedforthestudyof

    fatigue reliability analysis of the tension legplatform tethersunder long

    crestedrandomseaandassociatedwind.Fatiguedamageoftetherjointsis

    estimatedusingPalmgrenMinersruleandfracturemechanicstheory.The

    stressrangesaredescribedbyRayleighdistribution.Firstorderreliability

    method andMonteCarlo simulationmethod are employed for reliability

    estimation. The influence of various random variables on overall

    probabilityoffailureisstudiedthroughsensitivityanalysis.

    Tuetal.[47]conductBGAsolderjointsvibrationfatiguefailureanalysisthatarereflowedwithdifferent temperatureprofiles,andagingat120 oC

    for1,4,9,16,25,36days.Also,Ni3Sn4andCuSnintermetalliccompound

    (IMC) effects are consideredon the fatigue lifetimedetermination in this

    work.Duringthevibrationfatiguetests,electrical interruption isfollowed

    continuously to see the failure of BGA solderjoint. The results of the

  • 8/13/2019 Vibration Infomation

    41/136

    22

    experiments indicate that the fatigue lifetime of the solderjoint firstly

    increasesandthendecreaseswithincreasingheatingfactor,integralofthe

    measured temperatureover thedwell timeabove liquidus (183 oC) in the

    reflowprofile.Furthermore,solderjoint lifetimedecreasesalmost linearly

    asfourthrootoftheagingtimeincreases.Accordingtothetestresults,the

    intermetallic compounds contributemainly to the fatigue failure ofBGA

    solderjoints.Also,thefatiguelifetimeofsolderjointisshorterforathicker

    IMClayer.

    Benasciutti et al. [48] work on fatigue damage caused by wideband

    stationary and Gaussian random loading. Expected rainflow damage is

    estimatedapproximatelyforagivenstationarystochasticprocessdescribed

    infrequencydomainbyitspowerspectraldensity.Numericalsimulations

    onpowerspectraldensitieswithdifferentshapesareperformedinorderto

    establish proper dependence between rainflow cycle counting, linear

    cumulative fatiguedamageandspectralbandwidthparameters.Expected

    rainflow fatigue damage is taken as weighted linear combination of

    expected damage intensity givenby the narrowband approximation of

    Rychlik[49]andexpectedrangecountingdamageintensityapproximately

    obtainedbyMadsen et al. [50]with theweighting factor approximated

    using Tovos approach [45] dependent on PSD through bandwidth

    parameters. Comparison is made between numerical results and someanalyticalpredictionformulaeavailableforfatiguedamageevaluation.

    Aykan [51] analyzes helicopters selfdefensive systems chaff/flare

    dispenserbracketby applying vibration fatiguemethod as a part of an

    ASELSAN project. Operational flight tests are performed to obtain the

  • 8/13/2019 Vibration Infomation

    42/136

    23

    acceleration loadingasboundaryconditions.Theaccelerationversus time

    data is gathered and converted into power spectral density to obtain

    frequency components of the signal. Bracket is modeled in the finite

    elementenvironmentinordertoobtainthestressesforfatigueanalysis.The

    validityofdynamiccharacteristicsofthefiniteelementmodelisverifiedby

    conducting modal tests on a prototype. As the reliability of the finite

    elementmodel is confirmed, stress transfer functions that are frequency

    response functions are found and combined with the loading power

    spectral density to acquire the response stress power spectral density.

    Narrowbandandbroadbandvibration fatiguecalculation techniquesare

    applied and compared to each other for fatigue life.The fatigue analysis

    resultsareverifiedbyacceleratedlifetestsontheprototype.Furthermore,

    the effect of single axis shaker testing for fatigue on the specimen is

    obtained.

  • 8/13/2019 Vibration Infomation

    43/136

    24

    CHAPTER3

    FATIGUETHEORY

    Fatigueisexaminedintwodomainsbasically.Firstoneisthetimedomain

    methodsand thesecondone is the frequencydomainmethodswhichare

    similarinapproachFigure3.1andexplainedindetailinthischapter.

    Figure3.1TimeDomainvs.FrequencyDomainSchematic

    Representation

  • 8/13/2019 Vibration Infomation

    44/136

  • 8/13/2019 Vibration Infomation

    45/136

    26

    Figure3.2StressCycles;(a)fullyreversed,(b)offset

    aS :Alternatingstressamplitude

    rS :Stressrange

    mS :Meanstress

    maxS :Maximumstressamplitude

    minS :MinimumstressamplitudeR :Stressratio, maxmin/ SS

    Themostcommontestspecimeninthepastisacylinderwithlittlechanges

    of crosssection, andwith a polished surface in the regionwhere crack

    formation tends to start. It is loaded inbending and calledWhler test

    which has limitations. Now, a cylinder loaded in axial tension is the

    preferredtestspecimenwithfreeofsuddenchangesofgeometryandalso

    with a polished surface at the section where cracks are likely to start.

