unità5 -...

31
Accordo di Programma FIRB Unità 5 IUSS Is8tuto Universitario di Studi Superiori prof. Paolo Arcioni prof. Andrea Mazzan8 prof. Federico Montecchi prof. Francesco Svelto

Upload: others

Post on 02-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Accordo  di  Programma  FIRB  

Unità  5  IUSS  -­‐    Is8tuto  Universitario  di  Studi  Superiori  

 prof.  Paolo  Arcioni    prof.  Andrea  Mazzan8    prof.  Federico  Montecchi    prof.  Francesco  Svelto  

Page 2: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Accordo  di  Programma  FIRB  

•     Altro  personale:    doDorandi:        Marco  Sosio    (21°  ciclo)                    Federico  Vecchi  (23°  ciclo)    giovani  ricercatori:                  Mohammed  Vahidfar  (PhD)                  Eyssa  Wissam  (PhD)                  Enrico  Monaco    (PhD  stud.t)  

Page 3: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Accordo  di  Programma  FIRB  

•       APvità:  

 Task  0.1:  “Program  Management”    

 Task  1.7:  “Enabling  Blocks  for  UWB  Applica8ons”    

 Task  1.8:  “Enabling  CMOS  Receiver  Blocks  for            Millimeter-­‐Wave  Applica8ons”    

 Task  2.1:  “Millimeter-­‐Wave  Fully  Integrated            Receiver  Front-­‐End”    

Page 4: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

CMOS Analog Processing of UWB signals for communications, automotive and imaging

Computer and peripherals data transfer 3GHz-10GHz UWB OFDM Gbit/sec connectivity

24GHz ISM and unlicensed around 60GHz

Page 5: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Automotive radars 24GHz and 77GHz

Imaging: security and medical THz gap : 30GHz – 300GHz

CMOS Analog Processing of UWB signals for communications, automotive and imaging

Page 6: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Outline •  Quadrature Demodulator and Frequency Synthesizer for 3-10 GHz WiMedia UWB (Task 1.8)

•  A 24GHz SubHarmonic Direct-Conversion Receiver (Task 1.9)

•  A Wideband 60GHz Receiver Front-End for Gbit/sec Communications (Task 1.9, Task 2.1)

•  Frequency Generation for Sub-THz Applications

Page 7: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Quadrature Demodulator and Frequency Synthesizer for 3-10 GHz

WiMedia UWB (Task 1.8)

A.Mazzanti, M.Vahid, M.sosio, F.Svelto, “A Reconfigurable Demodulator with 3GHz – 5GHz Agile Synthesizer for 9-band WiMedia UWB in 65nm CMOS” Proceedings of the IEEE International Solid State Circuit Conference (ISSCC),pp. 412-413, San Francisco, Feb. 2009.

A.Mazzanti, M.Vahid, M.sosio, F.Svelto, “A Low Phase-Noise Multi-Phase LO Generator for Wideband Demodulators Based on Reconfigurable Sub-Harmonic Mixers” IEEE Journal of Solid State Circuits, Vol. 45 no. 10, pp. 2104-2115 Oct.2010

Page 8: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Motivation

A 3-5GHz synth. driving a demodulator reconfigurable between fundamental and sub-harmonic modes for groups 1,3-4 is proposed

•  WiMedia UWB tailored to short range, high data rate, WPAN

•  Wide bandwidth makes synthesizer design challenging: -  Quadrature LC unfeasible -  Rings show poor performances -  SSB mixers suffers from spurs and power consumption

Page 9: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Reconfigurable Sub-Harmonic mixer

Sub-Harmonic mode Fundamental mode

2

Page 10: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Reconfigurable mixers for UWB

Sub-Harmonic

•  Groups 3,4 fall in frequency at roughly twice Group 1 •  Synthesizer for Group 1 demodulates also Groups 3 & 4

Synthesizer band only 1/3 the RF band

Fundamental

3

Page 11: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Demodulator architecture

  I & Q reconfigurable demodulators   Multiphase LO provided by a 4-stage locked ring oscillator   Locking signal provided by 3 multiplexed LC-PLL to meet phase noise and settling time

