transgenic mouse; deactivated endogenous immunoglobulin heavy

53
(12) United States Patent Kucherlapati et al. US006673986B1 US 6,673,986 B1 *J an. 6, 2004 (10) Patent N0.: (45) Date of Patent: (54) (75) (73) (*) (21) (22) (63) (51) (52) (58) (56) GENERATION OF XENOGENEIC ANTIBODIES Inventors: Raju Kucherlapati, Darien, CT (US); Assignee: Notice: Appl. No.: Filed: Aya Jakobovits, Menlo Park, CA (US); Sue Klapholz, Stanford, CA (US); Daniel G. Brenner, Redwood City, CA (US); Daniel J. Capon, Hillsborough, CA (US) Abgenix, Inc., Fremont, CA (US) This patent issued on a continued pros ecution application ?led under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2). Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal dis claimer. 08/031,801 Mar. 15, 1993 Related US. Application Data Continuation-in-part of application No. 07/919,297, ?led on Jul. 24, 1992, now abandoned, which is a continuation-in part of application No. 07/610,515, ?led on Nov. 8, 1990, now abandoned, which is a continuation-in-part of applica tion No. 07/466,008, ?led on Jan. 12, 1990, now abandoned. Int. Cl.7 .................. .. A01K 67/033; A01K 67/027; C12N 15/87; C12N 15/63 US. Cl. ......................... .. 800/18; 800/13; 435/325; 435/455 Field of Search .............................. .. 800/2, 13, 18; 4,950,599 4,959,313 5,175,384 5,204,244 5,416,260 5,545,806 5,545,807 5,569,825 5,591,669 6,114,598 424/88; 435/455, 325 References Cited U.S. PATENT DOCUMENTS A A A A A A A A A A 8/1990 9/1990 12/1992 4/1993 5/1995 8/1996 8/1996 10/1996 * 1/1997 * 9/2000 Bertling ................. .. 435/1723 Taketo ........ .. 435/691 Krimpenfort . 820/2 Fell et al. .... .. 435/696 Koller ..... .. 820/2 Lonberg ..... .. 800/2 Surani et al. 800/2 Lonberg et al. 800/2 Krimpenfort ...... .. 800/2 Kucherlapati et al. ...... .. 800/18 **** FOREIGN PATENT DOCUMENTS 0 298 807 0 322 240 0 459 372 0 463 151 WO 90/04036 WO 91/10741 WO92/03918 WO 93/05165 6/1988 6/1989 5/1991 1/1992 4/1990 7/1991 3/1992 3/1993 WO 94/00569 1/1994 WO 94/02602 2/ 1994 OTHER PUBLICATIONS Matsuda et al. (1993) Nat. Genetics, vol. 3, 88—94, 1993.* CoX Declaration, From USPN 5,545,806, Dec. 30, 1997.* Taki et al.* Morrison, Nature 368:812, 1994.* Green et al Nature Gentics 7:13, 1994.* Bruggeman et al PNAS 86:6709, 1989* Shin et al EMBO J 10(12): 3641, 1991.* Matsuda et al Nature Genetics 3: 88, 1993.* Thomas et al Cell 51: 503, 1987.* Jayner et al Nature 338: 153, 1989* Koller et al PNAS 86: 8932, 1989* Bruggeman et al PNAS 86:6712, 1989* Lorem et al NAR 15(23): 9667, 1987.* Bruggeman PNAS 86: 6709, 1989* Muls et al Nature 295: 428, 1982.* Dorfman, Nickolas A., 1985, “The Optimal Technological Approach to the Development of Human Hybridomas,” Journal of Biological Response Modi?ers 4:213—239 Taggart et al., 1983, “Stable Antibody—Producing Murine Hybridomas,” Science 219:1228—1230. Brinster et al., “Introns Increase Transcriptional Ef?ciency in Transgenic Mice”, Proc. Natl. Acad. Sci., USA 85:836—840 (1988). Kucherlapalati, R., “Homologous Recombination in Mam malian Somatic Cells”, Prog. Nucleic Acid Res. Mol. Biol. 36:301—310 (1989). ShimiZu et al., “Immunoglobulin Double—Isotype Expres sion by Trans mRNA in a Human Immunoglobulin Trans genic Mouse”, Proc. Natl. Acad. Sci., USA 86:8020—8023 (1989). Miller, J. et al. Nature(1982) 295:428—430. Yamaura et al., “Cell—Type—Speci?c and Regulated Expres sion of a Human Y1 Heavy—Chain Immunoglobulin Gene in Transgenic Mice”, Proc. Natl. Acad. Sci., USA 83:2152—2156 (1986). (List continued on neXt page.) Primary Examiner—Anne M. Wehbe’ (74) Attorney, Agent, or Firm—Fish & Neave; James F. Haley, Jr.; Jane T. Gunnison (57) ABSTRACT The subject invention provides non-human mammalian hosts characterized by inactivated endogenous Ig loci and functional human Ig loci for response to an immunogen to produce human antibodies or analogs thereof. The hosts are produced by multiple genetic modi?cations of embryonic cells in conjunction with breeding. Different strategies are employed for recombination of the human loci randomly or at analogous host loci. Chimeric and transgenic mammals, particularly mice, are provided, having stably integrated large, Xenogeneic DNA segments. The segments are intro duced by fusion with yeast spheroplasts comprising yeast arti?cial chromosomes (YACs) which include the Xenoge neic DNA segments and a selective marker such as HPRT, and embryonic stem cells. 3 Claims, 24 Drawing Sheets