    Severalidenticalspecimensareexaminedandthenumberofcyclesneeded

    fortotalseparationisacceptedasN.Load,notstress,iskeptconstantinthe

    test. For each specimen a nominal stress, S, is calculated from elastic

    formulaeandtheresultsareplottedastheunnotched NS curvewhichis

    abasicmaterialproperty[52]. N isplottedonthexaxisinthelogarithmic

  • 8/13/2019 Vibration Infomation

    46/136

    27

    scalewhile Sconstitutestheyaxisplottedinlinearorlogarithmicscale,but

    logarithmic isbecoming thenorm.Themean line in the finitelife region

    (10000 to 10million cycles) is usually straight Figure 3.3, and presented

    with the convenient equation where the inverse slope of the line is b,

    namelyBasquinexponent,andCisrelatedtotheinterceptontheyaxis.

    Figure3.3StandardformofthematerialSNcurve[52]

    (3.1)

    NS plotofsomemetals,mostlylowalloysteels,isconstitutedfromtwo

    lines.The linemaybecomehorizontal and thematerial is said tohave afatigue limit, 0S , which is important when the aim is infinite life. For

    materials which do not show a clear fatigue limit, tests are generally

    terminatedatbetween 710 and 810 cycles.Thecorresponding S isnamed

    asanendurance limit,eS ,at thespecifiedN,Figure3.4.There isnostrict

    convention about theuse of the terms fatigue limit and endurance limit,

    bSCN = .

  • 8/13/2019 Vibration Infomation

    47/136

    28

    andtheoriginaltestdocumentationshouldbeobservedifthedifferenceis

    acriticalissue[52].

    Figure3.4SNcurvesforferrousandnonferrousmetals[52]

    3.1.1.1 StressConcentrationandNotchSensitivity

    NS curvepropertiesofamaterialareextractedforthespecimensthatare

    free from geometrical factors that cause high stress gradients and create

    localhigh stress regions.However, componentsdesigned for real life canhaveholes,grooves,changesofsectionetc.whichleadinlocalhotspotsof

    highstress.Then,fatiguestartsatthesepoints.Therefore,theireffectmust

    betakenintoconsiderationinlifecalculations.Geometricalpropertiesthat

    causehighlocalstressesarenamedasnotchesand,thestressconcentration

    factor, tK ,isusedtohandlethiseffect[52].

  • 8/13/2019 Vibration Infomation

    48/136

    29

    (3.2)

    fK is a reduced value of tK and generally called fatigue strength

    concentrationfactoranddescribedby(3.3)[1].

    (3.3)

    Then,notchsensitivity, q,isdefinedas(3.4)[1].

    (3.4)

    For simple loading, it is convenient to reduce the endurance limitby

    dividing theunnotched specimen endurance limitbyfK ormultiplying

    thereversingstressbyfK [1].

    3.1.1.2 EnduranceLimitModifyingFactors

    Itisnotrealistictoexpecttheendurancelimitofastructuralparttomatch

    the values obtained in the laboratory [1].All effects of endurance limit

    modifyingfactorsareinvestigatedintheequationgivenbelow(3.5).

    (3.5)

    where

    ak :surfaceconditionmodificationfactor

    notchthefromremotestressNominal

    notchtheofregionin thestressMaximum=tK

    1

    1

    =

    t

    f

    K

    Kq

    specimenfreenotchinStress

    specimennotchedinstressMaximum=fK

    '

    efedcbae SkkkkkkS =

  • 8/13/2019 Vibration Infomation

    49/136

    30

    bk :sizemodificationfactor

    ck :loadmodificationfactor

    dk :temperaturemodificationfactor

    ek :reliabilityfactor

    fk :miscellaneouseffectsmodificationfactor

    '

    eS :laboratorytestspecimenendurancelimit

    eS : endurance limit at the critical location of amachine part in the

    geometryandconditionofuse.

    3.1.1.3 MeanStressEffect

    Fatigue lifedependsessentiallyon theamplitudeof stress existing in the

    component,but amodification is neededwhen amean value of stress

    exists.Componentscancarrysome formofdead loadbefore theworking

    stresses are applied or the input loading can have a mean value. Thegeneraltrendintraditionalmethodsissuchthattheallowableamplitudeof

    fatigue stress gets smaller as themean stressbecomesmore tensile for a

    givenlife[52].

    Thebasic idea istoassumethatmeanstress lessens theallowableapplied

    amplitude of stress in a linearway. It is expected that any fatigue load

    cannot be carried when the mean stress reaches the ultimate tensile

    strengthofthematerial.Iffatiguestrengthatanymeanisknown,theline

    representing fatigue life canbedefined.This is a commonly known and

    mostly used method and called Goodmans Rule. [52]. There are other

    meanstresscorrectionapproaches, likeGerberandSoderbergthatmodify

  • 8/13/2019 Vibration Infomation

    50/136

    31

    alternatingstressaccordingtomeanstress.Meanstresscorrectionmethods

    graphicalrepresentationsareillustratedinFigure3.5.

