utting 1985 aquacultural-engineering

Upload: jorge-rodriguez

Post on 03-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    1/16

    Aquacul tural Engineer ing 4 (1985) 175-190

    I n f l u e n c e o f N i t r o g e n A v a i l a b i li ty o n t h e B i o c h e m i c a lC o m p o s i ti o n o f T h r e e U n i c e ll u la r M a r i n e A l g a e o fC o m m e r c i a l I m p o r t a n c e

    Susan D . UttingMinistry of Agriculture, Fisheries and Food, Directorate of Fisheries Research,

    Fisheries Experiment Station, Conwy, Gwynedd LL32 8UB, UK

    A B S T R A C TChaetoceros calcitrans (Paulsen) Takano, Tetraselmis suecica ( K y l i n )B u t c h . a n d Isochrysis galbana Parke were grown in ar t i f i c ia l seawaterc o n t a in i n g e i th e r n o r m a l ( 9 . 8 m g a t o m s l it re -1 ) o r r e d u c e d ( 0 . 6 1 3 m gatom s l i tre -1) n it rogen. When g row n in the n i t rog en-de f ic ient m ed iumprote in decreased and carbohydrate increased in a l l three spec ies ; l ip id ,however , increased in Chaetoceros a n d Isochrysis but decreased inTetraselmis.

    T h e b i o c h e m i c a l c o m p o s i t i o n o f Tetraselmis and lsochrysis s a m p l e dd u r i n g t h e p o s t - e x p o n e n t i a l p h a s e o f g r o w t h f r o m n o r m a l m e d i u m w a ss imi lar to tha t o f ce ll s grow ing exp one nt ia l l y in n i t rogen-de f ic ient m ediu m.Sa l in i ti e s o f 10 - 35 % o d i d no t a f f e c t p ro t e i n le ve ls in Tetraselmis orIsochrysis bu t ca rboh ydrate increased an d l ip id decreased in Isochrysisover t he sa li n it y range. Tem pera t ure s o f 18 - 25 C had l i tt l e e f f e c t on t hece l l com po s i t ion o f e i ther species .

    The energy po t en t i a l l y availab le f ro m a un i t vo l um e o f Chaetoceros a n dIsochrysis cells f ro m norm al m ed i u m was sim i la r t o t ha t f ro m cell s g row nin n i t rogen-de f ic ient condi t ions in both spec ies . Tetraselmis h a d 3 4 % m o r eenergy available w he n grow n in norm al com pare d to n i t rogen-de f ic ientm e d i u m .

    INTRODUCTIONUnicellular marine algae are commonly grown as a food source forcomme rcial ly valuable shellfish. Early investigations led to the selection

    175 Crown Copyright, 1985.

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    2/16

    176 s . D . U t t i n go f h i g h l y s u i t a b l e f o o d s p e c i e s f o r b iv a lv e s ( W a l n e , 1 9 7 4 ) a n d m o r er e c e n t l y s i g n i fi c a n t i m p r o v e m e n t s in al ga l p r o d u c t i o n h a v e b e e n m a d ea t t h e F i s h e ri e s E x p e r i m e n t S t a t i o n , C o n w y , t h r o u g h c h a n g e s i n c u l t u r et e c h n i q u e s ( H e l m e t a l . , 1 9 7 9 ; L a i n g , 1 9 7 9 ; H e l m a n d L a i n g , 19 81 ) .

    T h e b i o c h e m i c a l c o n t e n t o f a l ga e c a n v a r y w i th a ge o f t h e c u l tu r ea n d w i t h c h a n g e s in t h e e n v i r o n m e n t a l c o n d i t io n s ( L e w i n , 1 9 62 ;S t e w a r t , 1 9 7 4 ). P r o t e i n is t h e m a i n c o m p o n e n t o f ce ll s h a r v e s t e d d u r i n gt h e e x p o n e n t i a l p h a s e o f g r o w t h b u t t h e p r o t e i n is r e p l a c e d b y st o r a g ep r o d u c t s w i t h a c a r b o h y d r a t e o r l ip id b a s e a s n i t r o g e n b e c o m e s li m i t in gd u r i n g p o s t - e x p o n e n t i a l p h a s e s .

    V a r i a t i o n s i n t h e s i li ca t e c o n c e n t r a t i o n o f t h e c u l t u r e m e d i u m , i nt e m p e r a t u r e , s a l i n i t y , l i g h t i n t e n s i t y a n d w a v e l e n g t h c a n a l s o c a u s ec h a n g e s i n t h e b i o c h e m i c a l c o n t e n t o f m a r i n e p h y t o p l a n k t o n ( M o rr is ,1 9 8 1 ; S h i f r i n a n d C h i s h o l m , 1 9 8 1 ) .

    T h e s t a n d a r d p r o c e d u r e a t C o n w y i s t o h a r v e s t c u l t u r e s i n t h e e x p o -n e n t i a l p h a s e w h e n p r o t e i n c o n t e n t is h i g h. H o w e v e r , t h e r e is s o m ee v i d e n c e t o s u g g es t t h a t l o w p r o t e i n d i e t s a r e b e n e f i c ia l t o o y s t e r s a t

    T A B L E 1Com position and P repara tion of Artificial Seawaterg l i t r e - I m g l i t r e - ~ p g l i t r e - 1

    NaC 1 2 0 M n C 1 2 . 4 H 2 0 1-4MgSO 4.7H20 5 HaBOa . 0 - 6 2KNO3 1 bFeC la 0.54CaC l2.2H20 1 Thiam ine HC1 0-5NaHCOa 0.2 ZnC la 0.1aNaH2PO4 .H20 0.1NaSiO3.9H20 0-04