Upload: phungquynh

Post on 22-Jan-2017

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Transgenic mouse; deactivated endogenous immunoglobulin heavy

(12) United States Patent Kucherlapati et al.

US006673986B1

US 6,673,986 B1 *J an. 6, 2004

(10) Patent N0.: (45) Date of Patent:

(54)

(75)

(73)

(*)

(21) (22)

(63)

(51)

(52)

(58)

(56)

GENERATION OF XENOGENEIC ANTIBODIES

Inventors: Raju Kucherlapati, Darien, CT (US);

Assignee:

Notice:

Appl. No.:

Filed:

Aya Jakobovits, Menlo Park, CA (US); Sue Klapholz, Stanford, CA (US); Daniel G. Brenner, Redwood City, CA (US); Daniel J. Capon, Hillsborough, CA (US)

Abgenix, Inc., Fremont, CA (US)

This patent issued on a continued pros ecution application ?led under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis claimer.

08/031,801 Mar. 15, 1993

Related US. Application Data

Continuation-in-part of application No. 07/919,297, ?led on Jul. 24, 1992, now abandoned, which is a continuation-in part of application No. 07/610,515, ?led on Nov. 8, 1990, now abandoned, which is a continuation-in-part of applica tion No. 07/466,008, ?led on Jan. 12, 1990, now abandoned.

Int. Cl.7 .................. .. A01K 67/033; A01K 67/027;

C12N 15/87; C12N 15/63 US. Cl. ......................... .. 800/18; 800/13; 435/325;

435/455 Field of Search .............................. .. 800/2, 13, 18;

4,950,599 4,959,313 5,175,384 5,204,244 5,416,260 5,545,806 5,545,807 5,569,825 5,591,669 6,114,598

