uticaj klimatske krive na radni reŽim turbine u tec...

9
UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM TURBINE U TURBINE U TEC "BITOLA“ TEC "BITOLA“ INFLUENCE OF CLIMATIC CURVE VALUES ON INFLUENCE OF CLIMATIC CURVE VALUES ON THE OPERATING REGIME OF THE TURBINE THE OPERATING REGIME OF THE TURBINE A T TPP "BITOLA" A T TPP "BITOLA" V. Mijakovski* , V. Mijakovski* , K. Popovski Popovski* V. Mijakovski , V. Mijakovski , K. Popovski Popovski *Faculty of Technical Sciences, *Faculty of Technical Sciences, University University Sv Sv . Kliment Kliment Ohridski Ohridski, , Ivo Lola Ivo Lola Ribar Ribar bb, 7000 Bitola, Macedonia bb, 7000 Bitola, Macedonia

Upload: others

Post on 09-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM TURBINE U TURBINE U TEC "BITOLA“TEC "BITOLA“

    INFLUENCE OF CLIMATIC CURVE VALUES ON INFLUENCE OF CLIMATIC CURVE VALUES ON THE OPERATING REGIME OF THE TURBINE THE OPERATING REGIME OF THE TURBINE 

    AT TPP "BITOLA"AT TPP "BITOLA"

    V. Mijakovski* , V. Mijakovski* , KK. . PopovskiPopovski**V. Mijakovski  , V. Mijakovski  , KK. . PopovskiPopovski

    *Faculty of Technical Sciences, *Faculty of Technical Sciences, University “University “SvSv. . KlimentKliment OhridskiOhridski”,”,U ve s tyU ve s ty SvSv e te t O dsO ds ,,

    Ivo Lola Ivo Lola RibarRibar bb, 7000 Bitola, Macedoniabb, 7000 Bitola, Macedonia

  • ThermalThermal PowerPower PlantPlant (TPP)(TPP) BitolaBitola isis thethe largestlargest electricityelectricity producerproducer inin thethe RepublicRepublicIINTRODUCTIONNTRODUCTIONThermalThermal PowerPower PlantPlant (TPP)(TPP) –– BitolaBitola isis thethe largestlargest electricityelectricity producerproducer inin thethe RepublicRepublicofof MacedoniaMacedonia.. WithWith anan installedinstalled capacitycapacity ofof 675675 MWMW andand anan annualannual outputoutput ofof aroundaround44,,66 GWhGWh thisthis plantplant obtainsobtains aboutabout 7755%% ofof Macedonia’sMacedonia’s electricityelectricity productionproduction.. TheThe plantplantconsistsconsists ofof threethree blocksblocks TheThe layoutlayout ofof objectsobjects inin ThermalThermal PowerPower PlantPlant “Bitola”“Bitola” isis shownshownconsistsconsists ofof threethree blocksblocks.. TheThe layoutlayout ofof objectsobjects inin ThermalThermal PowerPower PlantPlant BitolaBitola isis shownshownonon FigureFigure 11..

    Figure 1. Layout of objects in Thermal Power Plant “Bitola”Figure 1. Layout of objects in Thermal Power Plant “Bitola”

  • ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE O A G  A A S O    CO  O A G  A A S O    CO  OPERATING PARAMETERS OF THE COLD ENDOPERATING PARAMETERS OF THE COLD END

    Design parameters of the turbine:Design parameters of the turbine:Design parameters of the turbine:Design parameters of the turbine:

    Electric powerN , MW

    Mass flow of flash steam msp , kg/s

    Mass flow of steam through condensermk , kg/s

    Parameters of steam in condenser

    pk, kPa tk , °C225 190 362 129 300 6 600 37 933225 190,362 129,300 6,600 37,933222 187,252 127,576 6,500 37,651220 169,260 126,429 6,469 37,563218 183,157 125,285 6,475 37,580215 180 123 123 574 6 380 37 308215 180,123 123,574 6,380 37,308210 174,440 120,640 6,294 37,057205 170,231 117,905 6,194 36,765200 165,270 116,190 6,102 36,500195 160,650 112,295 5,986 36,140195 160,650 112,295 5,986 36,140175 141,940 101,000 5,602 34,900150 120,550 87,830 5,179 33,500100 81,110 61,530 4,145 30,700