    COC12.6H20 5Biotin 5Cobalamin 1CuC12.2H20 0-034

    Distilled w ate r 1 litre.Medium buffered wi th 1 g Tr i s ( t r i shydroxymethy lam inomethan e) i t re -1 .Buffer prepared by dissolving 25 g Tris in 75 ml disti l led water, adjusting pH to7.1-7-3 with co ncen trated HCI and making the volume up to 100 ml.M edium autoclaved at 1.06 kg cm -2 fo r 20m in .Vitamins add ed a fter rema inder of med ium has been autoclaved.a A dde d to m ediu m after autoclaving to prev ent precipitation.b Chelated w ith NaE DTA in solution containing 0-3 mg FeC la : 0-05 mg NaED TAm1-1.

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    3/16

    Influence o f nitrogen availability on biochemistry o f ma rine algae 177certain stages of growth. Wilson (1979) found that O s t r ea ed u l i s L .larvae increased their grazing rate when fed l s o c h r y s i s g a l b a n a whichwere in the post-exponential phase of growth. Crassostrea virginicaspat had a higher weight and glycogen content when fed Thalass ios i rap s e u d o n a n a with a carbon/nitrogen ratio of 7.5-10.7 (Flaak andEpifanio, 1978).

    In this investigation, which was the preliminary part of a study intothe effects of diet composition on the growth of oyster larvae and spat(Utting, in preparation), some of the standard Conwy culture tech-niques were changed in an attempt to produce algae with a low proteincontent.

    Ch a e t o cer o s ca l c i t r a n s (Paulsen) Takano, Te t r a s e l m i s s u ec i ca (Kylin)Butch. and I s o c h r y s i s g a l b a n a Parke were grown in normal mediumcontaining 9.8 mg atoms N litre -1 and in a nitrogen-deficient mediumwith 0-613 mg atoms litre -1. Cells with significantly different p rote incontent were found. In addition the effects of harvesting cultures atvarious stages of the growth cycle and the effects of differing salinityand temperature regimes were studied using two of the genera Tetra-s e l m i s and I s o c h r y s i s .

    METHODSC u l t u r e o f a l ga eStock cultures of C h a e t o c e r o s (Bacillariophyceae), T e t r a s e l m i s (Prasino-phyceae) and l s o c h r y s i s (Haptophyceae) were maintained in Erdschreibermedium (FOyn, 1934) and subcultured monthly. The experimentalmedium, an artificial seawater (Table 1), was a modification of thatformulated by Lewin and Busby (de Mort, 1970).To study the effec t of nitrogen deficiency, algae were grown in thenormal medium (9-8 mg atoms N litre -1) or in artificial seawater towhich only 0-613 mga tomsNl it r e -1 was added. Salinities over therange 10-35~oo were obtained by di lution o f the artificial seawater withdistilled water. Nutrien t concent rat ions were thus reduced, especially atthe lower salinities, but earlier studies showed that nitrogen at leastwould not have limited algal growth even at 10%o (S. D. Utting,unpublished work).

    Algae were transferred from Erdschreiber medium to artificial sea-water one week before the start of the experiment. After the week of

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    4/16

    178 s. D. Uttingc o n d i t i o n i n g , c e ll s w e r e i n o c u l a t e d i n t o 2 5 0 m l fr e s h m e d i u m in 5 0 0 m lb o i l i n g f l a s k s t o g i v e i n it ia l c o n c e n t r a t i o n s o f 5 0 c e l ls 1 4 - 1 f o r Tetra-s e l m i s a n d 5 0 0 c e l l s # 1-1 f o r C h a e t o c e r o s a n d I s o c h r y s i s . C u l t u r e s w e r eu n ia l ga l b u t n o n - a x e n i c . I n c u b a t i o n t e m p e r a t u r e w a s 2 0 C + I C b u te x t e n d e d in o n e t r i al t o 1 8 - 2 5 C i n o r d e r to d e t e r m i n e t h e e f f e c t o ft e m p e r a t u r e o n th e b i o c h e m i c a l c o m p o s i t i o n o f T e t r a s e l m i s a n d I s o -ch r ys i s . C o n t i n u o u s i ll u m i n at io n w a s p r o v i d e d b y t w o 6 5 W w a r m - w h i t ef l u o r e s c e n t t u b e s . T h e i n c i d e n t l i gh t i n t e n s i t y a t t h e o u t e r s u r fa c e o ft h e c u l t u r e v e s s e l w a s 3 k l u x . C u l t u r e s w e r e a e r a t e d a t 1 l it re m i n -1w i t h f i lt e r e d a ir w h i c h w a s e n r ic h e d w i t h 2 % v / v c a r b o n d i o x i d e .

    I n m o s t t r i a l s C h a e t o c e r o s w a s h a r v e s t e d a f t e r 2 d a y s , T e t r a s e l m i sa f t e r 4 d a y s a n d l s o c h r y s i s o n t h e f i f t h d a y t o e n s u r e t h a t c e ll s w e r et a k e n f r o m a si m i la r p h a s e o f g r o w t h (S . D . U t t i n g , u n p u b l i s h e d d a t a ) .W h e n t h e e f f e c t o f c u l t u r e a ge o n t h e c h e m i c a l c o m p o s i t i o n o f Tetra-s e l m i s a n d l s o c h r y s i s w a s b e i n g s t u d i e d , s a m p l e s o f c e ll s w e r e t a k e nf r o m d a y 1 t o d a y 1 3 o f th e e x p e r i m e n t .