424/88; 435/455, 325

References Cited

U.S. PATENT DOCUMENTS

A A A A A A A A A A

8/1990 9/1990 12/1992 4/1993 5/1995 8/1996 8/1996 10/1996

* 1/1997

* 9/2000

Bertling ................. .. 435/1723

Taketo ........ .. 435/691

Krimpenfort . 820/2

Fell et al. .... .. 435/696

Koller ..... .. 820/2

Lonberg ..... .. 800/2

Surani et al. 800/2 Lonberg et al. 800/2 Krimpenfort ...... .. 800/2

Kucherlapati et al. ...... .. 800/18

**** FOREIGN PATENT DOCUMENTS

0 298 807 0 322 240 0 459 372 0 463 151

WO 90/04036 WO 91/10741 WO92/03918 WO 93/05165

6/1988 6/1989 5/1991 1/1992 4/1990 7/1991 3/1992 3/1993

WO 94/00569 1/1994 WO 94/02602 2/ 1994

OTHER PUBLICATIONS

Matsuda et al. (1993) Nat. Genetics, vol. 3, 88—94, 1993.* CoX Declaration, From USPN 5,545,806, Dec. 30, 1997.* Taki et al.* Morrison, Nature 368:812, 1994.* Green et al Nature Gentics 7:13, 1994.* Bruggeman et al PNAS 86:6709, 1989* Shin et al EMBO J 10(12): 3641, 1991.* Matsuda et al Nature Genetics 3: 88, 1993.* Thomas et al Cell 51: 503, 1987.* Jayner et al Nature 338: 153, 1989* Koller et al PNAS 86: 8932, 1989* Bruggeman et al PNAS 86:6712, 1989* Lorem et al NAR 15(23): 9667, 1987.* Bruggeman PNAS 86: 6709, 1989* Muls et al Nature 295: 428, 1982.* Dorfman, Nickolas A., 1985, “The Optimal Technological Approach to the Development of Human Hybridomas,” Journal of Biological Response Modi?ers 4:213—239 Taggart et al., 1983, “Stable Antibody—Producing Murine Hybridomas,” Science 219:1228—1230. Brinster et al., “Introns Increase Transcriptional Ef?ciency in Transgenic Mice”, Proc. Natl. Acad. Sci., USA 85:836—840 (1988). Kucherlapalati, R., “Homologous Recombination in Mam malian Somatic Cells”, Prog. Nucleic Acid Res. Mol. Biol. 36:301—310 (1989). ShimiZu et al., “Immunoglobulin Double—Isotype Expres sion by Trans mRNA in a Human Immunoglobulin Trans genic Mouse”, Proc. Natl. Acad. Sci., USA 86:8020—8023 (1989). Miller, J. et al. Nature(1982) 295:428—430. Yamaura et al., “Cell—Type—Speci?c and Regulated Expres sion of a Human Y1 Heavy—Chain Immunoglobulin Gene in Transgenic Mice”, Proc. Natl. Acad. Sci., USA 83:2152—2156 (1986).

(List continued on neXt page.)

Primary Examiner—Anne M. Wehbe’ (74) Attorney, Agent, or Firm—Fish & Neave; James F. Haley, Jr.; Jane T. Gunnison

(57) ABSTRACT

The subject invention provides non-human mammalian hosts characterized by inactivated endogenous Ig loci and functional human Ig loci for response to an immunogen to produce human antibodies or analogs thereof. The hosts are produced by multiple genetic modi?cations of embryonic cells in conjunction with breeding. Different strategies are employed for recombination of the human loci randomly or at analogous host loci. Chimeric and transgenic mammals, particularly mice, are provided, having stably integrated large, Xenogeneic DNA segments. The segments are intro duced by fusion with yeast spheroplasts comprising yeast arti?cial chromosomes (YACs) which include the Xenoge neic DNA segments and a selective marker such as HPRT, and embryonic stem cells.

3 Claims, 24 Drawing Sheets

Page 2: Transgenic mouse; deactivated endogenous immunoglobulin heavy

US 6,673,986 B1 Page 2

OTHER PUBLICATIONS

Ayares et al., “Sequence Homology Requirements for Inter molecular Recombination in Mammalian Cells”, Proc. Natl. Acad. Sci. USA 83:5199—5203 )1986). Thomas, et al., “Site—Directed Mutagenesis by Gene Tar geting in Mouse Embryo—Derived Stem Cells” (1987) Cell 51:503—512. Koller, et al., “Inactivating the [32—microglobulin locus in mouse embryonic stem cells by homologous recombination” (1989) Proc. Nat’l. Acad. Sci. 86:8932—8935. Berman, et al., “Content and organization of the human Ig VH locus: de?nition of three neW VH families and linkage to the Ig CH locus” (1988) EMBO J. 7:727—738. Burke, et al., “Cloning of Large Segments of Exogenous DNA into Yeast by Means of Arti?cal Chromosome Vectors” (1987) Science 236:806—812. GarZa, et al., “Mapping the Drosophila Genome With Yeast Arti?cial Chromosomes” (1989) Science 246:641—646. BroWnstein, et al., “Isolation of Single—Copy Human Genes from a Library of Yeast Arti?cal Chromosome Clones” (1989) Science 244:1348—1351. Sakano, et al., “Identi?cation and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy— chain genes” (1981) Nature 290:562—565. Tucker, et al., “Mouse IgA heavy chain gene sequence: Implications for evolution of immunoglobulin hinge exons” (1981) Proc. Nat’l. Acad. Sci. 78:7684—7688. Blankenstein, et al., “Immunoglobulin VH region genes of the mouse are organiZed in overlapping clusters” (1987) Eur J. Immunol. 17:1351—1357. Joyner, et al., “Production of a mutation in mouse En—2 gene by homologous recombination in embryonic stem cells” (1989) Nature 338: 153—155. Traver, et al., “Rapid screening of a human genomic library in yeast arti?cial chromosomes for single—copy sequences” (1989) Proc. Nat’l. Acad. Sci. 86:5898—5902. Pachnis, et al., “Transfer of a yeast arti?cal chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells” (1990) Pro. Nat’l. Acad. Sci. 87:5109—5113. Briiggemann et al., “A repertoire of monoclonal antibodies With human heavy chains from transgenic mice” (1989) Proc. Nat’l. Acad. Sci. 86:6709—6713. Briiggemann et al., “Construction, Function and Immuno genicity of Recombinant Monoclonal Antibodies” (1990) Behring Inst. Mitt. 87:21—24. Briiggemann et al., “Human antibody production in trans genic mice: expression from 100 kb of the human IgH locus” (1991) Eur J. Immunolog. 21:1323—1326. Albertsen et al., “Construction and characteriZation of a yeast arti?cial chromosome library containing seven haploid human genome equivalents” (1990) Proc. Nat’l. Acad. Sci. 87:4256—4260. Pavan et al., “Modi?cation and Transfer into an Embryonal Carcinoma Cell Line of a 360—Kilobase Human—Derived Yeast Arti?cial Chromosome” (1990) Mol. and Cell. Biol. 10(8):4163—4169. Gnirke et al., “Cloning and in vivo expression of the human GART gene using yeast arti?cial chromosomes” (1991) EMBO Journal 10(7):1629—1634. Eliceiri et al., “Stable intergration and expression in mouse cells of yeast arti?cial chromosomes harboring human genes” (1991) Proc. Nat’l. Acad. Sci. 88:2179—2183.