    Figure3.5 MeanStressModificationMethods[1]

    GoodmansModel:

    (3.6)

    GerbersModel:

    (3.7)

    1'

    =+u

    m

    a

    a

    S

    S

    S

    S

    1

    2

    ' =

    +

    u

    m

    a

    a

    S

    S

    S

    S

  • 8/13/2019 Vibration Infomation

    51/136

    32

    SoderbergsModel:

    (3.8)

    aS :Alternatingstress

    '

    aS :Equivalentalternatingstress

    mS :Meanstress

    uS :Ultimatetensilestrength

    yS :Tensileyieldstrength

    3.1.1.4 VariableAmplitudeLoadingandFatigueDamage

    The investigation of metal fatigue under variable amplitude loading is

    based on the study of cumulative damage. The variable amplitude time

    history consists of 1n cycles of amplitude 1S , 2n of amplitude 2S , 3n of

    amplitude 3S and so on.Usually the pattern repeats itself after a small

    number of stress cycles,nS (Figure 3.6). The sequence up to nS is then

    calledblock,andtheaimistodeterminethenumberoftheblocksthatcan

    beapplieduntil failureoccurs.Themethod commonlyused isknown as

    Miner or PalmgrenMiner rule. According toMiners hypothesis, lineardamage accumulation is assumed. First,when the 1S level of stress that

    repeats 1n cycles isconsidered, thenumberof lifecyclesatstress level 1S

    thatwould cause fatigue failure ifno other stresseswerepresent canbe

    obtained from NS curve . Calling this number of cycles as 1N , it is

    assumedthat 1n cyclesof 1S useupafraction 11/Nn ofthetotalfatiguelife.

    1' =+

    y

    m

    a

    a

    SS

    SS

  • 8/13/2019 Vibration Infomation

    52/136

    33

    This shows the damage fraction that 1n cycles cause. The total damage

    fractionforoneblockisobtainedbydoingasimilarcalculationforallother

    stressesandsummingall thedamage fractionresults [52].Then,expected

    damage, [ ]DE , is equated to this summation and set to one to calculate

    fatigue life (3.9). The order of stresses occurring in history is ignored in

    Minersrule.

    Figure3.6BlockLoadingSequence

    (3.9)

    3.1.1.5 CountingMethods

    Most of the engineering components in real life are exposed to stress

    responses that are more complex than shown in Figure 3.6. When

    individual stress cycles causing fatigue damage cannotbe distinguished

    [ ] 1...1 2

    2

    1

    1 =+++=== n

    nn

    i i

    i

    N

    n

    N

    n

    N

    n

    N

    nDE

  • 8/13/2019 Vibration Infomation

    53/136

    34

    easily, as inbroadband random loading (Figure 3.7), a cycle counting

    method is needed to determine discrete cycles, and hence allow the

    applicationofMinersrule.

    Figure3.7BroadbandRandomLoading

    Rainflow counting, peak counting, level crossing counting and range

    countingprocedures [53]aremethodscommonlyused to identify loading

    cycle occurrences, amplitudes and mean values in a time history.

    Developmentoftheseempiricalcyclecountingmethodsismainlybasedon

    a trialanderror,andallhaveshortcomings [4].Themost reasonableand

    widelyusedcyclecountingmethodistherainflowcounting[54].Itderives

    its name from the first practical algorithm, developedbyMatsuishi and

    Endo [27], inwhich it is imagined thatwater flowsdown the load time

  • 8/13/2019 Vibration Infomation

    54/136

    35

    history,with the axes reversed.An algorithm is developed for counting

    Rainflowcycles.Themostcommonprocedureisasfollows[52]:

    Peaksand troughs fromthe timesignalareextractedsothatallpointsbetweenadjacentpeaksandtroughsarediscarded.

    Thebeginningandendofthesequencearearranged tohavethesamelevel.Thesimplestway is toaddanadditionalpointat theendof the

    signaltomatchthebeginning.

    The highest peak is found and the signal is reordered so that thisbecomes thebeginning and the end. Thebeginning and end of the

    originalsignalhavetobejoinedtogether.

    Procedure is startedat thebeginningof the sequenceand consecutivesetsoffourpeaksandtroughsarepicked.Aruleisappliedthatstates,

    If thesecondsegment isshorter (vertically) than the first,and the third is

    longerthanthesecond,themiddlesegmentcanbeextractedandrecorded

    asaRainflowcycle.Inthiscase,BandCarecompletelyenclosedbyAand

    D(Figure3.8).

    Figure3.8RainflowCycles[52]

  • 8/13/2019 Vibration Infomation

    55/136

    36

    Ifnocycleiscountedthenacheckismadeonthenextsetoffourpeaks,i.e.peaks2to5,andsoonuntilaRainflowcycleiscounted.Everytime

    aRainflowcycleiscountedtheprocedureisstartedfromthebeginning

    ofthesequenceagain.

    AnexampleofRainflowcyclesextractionispresentedin Figure3.9.

    a)

    b)

    c)

    Figure3.9RainflowCountingExample:a)TimeHistory

    b)ReducedHistoryc)RainflowCount[52]

  • 8/13/2019 Vibration Infomation

    56/136

    37

    3.1.2 StrainLifeApproach

    Whenloadingcyclesaresevere,anothertypeoffatiguebehavioremerges.

    In this regime, the cyclic loadsare relatively largeand lead in significant

    amountsofplasticdeformationresultinginrelativelyshortlives.

    In this approach, StrainCycle curve shouldbe used rather than Stress

    Cycle curve ( NS ) to obtain fatigue life. StrainCycle curve can be

    obtainedby cyclic testswhere the strain isheld constantvia closed loop

    controltestequipment.