    Volume flow of cooling water required through Volume flow of cooling water required through the condenser for part of the designed operating the condenser for part of the designed operating regimes of the turbine (Table 1) is determined with the following equation:regimes of the turbine (Table 1) is determined with the following equation:

    ( )( ) 6,321,

    '

    , ⋅−⋅−⋅

    =wwwp

    kkkwm ttc

    iimq

  • ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE O A G  A A S O    CO  O A G  A A S O    CO  OPERATING PARAMETERS OF THE COLD ENDOPERATING PARAMETERS OF THE COLD ENDResultsResults ofof coolingcooling waterwater flowflow calculationcalculation forfor differentdifferent valuesvalues ofof electricelectric powerpower outputoutput ‐‐ NN andanddifferentdifferent valuesvalues ofof coolingcooling rangerange ‐‐ ,, ofof thethe coolingcooling towertower (designed(designed coolingcooling rangerange –– 99,,22 K)K)..differentdifferent valuesvalues ofof coolingcooling rangerange ,, ofof thethe coolingcooling towertower (designed(designed coolingcooling rangerange 99,,22 K)K)..

    N mk pk tk qv,w, m3/h for Δtw, KMW kg/s kPa ºC 7 K 8 K 9,2 K 11 K225 129 300 6 600 37 933 36439 31880 28342 25507225 129,300 6,600 37,933 36439 31880 28342 25507220 126,429 6,469 37,563 35644 31188 27120 24950215 123,574 6,380 37,308 34847 30492 26514 24393210 120,640 6,294 37,057 34017 29765 25883 23812200 116,190 6,102 36,500 32710 28620 24887 22892

    AnAn excerptexcerpt ofof microclimatemicroclimate conditionsconditions ofof Bitola,Bitola, inin aa formform ofof climateclimate curve,curve, isis usedused inin orderorder totopresentpresent thethe conditioncondition ofof airair enteringentering naturalnatural draughtdraught coolingcooling towertower duringduring itsits operationoperation inin “hard“hard

    200 116,190 6,102 36,500 32710 28620 24887 22892

    conditions”conditions” forfor thethe monthsmonths april,april, may,may, june,june, july,july, augustaugust andand september,september, forfor thethe yearsyears 19921992 toto20032003..

    t 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38tv 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

    ϕ 54 51 49 47 44 41 39 38 36 34 32 31 28 26 24 30 22 20 14

    tvt 14 15 15 15 16 16 17 17 17 18 18 19 18 19 18 21 20 20 18

  • ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE O A G  A A S O    CO  O A G  A A S O    CO  OPERATING PARAMETERS OF THE COLD ENDOPERATING PARAMETERS OF THE COLD END

    “Summer” climate curve for Bitola, period 1992“Summer” climate curve for Bitola, period 199220032003

  • ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE O A G  A A S O    CO  O A G  A A S O    CO  OPERATING PARAMETERS OF THE COLD ENDOPERATING PARAMETERS OF THE COLD END