Huxley et al., “The Human HPRT Gene on a Yeast Articial Chromosome Is Functional When Transferred to Mouse Cells by Cell Fusion” (1991) Genomics 9:742—750. Mortensen et al., “Production of HomoZygous Mutant ES Cells With a Single Targeting Construct” (1992) Mol. and Cell. Biol. 12(5):2391—2395. Davies et al., “Targeted alterations in yeast arti?cial chro mosomes for inter—species gene transfer” (1992) Nucl. Acids Res. 20:2693—2698.

Zachau, “The Human Immunoglobulin k Locus and Some of its Acrobatics” (1990) Biol. Chem. 371:1—6. Matsuda et al., “Structure and physical map of 64 variable segments in the 3’0.8—megabase region of the human immu noglobulin heavy—chain locus” (1993) Nature Genetics 3:88—94. Shin et al., “Physical map of the 3’ region of the human immunoglobulin heavy chain locus: clustering of autoanti body—related variable segments in one haplotype” (1991) EMBO 10:3641—3645.

Ayares, et al., “Sequence Homology Requirements for Inter molecular Recombination in Mammalian Cells,” Proc. Natl. Acad. Sci. USA 83:5199—5203 (1986). Berman, et al., Content and Organization of the Human Ig VH Locus: De?nition of Three NeW VH Families and Linkage to the Ig CH Locus, EMBO J. 7:727—738 (1988). Brinster, et al., “Introns Increase Transcriptional Ef?ciency in Transgenic Mice,” Proc. Natl. Acad. Sci., USA, 85:836—840 (1988). Buttin, et al., “Exogenous Ig Gene Rearrangement in Trans genic Mice: A NeW Strategy for Human Monoclonal Anti body Production,” Trends in Genetics 3(8):205—206 (1987). Capecchi, et al., “Altering The Genome By Homologous Recombination,” Science 244:1288—1292 (1989). Choi et al., “RNA Splicing Generates a Variant Light Chain from an Aberrantly Rearranged k Gene,” Nature 286:776—779 (1980). Doetschman, et al., “Targeted Mutation of the Hprt Gene in Mouse Embryonic Stem Cells,”Proc. Natl. Acad. Sci. USA 85:8583—8587 (1988). Green, et al., “Antigen—Speci?c Human Mnonoclonal Anti bodies from Mice Engineered With Human Ig Heavy and Light Chain YACs,” Nature Genetics 7:13—21 (1994). Hooper et al., “HPRT—De?cient (Lesch—Nyhan) Mouse Embryos Derived from Gemline ColoniZation by Cultured Cells,” Nature 326:292—295 (1987). J akobovits, et al., “Germ—Line Transmission and Expression of a Human—Derived Yeast Arti?cial Chromosome,” Nature 362:255—258 (1993). Johnson, et al., “Targeting of Nonexpressed Genes in Embryonic Stem Cells Via Homologous Recombination,” 245:1234—1236 (1989). Kucherlapati, R., “Homologous Recombination in Mamma lian Somatic Cells,” Prog. Nucleic Acid Res. Mol. Biol. 36:301—310 (1989). Mansour, et al., “Disruption of the Proto—Oncogene Int—2 In Mouse Embryo—Derived Stem Cells: A General Strategy for Targeting Mutations to Non—Selectable Genes,” Nature 336—352 (1988). Max, et al., “Sequences of Five Potential Recombination Sites Encoded Close to an Immunoglobulin k Constat Region Gene,”Proc. Natl.Acad. Sci., USA 76(7):3450—3454 (1979).