    3.1.3 CrackPropagationApproach

    When an initial crack exists in the structure, then crack propagation is

    followed. The crack growth analytical calculation is doneby means of

    LinearElasticFractureMechanicstheory.

    3.2 FrequencyDomainApproach

    Whenthe loading isnotstaticbutdynamic, thedynamicsof thestructure

    should be taken into account. There is high possibility to excite the

    resonance frequenciesof thestructure if the loadingfrequencyhasawidebandwidth.When this situation occurs, it cannotbe assumed that the

    structures response to the loading will remain linear in the frequency

    domain.Therefore,toovercomesuchsituations,frequencydomainfatigue

    analysismethodsareappliedwhichdonotneglectthevibrantpropertiesof

    thestructure.

  • 8/13/2019 Vibration Infomation

    57/136

    38

    Ageneralwayofrepresentingtherandomdatainthefrequencydomainis

    using Power Spectral Density (PSD) which is an alternative way of

    specifyingthetimesignal.ThePSDillustratesthefrequencycontentofthe

    timesignal.ItisobtainedbyutilizingFourierTransformation.

    Aperiodic timehistory, )(ty , canbe representedby the summation of a

    seriesofsineandcosinewavesofdifferentamplitude,frequencyandphase

    whichisthebasisofFourierseriesexpansionexpressedby(3.10)[55].

    (3.10)

    wherepT denotesforperiodand

    (3.11)

    (3.12)

    (3.13)

    0A , nA and nB are Fourier coefficientswhich yield information about the

    frequency content of the time history. 0A denotes themeanvalue of the

    timehistoryasnA and nB show theamplitudesof thevarious sinesand

    cosineswhichconstitutetimehistorywhenaddedtogether.

    =

    +

    +=

    1

    0

    2sin

    2cos)(

    n p

    n

    p

    n tT

    nBt

    T

    nAAty

    =2

    2

    0 )(1

    p

    p

    T

    Tp

    dttyT

    A

    =

    2

    2

    2cos)(

    2p

    p

    T

    T pp

    n dttT

    nty

    TA

    =

    2

    2

    2sin)(

    2p

    p

    T

    T pp

    n dttT

    nty

    TB

  • 8/13/2019 Vibration Infomation

    58/136

    39

    To express the time series with its frequency content, a transformation

    between the timeand frequencydomain isachievedbymeansofFourier

    transformation.Inthissense, )(fy entailsadescriptionofthetimehistory

    )(ty inthefrequencydomain f .TheFouriertransformpairgivenin(3.14)

    and(3.15)enablestransformationsbetweenthetwodomainseffectively.

    (3.14)

    (3.15)

    As well as the integral form, the Fourier transformation can also be

    depicted in adiscrete form.Thisusage ismostly favorablebecause time

    historiesaregenerallymeasured inadiscrete,digitized formwithequally

    spacedintervalsintime.Intheseconditions,theintegralformisdifficultto

    process. Therefore, some numerical calculations are carried out on the

    measuredtimehistoryto transform it intothefrequencydomainwhich is

    called Discrete Fourier Transform. The result obtained from a discrete

    transformationisliabletoapproximatetheresultobtainedfromanintegral

    transformationasthesamplelengthandsamplingfrequencyincrease[11].

    Cooley andTukey [56]develops a very rapiddiscrete Fourier transform

    algorithm called Fast FourierTransform (FFT) and has a reverseprocess

    namedtheInverseFourierTransform(IFFT). ThediscreteformofFourier

    transformationisgivenby

    (3.16)

    (3.17)

    = dtetyfy tfi )2()()(

    = dfefyty tfi )2()()(

    kN

    ni

    k

    k

    p

    n etyN

    Tfy

    =2

    )()(

    nN

    ki

    n

    n

    p

    k efyT

    ty

    =2

    )(1

    )(

  • 8/13/2019 Vibration Infomation

    59/136

    40

    wherepT istheperiodofthefunction )( kty and N isthenumberofdata

    pointsforFouriertransform.

    Random time histories canbe expressed in the frequencydomain under

    certain circumstances. A random time history cannot be periodic by

    definition,but it canbe expressed in the frequency domain if the time

    historyistakenfromastationaryrandomprocess.Astationarytimehistory

    isdescribedasatimeserieswhosestatisticsarenotinfluencedbyashiftin

    thetimeorigin. Inotherwords, thestatisticswhichbelongto timehistory

    y(t) are the same as those of time historyy(t+) for all values of . The

    statistics obtained from a sampled time history are representative of the

    statistics of the whole random process. Figure 3.10 illustrates the

    applicationoftheFouriertransformationappliedtoarandomtimehistory

    takenfromastationaryrandomprocess.

    Figure3.10FourierTransformation

  • 8/13/2019 Vibration Infomation

    60/136

    41

    PowerSpectralDensity(PSD)isawayofillustratingtheamplitudecontent

    ofatimesignal inthefrequencydomainasaspectrum.It iscalculatedby

    takingsquareofthemodulusoftheFFTanddividingby2timestheperiod,

    pT asshownin(3.18).