    A n a l y t i c a l techniquesC e ll c o n c e n t r a t io n w a s d e t e r m i n e d o n a m o d e l Z B C o u l t e r C o u n t e r t ow h i c h a v o l u m e d i s t r ib u t i o n p l o t t e r w a s c o n n e c t e d t o m e a s u r e c e llv o l u m e .

    D r y w e i g h t o f c e ll s w a s f o u n d b y f il te r i n g 1 0 m l s a m p l e s o f c u l t u r ei n d u p l i c a t e u n d e r a v a c u u m n o t e x c e e d i n g 0 . 3 5 k g c m -2 o n t o W h a t m a nG F / C f i lt e r d i s c s w h i c h h a d p r e v i o u s l y b e e n a s h e d a t 4 5 0 C f o r 4 h .T h e d is cs w e r e w a s h e d w i t h 0 . 9 % ( w / v ) i s o to n i c a m m o n i u m f o r m a t e ,d r i e d a t 8 0 C f o r 4 8 h a n d t h e n w e i g h e d . A s h - f r e e d r y w e i g h t w a so b t a i n e d b y s u b t r a c t i o n a f t e r th e d i sc s h a d b e e n l e f t fo r a f u r t h e r 4 ha t 4 5 0 C in a m u f f l e f u r n a c e .

    S u b s a m p l e s o f c u l tu r e w e r e t a k e n i n d u p l i c a t e f o r t h e e s t i m a t i o n o fp r o t e i n ( 1 0 m l ) , c a r b o h y d r a t e ( 1 0 m l ) a n d l i p id ( 5 m l ) . T h e a l ga e w e r ec o n c e n t r a t e d b y c e n t r i f u g a t i o n a t 3 0 0 0 r p m f o r 1 0 m i n a n d t h e s u p e r-n a t a n t w a s r e m o v e d . P r o t e i n w a s m e a s u r e d b y a m o d i f i e d m i c r o -K j e l d a h l t e c h n i q u e ( H o l l a n d a n d H a n n a n t , 1 9 7 3 ) a n d p r o t e i n c o n t e n tw a s a s s u m e d t o b e n i t r o g e n c o n c e n t r a t i o n X 6 - 2 5. C e ll s f o r c a r b o h y d r a t ee s t i m a t i o n w e r e r e s u s p e n d e d t o a v o l u m e o f 1 0 m l w i t h di st il le d w a t e ra n d c a r b o h y d r a t e w a s d e t e r m i n e d b y t h e a n t h ro n e m e t h o d ( S t r i c k la n da n d P a r s o n s , 1 9 6 8 ) .

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    5/16

    Inf luence of ni trogen availabil i ty on biochemistry of marine algae 179L i p id w a s e x t r a c t e d b y a d d i n g 2 m l o f 2 : 1 ( v : v ) c h l o r o f o r m / m e t h a -

    n o l m i x t u r e a n d l ea v in g f o r 2 h a t 2 0 C in t h e d a r k . T o r e m o v e n o n -l ip id c o n t a m i n a n t s 0 - 4 m l o f 0 . 7 % ( w / v ) N aC 1 s o l u t i o n w a s a d d e d a n dt h e s a m p l e s l e f t o v e r n i g h t a t 4 C . T h e l o w e r p h a s e w a s th e n m a d e u pt o 2 m l w i t h c h l o r o f o r m a n d 1 m l o f th a t p h a s e r e m o v e d f o r t h ea n a l ys i s o f l i pi d b y t h e c h a r r in g m e t h o d o f M a r sh a n d W e i n st e in ( 1 9 6 6 ) .C h o l e s t e r o l w a s u s e d as t h e s t a n d a r d a n d t o t a l l ip i d w a s c a l c u l a t e d b ya s s u m i n g 8 0 # g c h o l e s t e r o l w a s e q u i v a l e n t t o 1 0 0 # g t o t a l li p id (B a r n e sa n d B l a c k s t o c k , 1 9 7 3 ) .

    T h e b i o c h e m i c a l c o m p o s i t i o n h a s b e e n e x p r e s s e d a s a p e r c e n t a g e o ft h e t o t a l o r g a n i c c o n t e n t in s o m e c o m p a r i s o n s . T o t a l o rg a n ic c o n t e n tw a s e q u i v a l e n t t o t h e s u m ( in tag p e r 1 06 c e ll s) o f t h e p r o t e i n , c a r b o -h y d r a t e a n d l i p i d r e c o v e r e d i n t h e c h e m i c a l a n a l y s e s .

    T h e i n o rg a n ic a n d t o t a l c a r b o n c o n t e n t o f c e lls w a s m e a s u r e d b yc o m b u s t i o n o f r e p l i c a t e 5 0 tal s u b s a m p l e s o f a lg a e a t 1 5 0 a n d 9 5 0 C ,r e sp e c ti ve l y , o n a B e c k m a n t o ta l o r g a ni c c a r b o n ( T O C ) a n a l y s e r m o d e l9 1 5 B . T h e s t a n d a r d c o n t a i n e d 1 0 0 tag c a r b o n m 1 -1 a n d w a s m a d e u p ind i st il le d w a t e r w h i c h h a d b e e n p h o t o o x i d i s e d f o r 4 h . O r g a n ic c a r b o nw a s f o u n d b y s u b t r a c t io n .

