using biomarkers to characterize - epa's web archive · 2015. 9. 18. · using biomarkers to...

24

Upload: others

Post on 22-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University
Page 2: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

Using Biomarkers to Characterize Human Benzene Metabolism

S. M. Rappaport

Schools of Public HealthUniversity of North Carolina, Chapel Hill

University of California, Berkeley

Supported by grant P42ES10126 from the National Institute for Environmental Health Sciences and a contract

from the Health Effects Institute

Page 3: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

2

Benzene•

Human carcinogen–

First linked with bone marrow toxicity in 1896 (Santesson, C. Arch Hyg Berl 31: 337) and with leukemia in 1928 Delore, P. and Borgomano, C. J Med Lyon 9: 227)

Dose-response poorly defined –

Uncertain risks, particularly at low exposures•

Mechanism not completely understood –

Linked to metabolism•

Metabolism is complex –

Qualitatively similar in all mammals –

Important quantitative differences among species–

Can be affected by genetics (SNPs)•

Dose-related metabolism poorly characterized in humans

Page 4: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

3

benzene

O

N

S

CH3

C CH

CH2

COOHOxepin

Oconjugate

via GST

S-phenylmercapturic acid

COOH

HOOC

CHO

OCH

E,E-Muconic Acid

OH

Phenol

OH

Hydroquinone

O

O

1,4-Benzoquinone

OH

OHHO

OH

OH

Catechol

OOH

OH

Benzene Diol Expoxide

O

O

Benzene dihydrodiol

OH

1,2-Benzoquinone

CYP

CYP2E1

Nonezymatic Rearrangement Epoxide Hydrolase

CYP

dihyrodiol dehydrogenase

CYP2E1

HO

OH

E,E-Muconaldehyde

1,2,4-trihydroxybenzene

O

Benzene Oxide

CYP2E1

Benzene Metabolism

Page 5: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

4

Benzene Biomarkers Among Chinese Workers

Rothman et al., PNAS, 1995Rothman et al., AJIM, 1996Rothman et al., EHP 1996Rothman et al., Cancer Res, 1997Rothman et al., OEM, 1998Smith et al., Cancer Res, 1998Smith et al., PNAS, 2000Yeowell-O’Connell et al., Carcinogenesis, 1998Yeowell-O’Connell et al., CEBP, 2001Waidyanatha et al., Carcinogenesis, 2001Waidyanatha et al., Analyt Biochem, 2004Rappaport et al., J Chromatog B, 2002

STUDY #1 (NCI, UC-Berkeley, UNC)

44 Exposed subjects and 44 controls in Shanghai, China

• Very high exposure (med. = 31 ppm)

• Focus on hematology and cytogenetics

• Developed and validated biomarkers of exposure (protein adducts, urinary benzene, and urinary metabolites)

• Evidence of saturable metabolism

Page 6: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

5

Benzene Biomarkers Among Chinese Workers

Qu et al., AJIM, 2000Qu et al., AJIM, 2002Melikian et al., J Chromatog (B), 2002Rappaport et al., Cancer Res, 2002

STUDY #2134 Exposed subjects and

51 controls in Tianjin, China

Lower exposure (med. = 3.1 ppm)

• Focus upon hematology and biomarkers of exposure

Page 7: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

0

500

1000

1500

2000

0 10 20 30 40 50

Benzene, ppm

BO

-Alb

, pm

ol/g

6

Benzene in Air and BO-Alb

Adducts (STUDY #2)

Rappaport, et al., Cancer Res, 62: 1330-1337 (2002).

Saturation of benzene metabolism beginning at about 1 ppm (much lower than previously suggested)

Greater unit risk at low exposure levels

Motivated EPA to reduce benzene content in gasoline (2007)

CAN THIS FINDING BE VERIFIED?

10-fold reduction in slope

Page 8: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

7

Vermeulen et al., Ann Occup Hyg, 2004Lan et al., Science, 2004Lan et al., Zhang et al., Chem-Biol Interact, 2005Lan et al., Cancer Res, 2005Vermeulen et al., PNAS, 2005Chen et al., Carcinogenesis, 2006Kim et al., Carcinogenesis, 2006Kim et al., CEBP, 2006Kim et al., PGEN, in press

Benzene Biomarkers Among Chinese Workers

STUDY #3 (NCI, UC-Berkeley, UNC)

250 Exposed subjects and 140 controls in Tianjin, China

• Similar exposures (med. = 3.7 ppm)

