tri m p : trapped radioactive isotopes: micro-laboratories for fundamental physics

29
TRI P : : Trapped Radioactive Isotopes: micro-laboratories TRIX: Trapped Radium Ion eXperiments Oscar Versolato

Upload: samira

Post on 21-Jan-2016

38 views

Category:

Documents


0 download

DESCRIPTION

TRIX: Trapped Radium Ion eXperiments Oscar Versolato. TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics. Outline. Where’s The Netherlands in Amsterdam? Introduction to research group TRI m P TRIX project: Trapped (single !) Radium Ion eXperiments - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

TRIP:: Trapped Radioactive Isotopes: micro-laboratories for fundamental

Physics

TRIX: Trapped Radium Ion eXperiments

Oscar Versolato

Page 2: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Outline

• Where’s The Netherlands in Amsterdam?

• Introduction to research group TRITRIPP

• TRIX project: Trapped (single !) Radium Ion eXperimentsTRIX project: Trapped (single !) Radium Ion eXperiments

• Bonus material 1: shelvingBonus material 1: shelving

• Bonus material 2: ion trappingBonus material 2: ion trapping

Page 3: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

To US

Kingdom of The NetherlandsWhere people are Dutch and from Holland

Page 4: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Er gaat niets boven Groningen

Page 5: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Groningen: a students dream come true

Page 6: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

However...

Page 7: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Accelerator Laboratory: KVIwith superconducting cyclotron AGOR

Page 8: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

TRITRIP:P:

Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Page 9: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

MotivationLow-energy tests of the Standard Model

The Standard Model (SM) of particle physics is incomplete searches for physics “beyond the SM” at two, complementary, fronts:

Collider expt’s at high energy: direct observation of new particles

Indirect searches at lower energies, but with high precision

High-energy physics Atomic physics (theory and experiment) < 1%

CERN

Large Hadron Collider

KVI

TRIP

Page 10: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

TRITRIPP

TRITRIPPAtomicPhysics

NuclearPhysics

ParticlePhysics

Theory

Precision ExperimentsPrecision ExperimentsSearch for Physics beyondSearch for Physics beyond

Standard ModelStandard Model

Core Program

T-violation P-violationT-violation P-violation

External Users- lifetimes, CKM- branching ratios- 12C → 3a- 8B → 2a- …

Lorentz-violation

- Ion/Atom Collisions- Zernike LEIF- ALCaTRAZ- Instrument Developments- …

App lications

TRIP:: Trapped Radioactive Isotopes: micro-laboratories for fundamental

Physics

Page 11: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

In-House Core ProgramIn-House Core Program

T – violation: T – violation: • -decays-decays

• 21Na• ‘a’ & ‘D’ coefficients• lifetime, branching ratio

• Future Possibilities• 39Ca , 19Ne

• EDMsEDMs• Ba/Ra – atom

• trapping• polarization

• deuterondeuteron

P – violation:P – violation:• Single IonSingle Ion

• sinsin22 ϴϴWW

• clockclock

Lorentz - violation:Lorentz - violation: • Weak InteractionsWeak Interactions

2121Na in trapNa in trap

-80 -60 -40 -20 0 200

50

100

150

X 100

Detuning of 1 [MHz]C

ount

rate

[10

6/s

]

Ba MOTBa MOT

Page 12: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

E2E2 E3E3

TI

NaINaI

NaINaI

MOTNaINaI

NaINaI

IFPE1E1

Target

SHT2

FFP

Stepdegrader neutralizer

MCPNaINaI

NaINaI

TRITRIPP Separator Separator

Page 13: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Fundamental Interactions group

Technical {2 + pool}

Undergrad.

Foreign stud.