    R E S U L T SE f f e c t o f nitrogen deficiencyC e l l s iz e a n d w e i g h t w a s g e n e r a l l y n o t a f f e c t e d b y a c h a n g e i n t h en i t ro g e n c o n t e n t o f th e c u l t u r e m e d i u m ( T a b l e 2 ) e x c e p t i n g th a t th ea s h - f r e e d r y w e i g h t o f C h a e t o c e r o s w a s h i g h e r i n t h e n i t r o g e n - d e f i c i e n tc u l t u r e s ( S t u d e n t ' s t - te s t , t = 2 - 8 4 , d e g r e e s o f f r e e d o m = 6 6 , p < 0 . 0 1 ) .T h e b i o c h e m i c a l c o m p o s i t i o n o f a ll s p e c ie s w a s , h o w e v e r , s i g n if ic a n t lya l te r e d . A t t h e l o w e r n it r o g e n c o n c e n t r a t i o n t h e p r o t e i n c o n t e n t p e rl 0 6 c e ll s w a s s i g n i f ic a n t l y l es s in a ll s p e c i e s a n d c a r b o h y d r a t e w a s h i g h e r( p < 0 - 0 0 1 ) . C h a e t o c e r o s a n d I s o c h r y s i s c e ll s c o n t a i n e d m o s t li p idw h e n g r o w n in n i tr o g e n -d e f ic i e n t m e d i u m ( p < 0 .0 5 a n d p < 0 . 0 2 ,r e s p e c t i v e l y ) w h i l e T e t r a s e l m i s c e ll s h a d a h i g h e r l ip i d c o n t e n t w h e ng r o w n in n o r m a l m e d i u m ( p < 0 - 0 0 1 ) . C o m p a r i s o n o f t h e m e a n v a l ue so f e a c h b i o c h e m i c a l p a r a m e t e r f o r e a c h s p e c ie s g r o w n i n n o r m a l o rr e d u c e d n i tr o g e n m e d i a g a v e t h e f o l lo w i n g t v al ue s :

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    6/16

    TABLE2

    TSuueanBohmicCenoChooccraTramissucanso

    sgbCueGow

    inAcaMedumCann98mgaomsNe-1o06mgaomsNe-1(menvuonmbocuue

    saed

    OOO

    Cooccan

    Tamissuc

    Isohysgbn

    98mgoms06mgoms98mgoms06mgoms9Smgoms06mgoms

    Nr-1

    Nr-~

    Nr-1

    Nr-1

    Nr-~

    Nr-1

    Cconao

    /A-1(x1

    15

    Dywgmgp1cs00

    Ahedywg

    mgp1cs

    00

    Mencvumepm3

    31

    Poenagp1cs

    70

    Cb

    aeagp1

    cs

    29

    Lpdgp1cs

    20

    Cbnon

    64

    Nmbocuue

    3

    94

    32

    31

    11

    98

    00

    03

    03

    00

    00

    00

    02

    02

    00

    00

    44

    46

    47

    62

    64

    48

    19

    51

    11

    85

    74

    22

    14

    54

    81

    26

    21

    19

    58

    74

    16

    44

    13

    76

    17

    3

    1

    1

    2

    2

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    7/16

    Influence of nitrogen availability on biochemistry of marine algae 181Chaetoceros Tetraselmis Isochrysis

    t Degrees f t Degrees f t Degrees ffreedom freedom freedomProtein 7.67 66 19-66 32 5.20 54Carbohydrate 9.25 66 17-88 32 4-70 54Lipid 2-03 66 4-65 32 2.52 54

    Carbon/nitrogen ratios ranged from 4-49 to 7-60 in algae fromnormal medium to 10.75-15-39 in nitrogen-defic ient conditions as aresult of the change in biochemical content.E f f e c t o f c u l tu r e a g eExponential growth finished on day 8 in Tetraselmis cultures and onday 6 in lsochrysis. Unfortunately no measurements could be made on13 day old Isochrysis cultures because of a contaminant flagellate inthe cultures.

    Protein decreased with age of culture in both species (Table 3). InTetraselmis carbohydrate and lipid replaced the protein, with carbo-hydrat e rising sharply between days 7 and 13. Lipid increased threefoldin Isochrysis cells during the exponential phase but after an initialincrease in carbohydrate from 22.8 to 34.5% of the total organicconten t, there was a decline in that fraction to 20L1% by day 7.

    Tetraselmis from nitrogen-deficient conditions was comparable inorganic con ten t to cells from 13 day old cultures, where nitrogen wouldbe expected to be limiting, while cells from 1-4 day old cultures, withan expected high nitrogen conten t, compared with Tetraselmis grown innormal medium.T h e e f f e c t s o f s a l i n it y a n d t e m p e r a t u r eSalinity, over the range 10-35700, and culture temperatures of 18-25C,had less of an ef fect on the chemical composi tion of Tetraselmis andlsochrysis (Table 4) than had nitrogen depletion or harvesting cells atdifferen t stages during the growth cycle (Table 3).