    tv ϕv tvtΔtw = 7 K Δtw = 8 K Δtw = 9,2 K Δtw = 11 K

    t 1 t 2 t 1 t 2 t 1 t 2 t 1 t 2No.tw1 tw2 tw1 tw2 tw1 tw2 tw1 tw2

    °C % °C °C °C °C °C °C °C °C °C1 20 54 14,1 29,8 22,8 21,6 23,6 33,6 24,4 36,5 25,52 21 51 14,5 30,0 23,0 31,8 23,8 33,8 24,6 36,7 25,73 22 49 15,0 30,3 23,3 32,0 24,0 34,1 24,9 36,9 25,94 23 47 15,5 30,6 23,6 32,4 24,4 34,5 25,2 37,2 26,25 24 44 15,8 30,8 23,8 32,5 24,5 34,5 25,2 37,4 26,46 25 41 16,1 31,0 24,0 32,7 24,7 34,7 25,5 37,5 26,57 26 39 16,5 31,2 24,2 32,9 24,9 34,9 25,7 37,7 26,78 27 38 17,0 31,6 24,6 33,3 25,3 35,2 26,0 38,0 27,09 28 36 17,4 31,8 24,8 33,5 25,5 35,4 26,2 38,4 27,4

    10 29 34 17,7 32,0 25,0 33,7 25,7 35,6 26,4 38,4 27,411 30 32 18,0 32,2 25,2 33,8 25,6 35,7 26,5 38,5 27,512 31 31 18 5 32 5 25 5 34 1 26 1 36 0 26 8 38 7 27 712 31 31 18,5 32,5 25,5 34,1 26,1 36.0 26,8 38,7 27,713 32 28 18,4 32,5 25,5 34,1 26,1 36.0 26,8 38,7 27,714 33 26 18,6 32,6 25,6 34,2 26,2 36,1 26,9 38,8 27,815 34 24 18,8 32,7 25,7 34,3 26,3 36,2 27,0 38,9 27,916 45 30 21,0 34,0 27,0 35,7 27,7 37,6 28,4 40,2 29,8, , , , , , , , ,17 36 22 19,5 33,0 26,0 34,8 26,8 36,6 27,4 39,3 28,318 37 20 19,5 33,0 26,0 34,8 26,8 36,6 27,4 39,3 28,319 38 14 18,1 32,3 25,3 33,9 25,9 35,8 26,6 38,6 27,6

    Calculated values of water entering and leaving the cooling tower for various ambient air Calculated values of water entering and leaving the cooling tower for various ambient air parameters and cooling rangesparameters and cooling ranges

  • ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE ANALYSIS OF THE CLIMATE’S INFLUENCE ON THE O A G  A A S O    CO  O A G  A A S O    CO  Thermal resistance of the water is the difference between the temperature of the Thermal resistance of the water is the difference between the temperature of the 

    d d h f “h ” li l i h dd d h f “h ” li l i h d

    OPERATING PARAMETERS OF THE COLD ENDOPERATING PARAMETERS OF THE COLD END

    condensate and the temperature of “hot” cooling water leaving the condenser:condensate and the temperature of “hot” cooling water leaving the condenser:

    1wkkond ttt −=Δ

    A h t li i th diff b t t t f t l i thA h t li i th diff b t t t f t l i thApproach to cooling range is the difference between temperature of water leaving the Approach to cooling range is the difference between temperature of water leaving the cooling tower cooling tower ‐‐ ttw2w2 and wetand wet‐‐bulb temperature of ambient air bulb temperature of ambient air ‐‐ ttvtvt::

    vtwodd ttt −=Δ 2

    Values for thermal resistance temperature Values for thermal resistance temperature ‐‐ ΔΔttkondkond and approach to the cooling range and approach to the cooling range ‐‐ Δ Δttoddodd, for electrical output of , for electrical output of NN = 225 MW and = 225 MW and NN = 200 MW and optimal operating = 200 MW and optimal operating oddodd, p, p p p gp p gparameters of the turbine are shown in corresponding Tables.parameters of the turbine are shown in corresponding Tables.