    (3.18)

    Only the amplitudes are retained in PSD but phase information is

    discarded.

    TheareaundereachspikeinFigure3.11representsthemeansquareofthe

    sinewaveat that frequencyand the totalureaunder thePSDcurvegives

    themeansquareofthetimehistory.

    Figure3.11SchematicRepresentationofPowerSpectralDensity

    PSD shows the frequency content and the type of the time history. For

    example,a sinusoidal time signal comesoutasa single spike centeredat

    2)(

    2

    1n

    p

    def fyT

    PSD =

  • 8/13/2019 Vibration Infomation

    61/136

    42

    the frequencyof the sinewaveon thePSDplotand the spike shouldbe

    infinitelytallandinfinitynarrowforapuresinefunctiononthePSDgraph

    intheorywhileitalwayshasafiniteheightandfinitewidthbecauseasine

    wave has a finite length.However, the areaunder thePSD graph is the

    interest.Broadband timehistoryappearsas awidebandpeakor several

    peaks covering a wide range of frequencies in the PSD plot while

    narrowbandprocesscomesoutascentered,narrowbandplotwhenPSDis

    calculated.Whitenoiseincludessinewavesofthesameamplitudeateach

    frequency(Figure3.12).

    Figure3.12TimeHistoriesandPSDs

  • 8/13/2019 Vibration Infomation

    62/136

    43

    In linear systems, the output is related to the inputby a linear transfer

    function. The response of a linear system to a single random process is

    obtainedbymeans of transfer functionsobtainedvia frequency response

    analysis of the structure where for each frequency a different transfer

    functioniscalculated:

    (3.19)

    where )(fFFTr

    and )(fFFTi standsforFFToftheresponse,stress in this

    thesis,andFFToftheinputloading,accelerationinthisthesis,respectively.

    )(fH representsthetransferfunctionofthesysteminfrequencydomain.It

    isconvenient toobtain the response, stress,asaPSD, )(fGr (3.20). If the

    input,acceleration,isalsoexpressedasPSD, )(fGi ,thenthePSDofoutput

    isgivenbymeansofalineartransferfunction, )(fH ,itsconjugate, )(* fH

    and input PSD in the frequency domain where )(* fFFTi is complex

    conjugateoftheinputFFT(3.21).

    (3.20)

    (3.21)

    Then,(3.21)canberewritten intheformof(3.22),where )(fGr isequalto

    inputPSDtimesmodulussquaredoftransferfunction.

    (3.22)

    )()()( fFFTfHfFFT ir =

    ( ))()()()(2

    1)(

    **fFFTfHfFFTfH

    TfG ii

    p

    r

    =

    )()()()( * fGfHfHfG ir =

    )()()( 2

    fGfHfG ir =

  • 8/13/2019 Vibration Infomation

    63/136

    44

    StressPSDisdirectlyusedforvibrationfatiguelifecalculationswhichwill

    beexplainedintheproceedingpartsofthisthesisindetail.

    In vibration fatigue calculations, the frequency content of the stresses is

    accounted forby a probability density function (PDF) of rainflow stress

    ranges, )(Sp .Themost convenientway,mathematically,of storing stress

    rangehistograminformationisintheformofaprobabilitydensityfunction

    of stress rangesFigure 3.13.Thebinwidth, dS, and the totalnumberof

    cyclesrecordedinthehistogram,tS ,arerequiredtotransformfromastress

    rangehistogramtoaPDF,orback.

    Figure3.13

    Probability

    Density

    Function

    Theprobabilityofthestressrangeoccurringbetween2

    dSSi and

    2

    dSSi+

    iscalculatedasthemultiplicationof ( )iSp and dS while togetPDFfrom

  • 8/13/2019 Vibration Infomation

    64/136

    45

    rainflowhistogram,eachbinheight isdividedby dSSt .Then,numberof

    cyclesattheparticularstresslevel S, )(Sn isstatedasin(3.23).

    (3.23)

    Thetotalnumberofcyclesatthestresslevel S thatcausesfailureaccording

    toWoehlercurve, )(SN ,isexpressedasin(3.24)whereC and b standfor

    materialconstantandBasquinexponentrespectively.

    (3.24)

    Then, fatigue life calculation isperformedbyutilizing (3.25) that equates

    (3.26)inturnwheretotalnumberofcyclesinrequiredtime,tS ,isequalto

    [ ]TPE . T is the fatigue life in seconds and [ ]DE is expected value of

    damage.Fatigue life is found setting [ ]DE tounity.Theorderof stresses

    occurring in history is ignored inMiners rule.However, this does not

    createaproblemforvibrationfatiguesolutionsincetheloadingsstatistical

    properties are important and the loading is random, stationary and

    Gaussian.

    (3.25)

    (3.26)

    ( )dSStSpSni =)(

    bi S

    CSN =)(

    [ ] [ ] ( )

    ==0

    )(

    )(dSSpS

    C

    TPE

    SN

    SnDE b

    i i

    i

    [ ] ( )

    ==0

    )()( dSSpS

    CS

    SNSnDE bt

    i i

    i

  • 8/13/2019 Vibration Infomation

    65/136

    46

    To calculate the probability density function of rainflow stress ranges,

    severaldifferentempiricalsolutionsareproposedbyresearcherstoobtain

    the )(Sp fromoutputstressPSDandcalculatefatiguelifewhichconstitutes

    thebasis of vibration fatigue approach. Statistical properties of random

    historyshouldbeexaminedtoobtain )(Sp .