• Focus on exposure-biomarker relationships and mechanism

Page 9: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

8

benzene

O

N

S

CH3

C CH

CH2

COOHOxepin

Oconjugate

via GST

S-phenylmercapturic acid

COOH

HOOC

CHO

OCH

E,E-Muconic Acid

OH

Phenol

OH

Hydroquinone

OH

OH

Catechol

OOH

OH

Benzene Diol ExpoxideBenzene dihydrodiol

OH

CYP

CYP2E1

Nonezymatic Rearrangement Epoxide Hydrolase

CYP

dihyrodiol dehydrogenase

HO

OH

E,E-Muconaldehyde

O

Benzene Oxide

CYP2E1

Air Samples (n=2783) and Urinary Analytes (n=620)

Air; Unmetabolized benzene in urine

Major metabolites (99% of absorbed

dose)

Minor metabolite

Page 10: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

9

Urinary Benzene vs. Exposure

0.1 1 10 100

1

10

100

1000

10000

100000

1000000

urin

ary

benz

ene,

nm

ol/l

air benzene, ppmLOD for air monitors

Urinary benzene detected in all exposed AND

control subjects –

Used to predict benzene exposures in controls

0.01 0.1 1 10 100

1

10

100

1000

10000

100000

urin

ary

benz

ene,

nm

ol/l

air benzene, ppm

B.

0.01 0.1 1 10 100

1

10

100

1000

10000

100000

urin

ary

benz

ene,

nm

ol/l

air benzene, ppm

B.

Tianjin workers

Italian workers(Ghittori et al., 1993)

Kim et al., Carcinogenesis, 27:772 (2006)

Page 11: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

10

Metabolites vs. Exposure (Groups of 30 Workers)

A. MA B. SPMA

D. CAC. PH

E. HQ

Urinary metabolites not useful for monitoring environmental exposures to benzene due to background sources (other than benzene)

Sig. increase above background levels

Kim et al., Carcinogenesis, 27:772 (2006)

Page 12: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

11

Dose-specific Metabolism

1

10

100

0.01 0.1 1 10 100

air benzene, ppm

MA/

benz

ene,

μm

ol/l

/ppm

0.01

0.1

1

0.01 0.1 1 10 100

air benzene, ppm

SPM

A/be

nzen

e, μ

mol

/l/p

pm

1

10

100

1000

0.01 0.1 1 10 100

air benzene, ppm

PH/b

enze

ne, μ

mol

/l/p

pm

1

10

100

1000

0.01 0.1 1 10 100

air benzene, ppm

CA/

benz

ene,

μm

ol/l

/ppm

1

10

100

0.01 0.1 1 10 100

air benzene, ppm

HQ

/ben

zene

, μm

ol/l

/ppm

1

10

100

1000

10000

0.01 0.1 1 10 100

air benzene, ppm

Tota

l/be

nzen

e, μ

mol

/l/p

pm

A. MA B. SPMA

D. CAC. PH

E. HQ F. Total

Groups (n = 30) after adjustment for background levels

Reduced production of major & total metabolites at low exposures (0.01 –

1 ppm, never reported previously)

Kim et al., Carcinogenesis, 27:772 (2006)

Page 13: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

12

Modeling Metabolite Levels (Natural Splines)

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

MA,

μM

0.01

0.1

1

10

100

1000

10000

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

SPM

A, μ

M

0.0001

0.001

0.01

0.1

1

10

100

1000

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

PH

, μM

1

10

100

1000

10000

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

CA,

μM

1

10

100

1000

A. MA B. SPMA

C. PH D. CA

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

MA,

μM

0.01

0.1

1

10

100

1000

10000

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

SPM

A, μ

M

0.0001

0.001

0.01

0.1

1

10

100

1000

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

PH

, μM

1

10

100

1000

10000

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

CA,

μM

1

10

100

1000

A. MA B. SPMA

C. PH D. CA

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

HQ

, μM

1

10

100

1000E. HQ

Air benzene, ppm

0.001 0.01 0.1 1 10 100

Con

cent

ratio

n of

HQ

, μM

1

10

100

1000E. HQ

Background levels

Kim et al., CEBP, 2006

Page 14: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

13

Effects of Covariates [GLM+NS]

No effect of:• Alcohol

•Toluene co-exposure

Parameter Metabolite Adj.R2 Covariate Estimate p-value

Intercept 1.15 <0.0001 Age -0.016 0.001 MA 0.812

Sex (male) -0.215 0.013

Intercept -6.04 <0.0001 Age -0.016 0.086 SPMA 0.744

Sex (male) -0.347 0.032 Intercept 4.22 <0.0001

Age -0.011 0.016 PH 0.608

Sex -0.198 0.009

Intercept 2.66 <0.0001 BMI -0.022 0.028

Sex (male) -0.243 0.007 CA 0.506

Smoking 0.323 0.001 Intercept 1.96 <0.0001

Age -0.013 0.003 Sex (male) -0.221 0.019

HQ 0.689

Smoking 0.338 0.001

Sex: females produce more metabolites than males

Age: metabolite production reduced 1-

2%/year of life

Smoking: Cigarette smoke contains HQ and CA

Kim et al., CEBP, 2006

Page 15: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

14

Dose-Related Metabolism of Benzene

0

1000

2000

3000

4000

tota

l met

abol

ites,

um

ol/l

0 10 20 30 40 50 60air benzene, ppm

Predicted levels of total metabolites (background adjusted, female subject, 29 y of age)