Page 3: Transgenic mouse; deactivated endogenous immunoglobulin heavy

US 6,673,986 B1 Page 3

Miller, et al., “Structural Alterations in J Regions of Mouse Immunoglobulin )» Genes are Associated With Differential Gene Expression,” Nature 295:428—430 (1982). Morrison, “Success in Speci?cation,” Nature, 368:812—813 (1994). Orkin, et al., “Mutation in an Intervening Seguence Splice Junction in Man,” Proc. Natl. Acad. Sci. USA 78(8):5041—5045 (1981). RajeWsky, et al., “Evolutionary and Somatic Selection of the Antibody Repertoire in the Mouse,” Science 238:1088—1094 (1987). RamireZ—Solis, et al., “Chromosome Engineering in Mice,” Nature 378:720—724 (1995). Sakano, et al., “Sequences at the Somatic Recombination Sites of Immunoglobulin Light—Chain Genes,” Nature 280:288—294 (1979). Sakano, et al., “TWo Types of Somatic Recombination are Necessary for the Generation of Complete Immunoglobulin Heavy—Chain Genes,” Nature 286:676—683 (1980). Schedl, et al., “Transgenic Mice Generated By Pronuclear Injection of aYeast Arti?cal Chromosome,” Nucl. Acids Res. 20:3073—3077 (1992). Schedl, et al., “A Method for the Generation of YAC Transgenic Mice by Pronuclear Microinjection,” Nucleic Acids Research 21(20):4783—4787 (1993). SchWartZberg et al., “Germ—Line Transmission of a c—abl Mutation Produced by Targeted Gene Disruption in ES Cells,” Science 246:799—803 (1989). Seidman et al., “A Mutant Immunoglobulin light Chain is Formed by Aberrant DNA—and RNA—Splicing Events,” Nature 286:779—783 (1980).

ShimiZu, et al., “Immunoglobulin Double—Isotype Expres sion by Trans—mRNA in a Human Immunoglobulin Trans genic Mouse,” Proc. Natl. Acad. Sci., USA 86:8020—8023 (1989). Straus, et al., “Germ Line Transmission of a Yeast Arti?cial Chromosome Spanning the Murine (x1(1) Collagen Locus,” Science 259:1904—1907 (1993).

Taki, et al., “Targeted Insertion of a Variable Region Gene into the Immunoglobulin Heavy Chain Locus,” Science 262:1268—1271 (1993).

Treisman, et al., “Speci?c Transcription and RNA Splicing Defects in Five Cloned [3—thalassaemia Genes,” Nature 302:591—596 (1983). Yamamura, et al., “Cell—Type—Speci?c and Regulated Expression of a Human yl Heavy—Chain Immunoglobulin Gene in Transgenic Mice,” Pr0c. natl. Acad. Sci. USA 83:2152—2156 (1986). Yancoupoulos, et al. “Developmentally Controlled and Tis sue—Speci?c Expression of Unrearranged VH Gene Seg ments,”, Cell 40:271—281 (1985).

Yancoupoulos, et al., “Reconstruction of an Immune Sys tem,” Science 241:1581—1583 (1988).

Zijlstra, et al., Germ—Line Transmission of a Disrupted [32—microglobulin Gene Produced by Homologous Recom bination in Embryonic Stem Cells, Nature 342—435—438 (1989).