    Randomstress timehistoriescanbedescribedusingstatisticalparameters

    properly.Anysampletimehistorycanberegardedasonesamplefroman

    infinite number of possible samples which can occur for the random

    process.Eachtimesamplewillbedifferentbutthestatisticsofeachsample

    shouldbeconstantaslongasthesamplesarereasonablylong[39],[57].

    Twoof themost important statisticalparameters areundertakenbyRice

    [30],whicharerelationshipsforthenumberofupwardmeancrossingsper

    secondandpeakspersecondinarandomsignalusingspectralmomentsof

    thePSD.Thisisthefirstseriouseffortatprovidingasolutionforestimating

    fatiguedamagefromPSDs.

    ThenthspectralmomentofthePSDofstress,whichisnm ,isdefinedasthe

    summationofeachstripsarea times the frequency raised to thepowern

    (3.27). It isnecessary todivide thePSD curve into small stripes tomake

    thesecalculationsasshowninFigure3.14.

    (3.27)

    =

    ==0 1

    ).(..).(m

    k

    kk

    n

    k

    n

    n ffGfdfffGm

  • 8/13/2019 Vibration Infomation

    66/136

    47

    Figure3.14PSDMomentsCalculation

    Expected number of peaks per second )(PE and expected number of

    upward zero crossings per second, )0(E , in the time history, whose

    schematic representation are shown in Figure 3.15, are calculated using

    spectralmomentsup to 4thdegree, 0m , 1m , 2m , 3m , 4m as formulated in

    (3.28)and(3.29).

    Figure3.15ExpectedZerosandExpectedPeaksintheTimeHistory

  • 8/13/2019 Vibration Infomation

    67/136

    48

    (3.28)

    (3.29)

    Another important statisticalparameter is irregularity factor, ,which is

    theratioofexpectednumberofzerospersecondoverexpectednumberof

    peaksper second. It isameasureof frequencyband thehistory coveron

    PSDgraphinthesensethatastheirregularityfactorapproachestoone,the

    processgets closer tonarrowbandprocess,andas the irregularity factor

    approachestozero,theprocessgetsclosertobroadbandprocess. Inother

    words,avalueofone corresponds toanarrowband signalwhichmeans

    that thesignalcontainsonlyonepredominant frequencywhileavalueof

    zero implies that the signal contains an equal amount of energy at all

    frequencies.

    (3.30)

    All these statistical information gathered from the stressPSD isused for

    vibrationfatiguecalculations.

    3.2.1 NarrowBandApproachThe first frequency domainmethod on calculating fatigue damage from

    PSDsiscallednarrowbandapproach.Bendat[31]assumesthatallpositive

    peaks in the timehistory is followedbycorresponding troughsofsimilar

    magnitude regardless of whether they actually formed stress cycles, in

    0

    2

    2

    4

    ]0[

    ][

    mmE

    m

    mPE

    =

    =

    40

    2

    2

    ][

    ]0[

    mm

    m

    PE

    E==

  • 8/13/2019 Vibration Infomation

    68/136

    49

    otherwords,itassumesthatthePDFofpeaksisequaltothePDFofstress

    amplitudes.Negativepeaks andpositive troughs in the time history are

    ignored. For wide band response data, the method overvalues the

    probability of large stress ranges. Therefore, calculated fatigue damage

    becomesconservative.InFigure3.16, thetimeseriesshown isacceptedas

    the black history instead of blue one. Probability density function

    calculated according to narrowband solution comes out as (3.31) and

    expecteddamageequation(3.26)turnsinto(3.32).

    (3.31)

    (3.32)

    Figure3.16NarrowBandSolution

    ( ) 02

    8

    04

    m

    S

    em

    SSp

    =

    [ ] [ ]

    ==

    0

    8

    0

    0

    2

    4)(

    )(dSe

    m

    SS

    C

    TPE

    SN

    SnDE

    m

    S

    b

    i i

    i

  • 8/13/2019 Vibration Infomation

    69/136

    50

    3.2.2 EmpiricalCorrectionFactors

    Manyexpressionsareproposedtocorrecttheconservatismofnarrowband

    solution. Generally, they are constituted by generating sample time

    histories from PSDs by means of inverse Fourier transformation. A

    conventionalrainflowcyclecountisobtainedfromthesedatasets.

    The solutionsofWirsching et al [32],Chaudhury andDover [33],Tunna

    [34]andHancock [35]arealldevelopedmakinguseof thisapproachand

    areallexpressedintermsofthespectralmomentsuptotheforthdegree.