0

100

200

300

400

500

tota

l met

abol

ites,

um

ol/l

0 1 2 3 4 5air benzene, ppm

9-fold reduction in slope

Page 16: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

15

benzene

O

N

S

CH3

C CH

CH2

COOHOxepin

Oconjugate

via GST

S-phenylmercapturic acid

COOH

HOOC

CHO

OCH

E,E-Muconic Acid

OH

Phenol

OH

Hydroquinone

O

O

1,4-Benzoquinone

OH

OHHO

OH

OH

Catechol

OOH

OH

Benzene Diol Expoxide

O

O

Benzene dihydrodiol

OH

1,2-Benzoquinone

CYP

CYP2E1

Nonezymatic Rearrangement Epoxide Hydrolase

CYP

dihyrodiol dehydrogenase

CYP2E1

HO

OH

E,E-Muconaldehyde

1,2,4-trihydroxybenzene

O

Benzene Oxide

CYP2E1

Effects of Metabolism GenesCYPs

Page 17: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

16

benzene

O

N

S

CH3

C CH

CH2

COOHOxepin

Oconjugate

via GST

S-phenylmercapturic acid

COOH

HOOC

CHO

OCH

E,E-Muconic Acid

OH

Phenol

OH

Hydroquinone

O

O

1,4-Benzoquinone

OH

OHHO

OH

OH

Catechol

OOH

OH

Benzene Diol Expoxide

O

O

Benzene dihydrodiol

OH

1,2-Benzoquinone

CYP

CYP2E1

Nonezymatic Rearrangement Epoxide Hydrolase

CYP

dihyrodiol dehydrogenase

CYP2E1

HO

OH

E,E-Muconaldehyde

1,2,4-trihydroxybenzene

O

Benzene Oxide

CYP2E1

Effects of Metabolism Genes

EPHX

NQ01MPO

NQ01MPO

GSTs

Page 18: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

17

benzene

O

N

S

CH3

C CH

CH2

COOHOxepin

Oconjugate

via GST

S-phenylmercapturic acid

COOH

HOOC

CHO

OCH

E,E-Muconic Acid

OH

Phenol

OH

Hydroquinone

O

O

1,4-Benzoquinone

OH

OHHO

OH

OH

Catechol

OOH

OH

Benzene Diol Expoxide

O

O

Benzene dihydrodiol

OH

1,2-Benzoquinone

CYP

CYP2E1

Nonezymatic Rearrangement Epoxide Hydrolase

CYP

dihyrodiol dehydrogenase

CYP2E1

HO

OH

E,E-Muconaldehyde

1,2,4-trihydroxybenzene

O

Benzene Oxide

CYP2E1

Effects of Metabolism Genes

NQ01 & MPO

NQ01MPO

NQ01MPO

Page 19: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

18

Magnitudes of Genetic Effects and Gene- Environment Interactions

Kim et al., PGEN, in press

Several significant effects, most in expected directions

Most effects are small (< 3-fold)

SNP EFFECTS ON BENZENE METABOLITES Ratio of (Var:Var)/(Wild:Wild)

Air concentration (ppm) Metabolite SNP 0.1 1 10 100

CYP2E1 0.941 0.666 0.472 0.333 MA NQO1*2 0.976 0.832 0.708 0.603 CYP2E1 0.675 0.619 0.567 0.519 EPHX1 1.00 1.26 1.59 2.01 GSTT1 0.328 0.236 0.17 0.122 GSTM1 0.554 0.554 0.554 0.554 NQO1*2 (Nonsmokers) 0.614 0.524 0.448 0.382

SPMA

NQO1*2 (Smokers) 1.74 1.48 1.27 1.08 CYP2E1 0.75 0.542 0.392 0.283 NQO1*2 (Nonsmokers) 0.714 0.714 0.714 0.714 PH NQO1*2 (Smokers) 1.22 1.22 1.22 1.22 EPHX1 1.15 1.15 1.15 1.15 NQO1*2 0.902 0.789 0.69 0.603 EPHX1 (Nonsmokers) 1.29 1.10 0.938 0.8