    The optimum salinity for Tetraselmis, measured by the highestpro tein/carbohydra te ratio, was 25~'oo. The biochemical composit ion of

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    8/16

    70

    b3

    TABLE3

    EeoNoDcea

    AoCueohPoenCb

    aeaLpdCeaaPcaoh

    TaOgcMaeaoTraemssucaasohysgbCue

    Se

    Ccomn(%

    ooaogc

    coen)

    Nronconrao

    (maomNre1

    Aocuued

    (98maomNre-1nay

    98

    06

    1

    4

    7

    1

    Traemssuca

    Isohysgb

    Poen

    Cb

    ae

    Lpd

    Poen

    Cb

    ae

    Lpd

    71

    27

    71

    65

    63

    95

    60

    12

    11

    24

    16

    83

    71

    15

    13

    57

    32

    61

    40

    47

    23

    38

    28

    35

    21

    20

    30

    11

    21

    34

    26

    57

    14

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    9/16

    T

    4

    EeoSny(13oaTmpu(12CothPenCb

    eaLpdCenaaPna

    othTaO

    cMaeaoTamscsysb

    %

    Se

    Cm

    Sny%

    Tmaue

    (%oa

    ogce1

    12

    2

    3

    3

    1

    2

    22

    g 5

    Tamsc

    en

    57

    50

    67

    64

    62

    51

    63

    63

    5367

    ~

    Cb

    e

    31

    31

    20

    25

    32

    30

    29

    26

    3328

    ~

    Lpd

    12

    19

    13

    12

    96

    12

    79

    54

    15

    76

    ~

    Isysb

    Pen

    56

    46

    48

    40

    48

    52

    63

    51

    48

    -

    ~.

    Cb

    e

    26

    23

    25

    31

    29

    37

    27

    24

    37

    -

    Lpd

    28

    21

    27

    29

    23

    12

    19

    15

    25

    -

    o ta

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    10/16

    184 S. D. Utting2 6

    gu

    - J

    1 8 I2 0S a t i n t y % .

    I~ 0

    ! 3 5tJ

    o~o, Z5Lg

    .t 3 I200 t ,O2 0S a l i n i ty , % .

    Fig. 1. The relationship between thelipid content of lsochrysis galbana cellsand the salinity of the artificial seawatermedium, y= 26- 45- 0.1 8x (r=- 0.87 ,

    degrees of freedom = 4, p < 0-05).

    Fig. 2. The relationship between thecarbohydrate content of Isochrysis gal-bana cells and the salinity of the artificialseawater medium, y = 22-32 + 0.261x(r = 0-826, degrees of freedom = 4,

    p < 0 . 0 5 ) .

    T e t r a s e l m i s began to change o nly at 10 and 15~'oo but not to the sameexten t as occurred with nitrogen deficiency.

    Protein in I s o c h r y s i s was similar over the salinities tested but lipiddecreased, r =- -0 .8 7 , degrees of fr eed om = 4, p < 0.05 (Fig. 1), andcarbo hydra te increased, r = 0-826, degrees of freedom = 4, p< 0.05(Fig. 2) at the higher salinities.

    The biochemical content of T e t r a s e l m i s showed little variationbetween temperatures of 18 and 25C although at 22C protein was lessbut carbohydrate and lipid were more than might have been expectedfrom the measure ment s on cells grown at 20 and 25C. Protein decreasedin I s o c h r y s i s at the higher temperatures with a corresponding increasein carbohydrate and lipid. At 25C no growth occurred and the culturesdied within 3 days.Variation in biochemical conte ntRelationships between biochemical components were found in bothT e t r a s e l m i s and l s o c h r y s i s . As protein decreased ca rbohydr ate increasedin T e t r a s e l m i s , r = --0-977, degrees of freedom = 14, p < 0-001 (Fig. 3),while in I s o c h r y s i s lipid, r = --0-829, degrees of fr eedom = 12, p < 0.001(Fig. 4), and carbohyd rate, r =- -0 -5 48 , degrees of freedom = 12,p < 0.05 (Fig. 5), increased. There was no correl ation between carbo-

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    11/16

    Inf luence of ni trogen availabil i ty on biochemistry of marine algae 185- ~ 8 0

    c

    2 0 t,0 60C a r b o h y d r a t e , % o f total organ ic con ten tI80

    F i g . 3 . T h e r e la t io n s h i p b e t w e e n p r o t e i n a n d c a r b o h y d r a t e c o n t e n t o f Tetraselmissuec i ca ,y = 8 9 - 6 2 - 1 - 0 2 4 x ( r = - 0 . 9 7 7 , d e g r e e s o f f r e e d o m = 1 4, p < 0 . 0 0 1 ) .

    80

    ~ 6 co

    t,C

    2c

    F i g . 4 .

    8 O

    u

    ~608

    - . < .

    I I I I1 0 2 0 3 0 4 0

    Lipid,% of total organic contentThe r e l a t i onsh i p be t w een p r o -

    t e i n a n d l i p i d c o n t e n t o f Isochrysisgalbana, y = 75-61 - 1-199x ( r = - -0-8 29,

    deg r ee s o f f r eedo m = 12 , p < 0 . 001) .

    t~

    ZO 1 i 1I0 20 30 40

    C a r b o h y d r a te , % o f t o t a l o r ga n ic c o n te n tFi g . 5 . Th e r e l a t ionsh i p be t w een p r o -t e in a n d c a r b o h y d r a t e c o n t e n t o fIsochrysis galbana, y = 73 . 46 - 0 - 84 3x( r = - 0 - 5 4 8 , d e gr ee s o f f re e d o m = 1 2,p < 0 .0 5 ).

    h y d r a t e a n d l ip id w i t h e i t h e r s p e c ie s o r b e t w e e n p r o t e i n a n d l ip id inT e t r a s e l m i s .

    T h e o n l y d a t a f o r C h a e t o c e r o s w e r e f r o m t h e n i t r o g e n s t u d y ( T a b l e2 ) . I n n o r m a l m e d i u m p r o t e i n w a s 5 8 % a n d c a r b o h y d r a t e 2 5 % o f t h eo r g a n i c c o n t e n t o f ce l l s b u t w h e n n i t r o g e n w a s l im i t in g t h e r e s p e c t iv ev a l u e s w e r e 3 2 % a n d 5 0 % . T h e s e d a t a w e r e s im i l a r t o re s u l t s fo rT e t r a s e l m i s ( F i g . 3 ) .