    WirschingsEquation:

    (3.33)

    where

    (3.34)

    (3.35)

    (3.36)

    HancocksEquation:

    (3.37)

    This solution is proposed in the form of an equivalent stress range

    parameter,hS ,where

    (3.38)

    [ ] [ ] ( ) ( )( )( )( ))(11 bcNB babaDEDE +=

    ( ) bba 033.0926.0 =

    ( ) 323.2587.1 = bbc

    21 =

    +

    = 1

    222 0

    bmS

    bbb

    h

    ( )

    = dSSpSS bbh

  • 8/13/2019 Vibration Infomation

    70/136

    51

    ChaudhuryandDoverEquation:

    (3.39)

    TunnaEquation:

    (3.40)

    3.2.3 SteinbergsSolution

    Steinberg [36]proposesa threeband techniqueas a rough estimation for

    the fatigue damage calculation. This method isbased on the Gaussian

    distribution. The instantaneous stress values in the time history are

    assumedforthe3bandswhere standsforstandarddeviation:

    1 valuesoccur68.3%ofthetime

    2 valuesoccur27.1%ofthetime

    3 valuesoccur4.33%ofthetime

    Therefore, the fatigue damage is estimatedbased on these three stresslevels.This approach is a very simple solutionbased on the assumption

    that no stress cycles occur with ranges greater than 6 rms values. The

    distribution of stress ranges is then specified to follow a Gaussian

    distribution.Thismethod ispreferred intheelectronics industry,asatool

    forcomparison.

    [ ] [ ] bhSCTPEDE =

    ( ) 02

    8

    04

    me

    m

    SSp

    =

  • 8/13/2019 Vibration Infomation

    71/136

    52

    3.2.4 DirliksEmpiricalFormulation

    Abetter approach is to approximatePDFdirectly from thePSDwithout

    using the narrow band approach as a starting point because PDF of

    rainflow stress ranges is the issue controlling fatigue life. Dirlik [37]

    develops an empirical closed form expression for the PDF of rainflow

    ranges,which isobtainedusingextensivecomputersimulations tomodel

    thesignalsusingtheMonteCarlotechnique.Dirlikssolutionisillustrated

    intheequation[11].

    (3.41)

    where

    2

    11

    2

    1

    1

    23

    213

    2

    1122

    2

    1

    4

    2

    0

    1

    2

    4

    0

    2

    0

    1

    )(25.1

    11

    1

    1

    )(2

    ][]0[

    ][

    ]0[

    2

    DD

    DxR

    D

    RDDQ

    DDDR

    DDD

    xD

    m

    m

    m

    mx

    m

    mPE

    m

    mE

    PE

    E

    m

    SZ

    m

    m

    m

    i

    i

    +

    =

    =

    =

    +=

    +

    =

    =====

    DirliksempiricalformulaforthePDFofrainflowstressrangesisshownto

    be far superior, in terms of accuracy, then the previously available

    correctionfactorsfornarrowbandsolutionconservatism[59].

    0

    23

    22

    21

    2)(

    2

    2

    2

    m

    eZDeR

    ZDe

    Q

    D

    Sp

    iii Z

    iR

    Z

    iQ

    Z

    i

    ++=

  • 8/13/2019 Vibration Infomation

    72/136

    53

    CHAPTER4

    ANEWMETHODFORGENERATIONOFALOADINGHISTORY

    WITHZEROMEAN

    Whenacomponent issubjected toanexcitation thathasanonzeromean,

    thismeanvaluecouldhaveanoteworthyeffectonthestressesandthuson

    thefatiguelifeofthecomponent.Infatiguecalculations,meanstresseffect

    canbetakenintoconsiderationrathereasilybutexperimentalverificationis

    troublesomesincewithtraditionaltestingequipmentlikevibrationshakers,

    anymeanvalueofanaccelerationexcitationotherthan1ginthedirection

    of gravity is difficult to simulate. In the content of this thesis study, a

    methodisdevelopedtocreateamodifiedinputloadinghistorywithazero

    mean which causes fatigue damage approximately equivalent to thatcreated by input loading with a nonzero mean. For this purpose, a

    mathematicalprocedureisdevelopedtoapplymeanstresscorrectiontothe

    output vonMises stress power spectral density data.Amodified input

    acceleration power spectral density is generated by means of transfer

    functions calculated via frequency response analysis. Thiswill enable to

    performfatiguetests.Themathematicalapproachdevelopedtomodifytheoutput von Mises stress power spectral density takes the multiaxial

    stressesintoaccountatthepointofconsiderationandprovidestheneeded

    input loadingpowerspectraldensity.Thecorrected inputwithzeromean

    value enables experimentalverificationwhile themeanvalue, other than

    1g,oftheinputcannotbeappliedinstandardvibrationtests.

  • 8/13/2019 Vibration Infomation

    73/136

    54

    Timedomainfatiguelifecalculationtechniquesdirectlyutilizemeanstress

    correctionmethods to amplify the stress ranges to take themean stress

    effectintoaccount.Infrequencydomainfatiguelifecalculationapproaches,

    when the power spectral density of the stress is determined, only the

    variablestresspart isconsidered,however, theconstantmeancomponent

    isignored[60].Inthisstudy,themeanstresscorrectionisaccomplishedon

    vonMisesstresspowerspectraldensitytobeabletoincludetheloadings

    biaseffect.GoodmancorrectiontechniqueispreferredtoGerbersinceitis

    reportedin[61]thatGerberrelationshipgenerallygiveshigherfatiguelives

    compared to the experimental results. Dirlik method is chosen for

    application of vibration fatigue approach. According to [59], Dirlik

    approach leads tobetter results in comparison to the corresponding time

    domainandfrequencyresponsemethods.