4

Page 12: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Experimental Results

  CMOS 65nm LP from STMicroelectronics   active area 1.5 mm2

8

Gain [dB] 10 Input Referred Noise [nV/√Hz] 2.3

IIP3 [dBm] 11 IIP2 [dBm] 40

I & Q phase error < 2° Phase Noise @ 10 MHz [dBc/Hz] -128

Integrated Phase Noise [deg] 1.7 Spurs Level [dBc] - 43

Frequency Hopping time [ns] < 6ns Power Consumption [mW] 79

Silicon Area [mm2] 3.7 (1.5 Active) Technology CMOS065 - LP

Page 13: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

A 24GHz SubHarmonic Direct-Conversion Receiver Front-End

(Task 1.9) F.Svelto, A.Mazzanti, M.Sosio, M.Repossi, “A CMOS Sub-Harmonic Architecture for Signal Down-Conversion at Ka-Band” Proceedings of the IEEE International Workshop on Radio-Frequency Integration Technology, pp. 179-182, Singapore, Dec. 2007.

A. Mazzanti, M. Sosio, M. Repossi, F. Svelto, “A 24GHz Sub-Harmonic Receiver Front-End with Integrated Multi-Phase LO Generation in 65nm CMOS” Proceedings of the IEEE International Solid State Circuit Conference (ISSCC),pp. 216-217, San Francisco, Feb. 2008.

M.Sosio, A.Mazzanti, M.Repossi, F.Svelto “A Low-Power Ka-band Direct Conversion Receiver Employing Half-Frequency Local Oscillator in 65nm CMOS”, Proceedings of the 39th European Microwave Conference ),pp. 256-259, Rome, Sept. 2009.

A. Mazzanti, E. Sacchi, P. Andreani, F. Svelto, “Analysis and Design of a Double-Quadrature CMOS VCO for Subharmonic Mixing at Ka-Band”, IEEE Transaction on Microwave Theory and Techniques, Vol. 56, no. 2, pp. 355-363, Feb. 2008.

A. Mazzanti, M. Sosio, M. Repossi, F. Svelto, “A 24 GHz Subharmonic Direct Conversion Receiver in 65 nm CMOS”, IEEE Transaction on Circuits and Systems-I, in press.

Page 14: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Sub-harmonic quadrature receiver

Synthesizer running at half frequency, thus saving power

• Quadrature down-conversion: no need for an IF stage

• No serious spurious coupling issue because LO and received signal are at different frequency

Page 15: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Multiphase local oscillator

•  4 coupled VCOs in a ring structure provide 8 differential time-shifted signals

• Mild trade-off between phase noise and phase accuracy, set by Icp/Isw

•  Icp=Isw leads to acceptable phase error with only 1dB of noise penalty

Page 16: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Comparison with Ka-band VCOs ref fo

[GHz] T.R [%]

P.N. @1MHz [dBc/Hz]

Power mW

FoM [dBc/Hz]

Notes

MWCL 06 19.9 2.7% -108 32 179 Differential

JSSC 06 24.4 6% -99.3 14.5 175.3 Differential

ISSCC 07 26 23.6% -92.6 45 164.5 Differential

JSSC 03 26.8 15.2% -84.2 129 151.6 Quadrature

RFIC 05 23.7 6.8% -94.0 22 168 Quadrature

ISSCC 05 32 6.3% -97 140 165.5 Quadrature

This work 13 26.5% -110 15 180.5 half frequency (8 phases)

Despite the requirement for 8-phases, running the VCO at half frequency gives benefits to tuning and spectral purity without power penalty

Page 17: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Experimental Results

65nm CMOS from STMicroelectronics, 2.1 mm2

Gain [dB] 31.5 Minimum NF [dB] 6.5

Input 1dB compression [dBm] -25 IIP3 [dBm] -17 IIP2 [dBm] 0

I & Q phase Error < 3° VCO Tuning Range [%] 26.5

VCO Phase Noise @ 1MHz [dBc/Hz]