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    12/16

    186 S. D. UttingE n e r gy c o n t e n tT h e e n e r g y c o n t e n t , a s j o u l e s t h e o r e t i c a l ly a v a il ab l e i f p r o t e i n , c a r b o -h y d r a t e a n d l ip id w e r e c o n v e r t e d i n t o e n e r g y w i t h 1 0 0% e f fi c ie n c y , w a sc a l c u l a t e d f o r C h a e t o c e r o s , T e t r a s e l m i s a n d l s o c h r y s i s g r o w n i n n o r m a la n d n i t r o g e n - d e f ic i e n t m e d i a w h e r e t h e m o s t s ig n i fi c an t d i f f e r e n c e s inb i o c h e m i c a l c o n t e n t w e r e fo u n d ( T a b le 5 ).

    P r o t e i n c o n t a i n e d 4 7 - 7 4 % o f th e e n e r g y i n c e ll s g r o w n i n n o r m a lm e d i u m w i t h l ip id a c ti n g a s t h e s e c o n d m o s t i m p o r t a n t s o u r c e o fe n e rg y . In c e lls f r o m n i t r o g e n - d e f i c ie n t c u l t u r e s t h e a m o u n t o f e n e r g ya v a il ab l e i n p r o t e i n w a s v e r y si m il a r b e t w e e n s p e c ie s (2 8 - 3 3 % ) .C h a e t o c e r o s a n d T e t r a s e l m i s h a d m o r e e n e r g y b o u n d u p i n t h e c a r b o -h y d r a t e f r a c t i o n w h i l e l s o c h r y s i s h a d t h e m a j o r q u a n t i t y o f t h e e n e rg yin l i p id .

    E x p r e s s e d o n a p e r u n i t v o l u m e ba s is C h a e t o c e r o s a n d I s o c h r y s i sg r o w n in t h e n i tr o g e n - d e f i c i e n t m e d i u m c o n t a i n e d r e s p e c t iv e l y 8 a n d6 % m o r e e n e r g y t h a n w h e n g r o w n in n o r m a l m e d i u m . H o w e v e r , T e t r a -s e l m i s c o n t a i n e d 3 4 % m o r e e n e r g y i f c u l t u r e d a t th e n o r m a l r a t h e r t h a nt h e r e d u c e d c o n c e n t r a t io n o f n i tr o g en .

    TABLE 5Energy Content (J x 10 9 cell -1) o f Chaetoceros calcitrans, Tetraselmis suecica andIsochrysis galbana Gro wn in Normal Medium and N itrogen-deficient Medium.Species Nitrogen co nte nt

    o f m e d iu m( m g a t o m slitre -1}

    Potential energy (J 10 9 cell -1)Protein Carbohydrate Lip id Total

    Chaetoceros 9.8 169.4 (56) a 52.5 (17) 81.6 (27) 303.5calcitrans 0.613 114-7 (33) 130.7 (38) 10 2 -8 30) 348.2Tetraselmis 9-8 4220.2 (74) 374.2 (6) 1146.0 (20) 5814.2suecica 0 .613 1268 .4 (28) 2539 .7 (56) 704 .9 (16) 4513 .0Isochrysis 9.8 290-1 (47) 96.3 (16) 231.9 (38) 618-3galbana 0.613 203.5 (32) 143.2 (22) 294.7 (47) 640-9a Figures in parentheses give the percentage of tha t fract ion to the total energyavailable.

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    13/16

    Influence o f nitrogen availability on biochemistry o f marine algae 187DISCUSSION

    The most successful method of decreasing the protein content of expo-nentially-growing algae was by reducing the initial concentration ofnitrogen in the culture medium from 9.8 to 0-613 mg at om sl it re -1(Table 2). A similar effect was obtained by harvesting cultures in thepost-exponential phase when nitrogen would be expected to be limitinggrowth (Table 3). In both cases the change in organic composition ofall species under nitrogen-deficiency may have been caused by a reduc-tion in the rate of protein synthesis with the result that non-nitrogenousproducts, such as carbohydrate and lipid, accumulated.

    Salinities of 10-35%o and temperatures in the range 18-25C did notcause significant differences in the protein con ten t of either T e t r a s e l m i sor I s o c h r y s i s cells (Table 4). Although protein in I s o c h r y s i s was similarover the salinities tested, there was a significant decrease in cellular lipid(Fig. 1) and a corresponding increase in carbohydrate (Fig. 2) possiblyto main tain the osmotic balance in the cells. Temperatures below 18Cwere not studied because it is doubt ful if a reduction in temperaturewould increase the non-proteinaceous fraction of the cells (Steeman-Nielsen and J~rgensen, 1968: Morris, 1981). Results for I s o c h r y s i sindicated that only by growing this species at temperatures close tothe limits of tolerance could a decrease in protein be effected (Table 4).Instability in the growth of I s o c h r y s i s at temperatures above 22C, asfound here and by Ukeles (1961), would make temperature manipula-tion an unsatisfactory way of reliably producing low protein cells ofthis species.