    No.Δtkond for Δtw = tw1 – tw2 , K Δtodd for Δtw = tw1 – tw2 , K

    7 K 8 K 9,2 K 11 K 7 K 8 K 9,2 K 11 K1 8 133 6 333 4 333 1 433 8 7 9 5 10 3 11 41 8,133 6,333 4,333 1,433 8,7 9,5 10,3 11,42 7,933 6,133 4,133 1,233 8,5 9,3 10,1 11,23 7,633 5,933 3,833 1,033 8,3 9,0 9,9 10,94 7,333 5,533 3,633 0,733 8,1 8,9 9,7 10,75 7,133 5,433 3,433 0,533 8,0 8,7 9,4 10,66 6,933 5,233 3,233 0,433 7,9 8,6 9,4 10,4, , , , , , , ,7 6,733 5,033 3,033 0,233 7,7 8,4 9,2 10,28 6,333 4,633 2,733 - 7,6 8,3 9,0 10,09 6,133 4,433 2,533 - 7,4 8,1 8,8 10,0

    10 5,933 4,233 2,333 - 7,3 8,0 8,7 9,7

  • CONCLUSIONCONCLUSIONFrom the calculations for parameters of power plant’s cold end (condenserFrom the calculations for parameters of power plant’s cold end (condenser coolingcoolingFrom the calculations for parameters of power plant s cold end (condenser From the calculations for parameters of power plant s cold end (condenser –– cooling cooling tower) and values of climate curve in a period of “hard” operating conditions for tower) and values of climate curve in a period of “hard” operating conditions for summer months, years 1992 to 2003, the following can be concluded:summer months, years 1992 to 2003, the following can be concluded:

    ‐‐ForFor allall valuesvalues ofof wetwet‐‐bulbbulb temperaturetemperature ttvtvt,, thethe coolingcooling towertower coolscools thethe waterwater withwithapproachapproach rangingranging fromfrom 66 toto 1111,,44 KK.. TemperatureTemperature ofof steamsteam condensationcondensation inin thethecondensercondenser inin justjust aa fewfew casescases providesprovides realreal temperaturetemperature ofof thermalthermal resistanceresistance ΔΔttk dk dcondenser,condenser, inin justjust aa fewfew casescases providesprovides realreal temperaturetemperature ofof thermalthermal resistanceresistance ΔΔttkondkond,,andand inin somesome casescases hashas negativenegative valuevalue whichwhich isis impossibleimpossible.. ThisThis meansmeans thatthattemperaturestemperatures ofof steamsteam condensationcondensation inin thethe condensercondenser mustmust bebe higherhigher thanthan thethedesigneddesigned onesones.. TemperaturesTemperatures ofof “hot”“hot” waterwater leavingleaving thethe condensercondenser wouldwould bebe higherhigherdesigneddesigned onesones.. TemperaturesTemperatures ofof hothot waterwater leavingleaving thethe condensercondenser wouldwould bebe higherhigherthanthan waterwater temperaturestemperatures enteringentering andand leavingleaving thethe coolingcooling towertower.. HigherHigher waterwatertemperaturestemperatures atat coolingcooling towertower entranceentrance causecause increasedincreased heatheat seizureseizure fromfrom thethe waterwaterandand itsits transfertransfer toto thethe air,air, andand thusthus raiseraise inin enthalpyenthalpy isis proportionalproportional toto thethe increaseincrease ofofpypy p pp p“hot”“hot” waterwater temperaturetemperature enteringentering thethe coolingcooling towertower.. ByBy increasingincreasing thethe ‘driving‘driving force’force’(difference(difference betweenbetween enthalpiesenthalpies ofof waterwater andand air),air), heatheat transfertransfer betweenbetween waterwater andand airairisis facilitatedfacilitated..

    ‐‐WithWith higherhigher waterwater temperaturestemperatures leavingleaving thethe condenser,condenser, coolingcooling towertower isis ableable toto coolcoolbiggerbigger volumevolume flowflow ofof waterwater comparedcompared toto designeddesigned valuesvalues;;

    ‐‐IncreaseIncrease ofof condensationcondensation temperaturetemperature aboveabove thethe designeddesigned operatingoperating regimeregime ofof thetheturbineturbine causescauses increasedincreased specificspecific fuelfuel consumptionconsumption inin g/kWhg/kWh..

  • THANK YOU FOR YOUR ATTENTION !!!THANK YOU FOR YOUR ATTENTION !!!