    Analuminum (2024T4)plate fixedandexcitedatoneend isused for the

    implementation which is shown schematically in Figure 4.1, whose

    dimensionsaregiveninTable4.1.Thebaseexcitationleadstoafullythree

    dimensionalmultiaxialstateofstressintheplate.

    It is shown that the developedmethod is useful in creating amodified

    inputaccelerationdatawithazeromean that can simulatedamage foraselected point in the structure under consideration. Equivalent input

    loading obtainedbymeans of the aforementionedmethod is convenient

    andconservativeforexperimentalapplications.Besidesbeingatimesaving

    method,itissuitabletobeimplementedforanytypeofloading.

  • 8/13/2019 Vibration Infomation

    74/136

    55

    Figure4.1PlateSubjectedtoBaseExcitation

    Table4.1DimensionsofthePlateLength 750mm

    Width 100mm

    Thickness 5mm

    4.1 Theory

    The developed method to calculate zero mean loading for a structure,

    approximatelyequivalentinfatiguedamage,whichissubjectedtorandom

    loading with nonzeromean, isbased on the frequency domain fatigue

    calculationtechniques.

    TocomputeazeromeaninputaccelerationPSD,whichismentionedasthe

    modifiedaccelerationinputPSD,Gim(f),firstofall,meanstresscorrectionis

    performed on the vonMises stress output PSD, Gr(f).Goodmansmean

    stress correction shown in Equation (3.6) is used to obtain themodified

    outputstressPSD,Grm(f).NotethatGoodmansformulaiswidelyusedfor

    Fixedendoftheplate

    Acceleration(BaseExcitation)

  • 8/13/2019 Vibration Infomation

    75/136

    56

    mean stress correction for stress amplitudemodification [62],but in this

    studyitisutilizedtocorrectPSDofvonMisesstressoutputdata.IfthePSD

    issplit intoequalstrips,theareaofeachstripcanbeutilized toobtainan

    equivalentsinewave.Theamplitudeofeachequivalentsinewaveisequal

    tothesquarerootoftheareatimes 2.Thisisbecauseofthefactthatthe

    rootmeansquareofasinewave isequal to itsamplitudedividedby 2,

    andtherootmeansquareofeachstripinthePSDisequaltothesquareroot

    ofitsarea[39].Inthisstudy,thestressPSDvalue,Gr(f),ismultipliedbythe

    corresponding frequencyresolutionand thesquarerootof it is takenand

    multipliedwith 2 toobtain thealternatingstressamplitude,Sa, foreach

    frequency.Then,meanstresscorrectionisperformedwith(3.6)tocalculate

    themodifiedalternatingstressamplitude,Sa.Afterwards, thecalculations

    arecarriedoutinthereversedirectiontoreachmodifiedoutputstressPSD,

    Grm(f).

    Theoretically,thereshouldbeaninputaccelerationPSDthatresultsinthe

    modifiedoutputstressPSD,Grm(f),whenappliedtothestructuresincethe

    transferfunctionofthestructureremainsthesameregardlessofinputtype.

    Thisphysicalrelationcanberepresentedbythefollowingequationwhich

    isrewrittenfrom(3.21)foradifferentinputoutputcouple.

    (4.1)

    Accordingto(3.21);

    (4.2)

    )()()()( * fGfHfHfG imrm =

    1* )()()()( = fxGfGfHfH ir

  • 8/13/2019 Vibration Infomation

    76/136

    57

    andfrom(4.1);

    (4.3)

    To obtainGim(f), (4.2) and (4.3) are equated to each other and reordered

    whichresultsin:

    (4.4)

    The variables in equation (4.4) are vectors,which in turnmakes regular

    matrixinversionimpossible.Therefore,theinversecalculationsinequation

    (4.4) are carried outby using pseudoinverse.A corrected input loading

    with zero mean but modified alternating stress, which creates fatigue

    damage approximately equivalent to the damage caused by the

    unprocessed loading with nonzeromean, is extractedbymeans of this

    technique. It shouldbe noted that, this approach is focusing to find a

    modified loading that simulates damage for a selected point on the

    structure,whichinturnwillbeacceptableinthevicinityofthatpointonly.

    4.2 CaseStudy

    The proposed correction method is demonstrated on an applicationanalyzedaccordingtothemethodpresentedinSection4.1.

    The plate shown in Figure 4.1 is excited from its cantileveredbasewith

    stationary,Gaussian, random, 10 second acceleration timehistorywith a

    nonzeromeanvalueof3g,asshowninFigure4.2.Powerspectraldensity

    1* )()()()( = fxGfGfHfH imrm

    [ ]111 )()()()( = fxGfxGfGfG irrmim

  • 8/13/2019 Vibration Infomation

    77/136

    58

    of the input is also shown in Figure 4.3. The input loading consists of

    harmonics that possess different amplitudes withbroadband frequency

    range,upto2000Hz,involvingthefirst20ofthenaturalfrequenciesofthe

    specimen.Thedef