    The response of the algae to low nitrogen stress was best observedin Te t r a s e l m i s and I s o c h r y s i s cultures grown over a period of up to13 days (Table 3). In both species the amount of protein decreasedbut Te t r a s e l m i s stored primarily polysaccharides in conditions unfavour-able for cell division whereas the carbohydrate pool in 4 day oldI s o c h r y s i s was converted into lipid by day 7. Carbohydrate has beenfound to act as an intermediate reserve in some algae (Antia et a l . ,1963; Marker, 1965; Werner, 1970) because time is required afternitrogen becomes limiting for the enzymes essential for lipid synthesisto be produced (Fogg, 1956). Consequently in any conditions whereprotein decreased in I s o c h r y s i s both lipid and carbohydrate might beexpected to increase (Figs 4 and 5). In similar conditions, Te t r a s e l m i s ,a member of the Prasinophyceae which store polysaccharides and

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    14/16

    188 S. D. Uttingp r e s u m a b l y d o n o t p r o d u c e e n z y m e s t o s y n t h e s i s e l ip id , m i g h t b ee x p e c t e d t o i n c r ea s e o n l y t h e c a r b o h y d r a t e c o n t e n t ( F ig . 3 ). I n d e e d ,T e t r a s e l m i s c e ll s f r o m c u l t u r e s w h i c h h a d b e e n i n t h e s t a t i o n a r y p h a s ef o r 3 w e e k s m a i n t a i n e d a n o r g a n i c c o n t e n t o f 2 6 % p r o t e i n , 64 % c a rb o -h y d r a t e a n d 9 % l ip i d ( S. D . U t t i n g , u n p u b l i s h e d d a t a ) .

    C h a e t o c e r o s i n n i tr o g e n - d e f i c i e n t c u l tu r e s i n c r e a se d t h e c a r b o h y d r a t ec o n t e n t m o r e t h a n t h e l ip id ( T a b le 2 ) . T h e p r o t e i n / c a r b o h y d r a t e r a t ioo f 2 .3 o b s e r v e d i n n o r m a l m e d i u m c o n t r a s t e d w i t h a r a t io o f 0 .6 w h e nn i t r o g e n w a s r e d u c e d . M y k l e s t a d a n d H a u g ( 1 9 7 2 ) f o u n d a s i m i l a rd e c l in e , f r o m 2 t o 0 - 23 , in t h e p r o t e i n / c a r b o h y d r a t e r a t io o f C h a e t o c e ro sa f f i n i s w h e n n i t r o g e n w a s l i m i ti n g a n d g lu c a n , a c o m p l e x p o l y s a c c h a r i d e ,w a s s y n t h e s i s e d .

    M a n i p u l a t io n o f t h e n i tr o g e n c o n c e n t r a t i o n o f t h e c u l tu r e m e d i u mw a s f o u n d t o b e a s i m p le t e c h n i q u e t o e f f e c t si g n if ic a n t d i f f e r e n c e s int h e p r o t e i n , c a r b o h y d r a t e a n d l ip id c o n t e n t o f th r e e s p e c ie s o f m a r i n ep h y t o p l a n k t o n . I n tw o o f t h e s pe c ie s , C h a e t o c e r o s a n d I s o c h r y s i s , t h ec h a n g e i n b i o c h e m i c a l c o n t e n t a l t e re d t h e e n e r g y p o t e n t i a l l y a va il ab lef r o m a u n i t v o l u m e o f c e l ls b y l es s t h a n 1 0% (T a b l e 5 ). T e t r a s e l r n i s ,h o w e v e r , c o n t a i n e d 3 4 % m o r e e n e r g y , e x p r e s s e d o n t h e s am e ba sis ,w h e n g r o w n in n o r m a l m e d i u m p r i m a r i l y d u e t o h ig h e r l ip id le ve ls( T a b l e 2 ) .

    T h e t e c h n i q u e c o u l d b e o f u se i n c o m m e r c i a l h a t c h e r i e s i f f e e d i n gt ri al s p r o v e t h a t l o w p r o t e i n a lg a e s u s ta i n b e t t e r g r o w t h o f y o u n go y s t e r s t h a n h i gh p r o t e i n a lg a e. A n y m e t h o d s o f i m p r o v i n g t h e g r o w t ha n d d e v e l o p m e n t r a te s o f y o u n g o y s t e rs , th e r e b y r e d u c i n g t h e d u r a t i o no f d e p e n d e n c e o n c u l t u r e d a lg a e, m u s t b e o f fi n a n ci a l b e n e f i t .

    R E F E R E N C E SAntia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H.(1963). Furth er me asurem ents of primary pro duct ion using a large-volume

    plastic sph ere, Limnol. Oceanogr. , 8, 166-83.Barnes, H. & Blackstock, J. (197 3). Estimation o f lipid in marine animals andtissues: detailed investigation of the sulphophosphovanillin m eth od for ' tot al 'lipids, J. exp. mar. Biol . Ecol. , 12, 103-18.Flaak, A. R . & Epifanio, C. E. (1978). D ietary protein levels and grow th of theoys te r Crassostrea virginica, Mar. B iol ., 45, 157-63.

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    15/16

    In f luence o f n i t rogen avai labi l i t y on b iochemis t ry o f mar ine a lgae 189F o g g , G . E . ( 1 9 5 6 ) . P h o t o s y n t h e s i s an d f o r m a t i o n o f f a ts in a d i a to m . A n n . B o t .

    ( N . S . ) , 2 0 , 2 6 5 - 8 5 .F~ yn , B . ( 1934 ) . Lebe nszyk l us , Cy t o l og i e und Sexual it~ 't de r Ch l o r op hyc ee

    Cladophora suhriana Kfi tz ing , Arch . Pro t i s t enk . , 8 3 , 1 - 5 6 .He lm, M. M. & Laing , I . (1981 ) . C os t -e f fec t ive cul ture of m ar ine unice l lu la r a lgae.