-110

LO at Input [dBm] < -65 (at fo/2) < -90 (at fo)

Silicon Area [mm2] 2.1 (1.4 active) Power Consumption [mW] 40.8 (LNA+Mixers)

22.8 (VCO + Dividers)

28.8 (base-band)

Page 18: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

A Wideband 60GHz Receiver Front-End for Gbit/sec Communications

(Task 1.9, 2.1) S. Bozzola, D. Guermandi, A. Mazzanti, F. Svelto “An 11.5% frequency tuning, -184 dBc/Hz noise FOM 54 GHz VCO” Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium 2008, pp.657-660, Atlanta, June 2008.

S. Bozzola, D. Guermandi, F. Vecchi, M. Repossi, M. Pozzoni, A. Mazzanti, F. Svelto, “A Sliding IF Receiver for mm-wave WLANs in 65nm CMOS” Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) 2009, pp.669-672, San José, Sept. 2009.

F. Vecchi, S. Bozzola, M. Pozzoni, D. Guermandi, E. Temporiti, M. Repossi, U. Decanis, A. Mazzanti, F. Svelto “A Wideband mm-Wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators” Proceedings of the IEEE International Solid State Circuit Conference (ISSCC),pp. 220-221, San Francisco, Feb. 2010.

F.Vecchi, S.Bozzola, M.Pozzoni, D.Guermandi, E.Temporiti, M.Repossi, U.Decanis, A.Mazzanti, F.Svelto “A 60GHz Receiver with 13GHz Bandwidth for Gbit/s Wireless Links in 65nm CMOS” Proc. of the IEEE International Conference on Integrated Circuits Devices and Technology, pp. 228-231 Grenoble, June 2010

Page 19: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

High Rate 60 GHz Phy Proposal*

•  Large RF bandwidth (~9 GHz minimum)

•  Minimum Sensitivity: from -60 dBm (1 Gb/s) to -50 dBm (4 Gb/s)

•  Maximum Noise Figure < 10 dB

•  Large LO tuning range required

•  Very stringent phase noise at maximum data rate

* ECMA International, “High Rate 60 GHz Phy, MAC and HDMI PAL”, Standard ECMA-387, 1st Edition, Dec. 2008. [Online].

Page 20: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Phase Noise Requirements

•  Phase noise rotates signal constellation and impairs BER •  An LO phase noise < -113dBc/Hz @10MHz offset is required in the most stringent case

IEEE 802.15-06-0477-01-003c 2Gbit/sec 16-QAM

Page 21: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Sliding IF Receiver Architecture

•  First down-conversion to 1/3 of the received frequency lower tuning-range required, relatively low power •  Only one PLL needed •  Injection Locked Dividers to generate I/Q half frequency signals

Page 22: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Wide-band LNA based on coupled resonators

Cc ↑

•  gain-bandwidth trade-off in tuned inter-stage loads leads to large dissipation. •  coupled resanators are introduced to increase bandwidth and limit dissipation

Page 23: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

CMOS Passive Components for mm-wave have been studied intensively (Task 1.8)

F. Vecchi, M. Repossi, A. Mazzanti, P. Arcioni, F. Svelto “A Lumped-Element Physical Model for Symmetrical Spiral Inductors and their Mutual Cross-Talk in Silicon RF-ICs” Proceedings of the International Symposium on Microwave and Optical Technology, Rome – Italy, Dec. 2007.

F. Vecchi, M. Repossi, A. Mazzanti, P. Arcioni, F. Svelto, “A Simple and Complete Circuit Model for the Coupling Between Symmetrical Spiral Inductors in Silicon RF-ICs” Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium 2008, pp.479-482, Atlanta, June 2008.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations” IEEE Journal of Solid State Circuits, Vol. 44, No. 9, pp. 2605-2615, Sept. 2009.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni and F. Svelto, “Analysis of Loss Mechanisms in Coplanar Waveguides Integrated on Bulk CMOS Substrates” Proceedings of the 39th European Microwave Conference, pp. 189-192, Sept. 2009.