Theory group

Atomic Physics group

Faculty

PhD student

Scientific Personnel 2007-2008

Postdoc

AGOR group+ operators & technici

TRITRIPP

Page 14: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

In-House Core ProgramIn-House Core Program

T – violation: T – violation: • -decays-decays

• 21Na• ‘a’ & ‘D’ coefficients• lifetime, branching ratio

• Future Possibilities• 39Ca , 19Ne

• EDMsEDMs• Ba/Ra – atom

• trapping• polarization

• deuterondeuteron

P – violation:P – violation:• Single IonSingle Ion

• sinsin22 ϴϴWW

• clockclock

Lorentz - violation:Lorentz - violation: • Weak InteractionsWeak Interactions

2121Na in trapNa in trap

-80 -60 -40 -20 0 200

50

100

150

X 100

Detuning of 1 [MHz]C

ount

rate

[10

6/s

]

Ba MOTBa MOT

Page 15: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

TRIX: Trapped Radium Ion eXperiments

Atomic parity violation &All-optical atomic clock

Page 16: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Atomic Parity ViolationThe weak interaction gives the nucleus a weak charge

q

Weak charges of nuclear quarks add coherently:Qw = –N+(1–4 sin2θW)Z + small radiative corrections + “new physics”

where θW is the weak mixing (or Weinberg) angle.

e-

q

e-

Z0

Weak interaction (violates parity)• Mediated by Z0 bosons, mass ≈ 91 GeV, so short-range• Violation of selection rules (E1PNC transitions) • Strength scales ~ Z3

• Nucleus has also a weak charge Qw

e-

q q

e-

Coulomb interaction (conserves parity)• Mediated by photons, massless, so long-range• Gives the atomic spectrum and E1 etc. transitions• Strength scales ~ Z• Nucleus has an electric charge

γ

Page 17: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

The running of the Weinberg angleA poorly tested prediction of the Standard Model

High energy (near the Z0-pole)• LEP @ CERN

Medium energy• E158 @ SLAC

• parity viol. electron scattering

• NuTeV @ Fermilab• neutrino scattering

• Qweak @ TJNAF• Qw(p) of the proton

Low energy: atomic parity violation (APV) • Cesium atoms: 6S–7S transition

Experiment: 0.35% by Wieman group, Boulder; theory: 0.5%• Barium ions: 6S–5D3/2 transition

Experiment: Fortson group, Seattle; theory: 0.5%• Francium atoms: 7S–8S transition

Experiment: Stony Brook and Legnaro • Radium ions: 7S–6D3/2 transition

Experiment & theory: KVI, University of Groningen

A. Czarnecki and W.J. Marciano, Nature (2005).

Page 18: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Advantages of Ra+ vs. Cs, Fr, Ba+

• Heavy (APV signal scales faster than ~ Z3)

• “Easy” lasers: semiconductor diodes

• Single ion techniques:

Superior control of systematics

Novel -frequency- measurement method: light shifts

S-S S-D

Cs0.9

Ba+

2.2

Fr14.2

Ra+

46.4

E1APV

The case for radiumWhy the radium ion is the ideal candidate

Page 19: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Electromagnetism

q

e-

e-

q

γ

7S

7P

6D

Radium Ion

q

e-

q

e-

Weak interaction

Z0

+ a bit of 7P

parity

Atomic Parity Violationin a Radium ion

E1APV + E2

Page 20: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Atomic parity violation in Ra+

Interference of E2/E1APV in AC Stark shift

Interference produces differential light shift of ground state m-levels:

7S1/2 (+ εn n P1/2)

6D3/2

Ra+

6D5/2

7P1/2

Repumpλ = 1.08 μm

Off-resonantlaser

λ = 828 nm

Cooling & detectionλ =468 nm

7P3/2

E1

E2

0

0

diff0 m=+1/2

m=-1/2

diff

pnc

7S1/2 (+ n n P1/2)

6D3/2

Ra+

6D5/2

7P1/2

Repumpλ = 1.08 μm

Off-resonantlaser

λ = 828 nm

Cooling & detectionλ =468 nm

7P3/2

E1

E2

7S1/2 (+ n n P1/2)

6D3/2

Ra+

6D5/2

7P1/2

Repumpλ = 1.08 μm

Off-resonantlaser

λ = 828 nm

Cooling & detectionλ =468 nm

7P3/2

E1APV

E2

0

0

diff0 m=+1/2

m=-1/2

diff

pnc

0

0

0

0

diff0 m=+1/2

m=-1/2

diff

pnc

2APV'

2'

2' |||| mm

Emmmm

)Re(2|| 2'

*APV'

22'