* cited by examiner

Page 4: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 1 0f 24 US 6,673,986 B1

EUEI ll EEom li Eoou IF Eouw

I‘ 500m :41

|<—- 2800 bp

28“

FIG. IB

Page 5: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 6: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 7: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 8: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 5 0f 24 US 6,673,986 B1

“3 .2... ommm *9 no. N8 F9 on. 3 a: 6%

+9 m8 N2 .2 69

<<Q ‘_ i 5,“

200 <-—~--—-—-—

NUMBER OF cELLs

m4 .2“. 6 , 629 +9. n9 N9 F9 09

0

Ro+ m4 6E 62 “E NE E. in.

3 ,2“. #9 “9 N9 For o9

w

200 ‘--—--'-----_-__ ' -

NUMBER OF ems NUMBER OF CELLS

Page 9: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 10: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 7 0f 24 US 6,673,986 B1

gagié?ésgogg?zgéé 3 g 255 5 a5 52%

~82 .

» , . wow $06 "as" 2.5m “gm

Page 11: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 8 0f 24 US 6,673,986 B1

NATMZ ES CELL LOCUES

EcoRIEIcoWBgmEcoRI Hindlll B9111 B9111 BomHll E1911]

I |’/ l : 2 : :l 1220 hp

BomH [ EH PROBE -_ /Bg) 2,310 bp 59] H DlGESTiON .._.__.__.___.+

1700 bp Hind m/Bgl I! PROBE _

15000 ‘bp EcoR I DQGESHON 4 ,’

TARGEYED ES CELL. LOCUS 39m " EcoRI

EcéaRI ‘ BgmEcoRI Handm 8g!!! E 38mm BomHlBgllI co 1 c 1R“ i L:::::'' .- ~__-L-_J

1220 bp 1 -

II PROBE Bum“ V89’ 5730 bp 891 I1 msesnou ¢ #

.' 1700 bp Hind Ill/8g] I! PROBE.

5040 bp <—

EcoR I DlGESTION 11 40 up Neo PROBE _

5730 bp 4 H»

8g] 1! 01015511014

FIG. 7

Page 12: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 9 0f 24 US 6,673,986 B1

J REGION KNIOCKOUT VECTOR BgIII Xbol EcoR] EcoRI

I / PGK {It DSH MCI N00

J‘I J2 J3 J4

TARGEI'ING ‘SCHEME

BomI-II EcoR! EcoRI EcoRl B911] B911] BclmHl

uLaz J5 J4 $395M //f8'g<m\ EcoRI EcoRI

‘Lam; MCI N60

1 I 1 1 | I I I I J1J2 J3 J4 PGK tk

HOMOLOGOUS l 6418 REMOMBINA'I'ION SELECTION

xbol EcoRi/Xb?l I EcoRI Bglll IXboI EcoRI EcoRI BumHI W ETHI l v 08H; L, I

Eli" " "- J1J2 613614 PGK tk N01 N90

CYCLOVIR EXCISION 1 $01106: BcmHI Xboi EcoRl EcoRI BomHI

I IIJEI ' MCI

Neo

FIG. 8

Page 13: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 14: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 15: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 12 0f 24 US 6,673,986 B1

Hindml EcoRl KpnI BomHI Soc! Not! MGC'ITATAGAATTCGGTACCTGGATCCTGAGCTCATAGCGGCCG‘CAGCT

CAJGTTCGAATATCTTAAGCCATGGACCTAGGACTCQGTATCGCC GGCG

,A-lindm , II‘EcoRI

SCOL -'KpnI -—BomHI

115w pSK,Ct NQtI

i coRI

Seal ind!!! KpnI BomHI

Soc!

pSK.C:/3'K F‘ G“ 9-3

BomHI

pSKC/Ia'K/DT

Page 16: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 13 0f 24 US 6,673,986 B1

EcoRI

FIG. l0

\‘Xhol . EcoR'l EcoRI QBMEA N60

Kappa

Page 17: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 18: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 19: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 20: Transgenic mouse; deactivated endogenous immunoglobulin heavy

U.S. Patent Jan. 6, 2004 Sheet 17 0f 24 US 6,673,986 B1

Fl :5. HA FIG. 73B

Page 21: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 22: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 23: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 24: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 25: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 26: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 27: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 28: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 29: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 30: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 31: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 32: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 33: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 34: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 35: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 36: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 37: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 38: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 39: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 40: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 41: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 42: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 43: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 44: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 45: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 46: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 47: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 48: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 49: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 50: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 51: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 52: Transgenic mouse; deactivated endogenous immunoglobulin heavy
Page 53: Transgenic mouse; deactivated endogenous immunoglobulin heavy