    In : Energy Conserva ti on an d U se o f Ren ewa b l e Energi e s i n t he B i o - indus t r ie s ,ed . F . V og t , Pe r gam on Pr e s s , O xf o r d and N ew Y or k , pp . 247 - 59 .

    He lm, M . M. , La ing , I . & Jo nes , E. (1979 ) . C ul ture o f a lgae for l arval f i sh and shel l-f i sh rear ing , P ar t 1 , Th e de ve lo pm ent o f a 20 0 l i t re a lga l cu l ture vesse l a t Co nwy ,Fish. Res . Tech . Rep . , M A F F D i rect. F ish. Res . Lo w es t o f t , 53 , 1 - 7 .

    H o l l and , D . L . & H ann an t , P . J . ( 1973) . A dden dum t o a m i c r oan a l y t i c a l s chem e f o rthe b iochemica l ana lys i s of mar ine inver tebra te l a rvae , J . M ar. Bio l . Assoc . UK ,5 3 , 8 3 3 - 8 .

    Laing , I . (197 9) . Cu l ture o f a lgae for l arval f i sh and she l l fi sh rear ing , Par t 2 , Rec om -m e n d e d p r o c e d u r e s f o r t h e c u l t u r e o f Chaetoceros calcitrans, Fish. Res. Tech.Rep . , M A F F D i rect. F ish. Res . Lo w es t o f t , 5 3 , 8 - 1 2 .

    Lew i n , R . A . ( 1962) . P h y s i o lo g y a n d B i o c h e m i s tr y o f t h e A l g a e , Academic Press ,N ew Y or k .

    Mar ke r , A . F . H . ( 1965 ) . Ex t r ace l l u l a r c a r boh ydr a t e l i be r a t ion in t he fl agel la t el sochrysis galbana an d Prym nes i um parvum , J. M ar . B i o l. As soc . U K, 4 5 , 7 5 5 - 7 2 .

    Marsh, J . B . & Wei ns te i n , D . B . ( 1966 ) . 'N o t e s on m e t ho do l o gy ' . S im p l e cha r ri ngm e t ho d f o r de t e r m i na t i on o f li p id s , J . L i p i d R e s . , 7 , 5 7 4 - 6 .Mor r i s , I . ( 1981) . Pho t osyn t he t i c p r oduc t s , phys i o l og i ca l s t a t e and phy t op l ank t ongr ow t h . I n : 'Phys i o l og i ca l ba ses o f ph y t o p l an k t o n ec o l ogy ' ( ed . T r ev or P l a t O ,Can. Bul l . Fi sh . Aq ua t . Sc i . , 2 1 0 , 8 3 - 1 0 2 .

    M or t , C . L . de ( 1970) . The cu l t u r e and b i ochem i ca l ana lys is o f som e e s t ua r i nephytoplankton spec ies , PhD thes i s , Oregon Sta te Univers i ty , Corva l l i s .

    M y k l e s ta d , S . & H a u g , A . ( 1 9 7 2 ) . P r o d u c t i o n o f c a r b o h y d r a t e s b y t h e m a r in ed i a t om Chaetoceros a f f in i s vat . wi l le i ( G r an ) H us t ed t . I . E f f ec t o f t he concen -t r a t i on o f nu t r i en t s i n t he cu l t u r e m ed i um , J . exp. ma r . Biol . Eco l . , 9 , 1 2 5 - 3 6 .

    Shi f r in , N . S . & Chisholm, S . W. (19 81) . P hy top lan kto n l ip ids : in te rspec i f i c d i f fe r -ences and e f fec t s of n i t ra te , s i l i ca te and l ight -dark cyc les , , / . P h y c o l . , 1 7 , 3 7 4 - 8 4 .

    Steem an-N ie l sen , N . & J~brgensen , E. G . (196 8) . Th e ad apta t ion of p lankto n a lgae.1 . Ge nera l par t , Phys i o l . P l an t . , 2 1 , 4 0 1 - 1 3 .

    S t ew ar t , W. D . P . ( 1974) . Alg al Physiology . a nd Bioc hem is t ry , Blackwel l Sc ient i f i cPub l i ca t i ons , O xf o r d .

    S t r i ck l and , J . D . H . & Pa r sons , T . R . ( 19 68) . A p r ac t ic a l han dbo ok o f s ea w a t e ranalysis , Bull . Fish. Res. Bd. Can. , 1 6 7 , 2 2 7 - 3 0 .

    U ke l e s , R . ( 196 1) . Th e e f f ec t o f t e m p e r a t u r e on t he g r ow t h and sur viva l o f seve ra lmarine algal species , Biol . bull . mar. biol . Lab. , W ood s H ole , 1 2 0 , 2 5 5 - 6 4 .

    Walne , P . R. (1974) . Cul t ure o f B i va lve M oll uscs . 50 Year s ' Exper i ence a t Co nw y ,Fi sh ing N ew s ( Boo ks ) L t d , Whi t e f ri a rs P re ss L t d , L ond on .

  • 7/28/2019 Utting 1985 Aquacultural-Engineering

    16/16

    190 S. D. UttingW er ne r, D . ( 1970 ) . P r odu c t i v i t y s t ud ie s on d i a t om cu l t u r e s, Helgolfinder wiss.

    Meeresunters., 2 0 , 9 7 - 1 0 3 .Wi lson , J . H . ( 1 979 ) . O bse r va t i ons on t he g r az i ng r a t es and g r ow t h o f Ostrea edulis

    L. l a rvae when fed a lga l cu l tures of d i f fe rent ages . J . exp. mar. Biol. Ecol., 3 8 ,1 8 7 - 9 9 .