Emmmm

Emm

,,,

0

2

,

,|ˆ|,

4 mlllml

mlrEmlI

E1+E2

Page 21: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

From here to the Standard Modelthere and back again

)/(10)4.1(4.461 011

PNC NQieaE w

1) measure the AC stark shift get E1 amplitude from differential part of the light shift

2) calculate atomic theory to < 1% and extract the weak charge

3) add a bit of QFT and find the Weinberg angle OR NEW PHYSICS

)Re(2|| 2'

*APV'

22'

Emmmm

Emm

Qw = –N+(1–4 sin2θW)Z + small radiative corrections + “new physics”

Page 22: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Optical Atomic ClockSpin-off project

Based on 7S1/2-6D3/2 E2 transition:

• Narrow (Δν ~ 1 Hz)• Optical regime (4 x 1014 Hz)

• Absence of electric quadrupole shift in 223Ra (I=3/2)•Heaviest system: 2nd order Doppler ~ 1/mass• Ra+: search for variation of fine structure constant

7S1/2

6D3/2

214/226 -Ra +

7P1/2

clock laserλ = 828 nm

E2

7S1/2

6D3/2

214/226 -Ra +

7P1/2

clock laserλ = 828 nm

E2

7S 1/2

6D3/2

223 - Ra +

clock laserλ = 828 nm

E2

7P1/2F=2

F=1

F=2

F=1

F=3

F=1F=0

F=2

7S 1/2

6D3/2

223 - Ra +

clock laserλ = 828 nm

E2

7P1/2F=2

F=1

F=2

F=1

F=3

F=1F=0

F=2

High quality clock based on off-the-shelf available semiconductor lasers

Page 23: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Status & outlookFrom here to sin2(Θw)

Experiment• Multiple ion traps have been constructed• Ba+ & Ra+ lasers set up in new, dedicated laser lab• Ra isotopes produced with AGOR cyclotron and TRIμP facility

Theory• 3 % calculation finished, pushing for < 1 % accuracy now (inclusion of Breit, neutron skin and RCC improvements)

First trapping & optical detection of radium ions in 2009!

)/(10)4.1(4.461 011

PNC NQieaE w

L.W.Wansbeek et al., Phys. Rev. A 78, 050501 (2008)

• Precise experimental input is an absolute necessity (e.g. D-state lifetimes, E1 transition strengths and hyperfine constants)

• Study of different isotopes

First experimental goals

APV

PMT

coun

ts [a

.u.]

Time [s]

Done!

Page 24: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

ExperimentExperiment

O. BO. Bööll (bachelor student) ll (bachelor student)

G. S. Giri (PhD student)G. S. Giri (PhD student)

O. O. Versolato (PhD student)O. O. Versolato (PhD student)

L. Willmann L. Willmann

K. JungmannK. Jungmann

TheoryTheory

L. W. Wansbeek (PhD studentstudent)

B. K. Sahoo (postdoc)

R. G. E. Timmermans

The TRIμP radium ion experiment at the KVICrew

InternationalInternational collaboratorscollaborators

B. P. Das (India)

N. E. Fortson (USA)

FundingFunding

• NWO Toptalent (OV)NWO Toptalent (OV)

• NWO VENI (BS)NWO VENI (BS)

• FOM Projectruimte (KJ, RT)FOM Projectruimte (KJ, RT)

You? You?

Interested?Interested?

Page 25: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Bonus material 1:

Electron shelving method

7S1/2

7P1/2

7P3/2

6D5/2

6D3/2

Shelved state

381nm shelvingR

= 0.3s

Page 26: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Bonus material 2:

Trapping ions in a Paul trap

Page 27: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Are there quantum jumps?

"…we never experiment with just one atom or (small) molecule. In thought experiments we sometimes assume that we do; this invariably entails ridiculous consequences."

Erwin Schrödinger (1952)

Page 28: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Precision experiments on a single trapped ionhow to trap an ion using E&M

Harmonic potential

3D case

Maxwell !

No charge enclosed

Problem: Only 2D trapped BUT 1D repulsive!

Page 29: TRI m P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

The Paul trapand its mechanical analogue

Solution: Apply a rotating potential!

Needed: hyperbolically shaped surface