Page 24: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Shielded CPW (S-CPW) *

Best attenuation ever reported for standard scaled CMOS process

* F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, F. Svelto: “Design of Low-loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations”, IEEE Journal of Solid-State Circuits, Vol. 44, No. 9, September 2009, pp. 2605-2615.

Page 25: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Experimental Results

Gain 35.5 dB NF 5.6-6.5 dB RF Bandwidth >13 GHz Image Rejection 80 dB LO Tuning Range 12.6 % I/Q Mismatch < 3°

LO Phase Noise (from 60GHz)

-115 dBc/Hz @ 10MHz

Input 1 dB Comp. Point (Low Gain) -21 dBm

Power 75 mW

Page 26: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Summary

•  Inter-stage coupling is effective to enhance the gain-bandwidth product of gain stages in mm-Wave receivers

•  The realized solution proves a very good sensitivity over a wide band of 56GHz – 68GHz

•  A remarkable phase noise has been achieved with a VCO tuning of 12.6%

Page 27: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Frequency Generation for Sub-THz Applications

E. Monaco, M. Borgarino1 F. Svelto, A. Mazzanti“A 5.2mW Ku-Band CMOS Injection-Locked Frequency Doubler with Differential Input / Output” Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), pp. 61-64 San José, Sept. 2009.

A.Mazzanti, E. Monaco, M. Pozzoni, F. Svelto, “A 13.1% Tuning Range 115GHz Frequency Generator Based on an Injection-Locked Frequency Doubler in 65nm CMOS” ,Proceedings of the IEEE International Solid State Circuit Conference(ISSCC), pp.422-423, San Francisco, Feb. 2010.

E. Monaco, M. Pozzoni, F. Svelto, A. Mazzanti “A 6mW, 115GHz CMOS Injection-Locked Frequency Doubler with Differential Output”, Proceedings of the IEEE International Conference on Integrated Circuits and Technology , pp. 236-239 , Grenoble, June 2010.

E. Monaco, M.Pozzoni, F. Svelto, A. Mazzanti “Injection-Locked CMOS Frequency Doublers for u-Wave and mm-Wave Applications”, IEEE Journal of solid State Circuits , Vol. 45, no.8, pp. 1565-1574, Aug. 2010.

Page 28: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

VCOs at fundamental frequency State of the art 60GHz VCOs display ~10% Tuning Range Scaling to 120GHz (assuming constant Q):

60GHz 120GHz

L L/2 C C/2

Rp, gm Rp, gm

Cactive Cactive

Cv ~Cv/10 10% T.R. 2.5% T.R.

  constant Q is very optimistic

  higher current and tech. scaling give marginal benefits

Page 29: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Half frequency VCO + doubler •  Tuning range preserved •  Phase noise improvement due to higher Q of passives •  Power saving in the divider of the PLL

Frequency doubler performance is key

Page 30: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Doubler circuit topology

C-L-C and M1 form a Pierce oscillator

M2’-2’’ inject the double frequency locking current

Supply provided by a choke inductor

CCM balances the two outputs

Page 31: Unità5 - IMSims.unipv.it/FIRB2006/workshop/Unit5.pdf&Task2.1:&“Millimeter6Wave&Fully&Integrated& &&&&&Receiver&Front6End”&& CMOS Analog Processing of UWB signals for communications,

Comparison with fundamental freq. VCOs Ref. f0 [GHz] Phase Noise [dBc/

Hz @10MHz] Tuning Range

[%] Pdiss [mW]

FoMT [dB]

[3] 98.0 -102.7 2.55 7 -162.2 [3] 105.2 -97.5 0.19 7.2 -134.9 [4] 114.0 -107.6 2.10 8.4 -165.9 [5] 109.2 -105.2 2.24 9.6 -163.1 [5] 122.8 -100.2 1.30 9.6 -154.4 [5] 139.6 -93.0 0.86 9.6 -144.8

[6]* 102.2 -100.9 4.12 7.6 -164.6 This Work 115 -107 13.1 12 -179.8

* 32nm SOI-CMOS