CA

EPHX1 (Smokers) 0.685 0.584 0.498 0.425 CYP2E1 0.692 0.518 0.389 0.291 HQ NQO1*2 0.849 0.849 0.849 0.849

Page 20: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

19

Magnitudes of Genetic Effects and Gene- Environment Interactions

Kim et al., PGEN, in press

Most effects vary with conc. due to saturable metabolism and gene-

environment interactions

SNP EFFECTS ON BENZENE METABOLITES Ratio of (Var:Var)/(Wild:Wild)

Air concentration (ppm) Metabolite SNP 0.1 1 10 100

CYP2E1 0.941 0.666 0.472 0.333 MA NQO1*2 0.976 0.832 0.708 0.603 CYP2E1 0.675 0.619 0.567 0.519 EPHX1 1.00 1.26 1.59 2.01 GSTT1 0.328 0.236 0.17 0.122 GSTM1 0.554 0.554 0.554 0.554 NQO1*2 (Nonsmokers) 0.614 0.524 0.448 0.382

SPMA

NQO1*2 (Smokers) 1.74 1.48 1.27 1.08 CYP2E1 0.75 0.542 0.392 0.283 NQO1*2 (Nonsmokers) 0.714 0.714 0.714 0.714 PH NQO1*2 (Smokers) 1.22 1.22 1.22 1.22 EPHX1 1.15 1.15 1.15 1.15 NQO1*2 0.902 0.789 0.69 0.603 EPHX1 (Nonsmokers) 1.29 1.10 0.938 0.8

CA

EPHX1 (Smokers) 0.685 0.584 0.498 0.425 CYP2E1 0.692 0.518 0.389 0.291 HQ NQO1*2 0.849 0.849 0.849 0.849

Page 21: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

20

Magnitudes of Genetic Effects and Gene- Environment Interactions

Kim et al., PGEN, in press

Evidence of gene-smoking interactions

SNP EFFECTS ON BENZENE METABOLITES Ratio of (Var:Var)/(Wild:Wild)

Air concentration (ppm) Metabolite SNP 0.1 1 10 100

CYP2E1 0.941 0.666 0.472 0.333 MA NQO1*2 0.976 0.832 0.708 0.603 CYP2E1 0.675 0.619 0.567 0.519 EPHX1 1.00 1.26 1.59 2.01 GSTT1 0.328 0.236 0.17 0.122 GSTM1 0.554 0.554 0.554 0.554 NQO1*2 (Nonsmokers) 0.614 0.524 0.448 0.382

SPMA

NQO1*2 (Smokers) 1.74 1.48 1.27 1.08 CYP2E1 0.75 0.542 0.392 0.283 NQO1*2 (Nonsmokers) 0.714 0.714 0.714 0.714 PH NQO1*2 (Smokers) 1.22 1.22 1.22 1.22 EPHX1 1.15 1.15 1.15 1.15 NQO1*2 0.902 0.789 0.69 0.603 EPHX1 (Nonsmokers) 1.29 1.10 0.938 0.8

CA

EPHX1 (Smokers) 0.685 0.584 0.498 0.425 CYP2E1 0.692 0.518 0.389 0.291 HQ NQO1*2 0.849 0.849 0.849 0.849

Page 22: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

21

ConclusionsBenzene is metabolized more efficiently at air

concentrations below 1 ppm

(about 9-fold for total metabolites)

Observed in two independent Chinese studies using two different biomarkers of exposure (protein adducts and urinary metabolites)

Risk assessments based upon linear models may underestimate risks at low exposure levels

Metabolism varies with age and differs between males and females

Metabolizing genes and gene-environment interactions have detectable but small effects on metabolite production

Page 23: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

S. M. Rappaport

22

ConclusionsBiomarkers can be used in observational studies to

elucidate effects of metabolism and other phenomena of interest

IF exposures are carefully measured in the same subjects

Page 24: Using Biomarkers to Characterize - EPA's Web Archive · 2015. 9. 18. · Using Biomarkers to Characterize Human Benzene Metabolism S. M. Rappaport Schools of Public Health. University

With Thanks To:S.M. Rappaport

23

UNC–

Sungkyoon

Kim–

Suramya

Waidyanatha

Karen Yeowell-

O’Connell

Brent Johnson•

NCI–

Nat Rothman –

Roel

Vermeulen–

Qing Lan–

Stephen Chanock•

NYU–

Qinshan

Qu–

Roy Shore–

Beverley Cohen

UC-Berkeley–

Martyn

Smith–

Luoping

Zhang•

IOM (Beijing)–

Guilan

Li–

Songnian

Yin

Work supported by NIEHS and HEI