toryum nÜkleer yakitinin perspektİfİ, ve Ülkemİzde enerjİ Üretİmİ aÇisindan Önemİ

43
TORYUM NÜKLEER YAKITININ PERSPEKTİFİ, ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ Prof.Dr. Muammer Kaya Eskişehir-Osmangazi Üniversitesi Teknoloji Araştırma Merkezi (TEKAM) Müdürü ve Maden Mühendisliği Bölümü Öğretim Üyesi ENERJİ ZAMANINDA, GÜVENİLİR, YETERLİ, KALİTELİ ve UCUZ TEMİN EDİLMELİDİR ATOM SANTRALI NEMİZE GEREK, KOKAR YAKITIMIZ VAR MİS GİBİ TEZEK ENERJİ ÜRETİM, ÜRETİM KALKINMA VE GELİŞME DEMEKTİR ENERJİ %70 İTHAL KAYIP-KAÇAK %18-20 2000-3000 kwh/kişi

Upload: brendon-mawe

Post on 01-Jan-2016

70 views

Category:

Documents


10 download

DESCRIPTION

TORYUM NÜKLEER YAKITININ PERSPEKTİFİ, ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ. ENERJİ ÜRETİM, ÜRETİM KALKINMA VE GELİŞME DEMEKTİR. ENERJİ ZAMANINDA, GÜVENİLİR, YETERLİ, KALİTELİ ve UCUZ TEMİN EDİLMELİDİR. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,

ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Prof.Dr. Muammer KayaEskişehir-Osmangazi Üniversitesi

Teknoloji Araştırma Merkezi (TEKAM) Müdürü

veMaden Mühendisliği Bölümü

Öğretim Üyesi

ENERJİ ZAMANINDA, GÜVENİLİR, YETERLİ, KALİTELİ ve UCUZ TEMİN EDİLMELİDİR

ATOM SANTRALI NEMİZE GEREK,

KOKAR YAKITIMIZ VAR MİS GİBİ

TEZEK

ENERJİ ÜRETİM, ÜRETİM KALKINMA VE GELİŞME DEMEKTİR

ENERJİ %70 İTHAL

KAYIP-KAÇAK %18-20

2000-3000 kwh/kişi

Page 2: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUM (Thor: İskandinav savaş tanrısı) NEDİR?

• Atom numarası 90• Atom ağırlığı 232• Yoğunluğu 11.7 gr/cm3• Gümüş beyazı renkli, metalik • 1828 yılında İsveçli Jöns Berzelius tarafından

keşfedilen,• Yeryüzünde nadir bulunan aktinitler

grubunda yer alan radyoaktif bir elementtir. • Toryum yer kabuğunda 9.6 ppm oranında

bulunur.• Torit (ThSiO4), torianit (ThO2) ve monazit ((Ce,

La, Th, Nd, Y)PO4)’ten elde edilir.

Page 3: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Monazite Toryum Cevheri Saf Toryum Metali

Toryum yaklaşık 60 elementin yapısında bulunmaktadır. Th232 doğada bulunan dört toryum izotopundan en yaygın olanıdır. Th232 radyoaktif alfa parçacıkları yaymakta olup uzun bir yarılanma süresine sahiptir.

Toryum, uranyumdan yer kabuğunda üç-dört kat daha bol bulunmaktadır

Torit kristal

Torit

Cevheri

(ThSiO4)

Page 4: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

MONAZİT ((Ce, La, Th, Nd, Y)PO4)

• Toryum dünyada temel olarak monazitin saflaştırılması sonucu bir yan ürün olarak elde edilmektedir. Monazitin toryum oksit içeriği %4 ile %12 arasında değişmektedir. Nadir toprak elementlerine talep olmaksızın sadece toryum için genelde monazit madenciliği yapılmamaktadır.

BÜ’den rahmetli Prof.Dr. Engin Arık’a göre

TORYUM 21.yy’ın en STRATEJİK MADDESİ OLABİLİR

Dünya Monazit Üretimi:5000-6000 t/y

Page 5: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

BEACH SAND (Quartz, Garnet, Magnetite, Zircon, Ilmenite, Rutile, Monazite)

Quartz: 2.7 (L)Garnet:3.5 (L)Magnetite: 5.5-6.5 (D, F)Zircon: 4.6-4.7 (D, NM, P)Rutile: 4.2 (D, NM, T)Ilmenite: 4.5-5.0 (D, M, T)Monazite: 4.9-5.2 (D, M, P)

L: lightD: DenseF: Ferromag.NM: Nonmag.M: Mag.

T:ThrownP: Pinned

Typical beach sand treatment flowsheet.

ligth

heavy

Monazit daha çok sahil kumlarından titanyum ve zirkonyumun kazanımı esnasında elde edilir.

Page 6: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Tablo 1: Uranyum ve Toryumun Özellikleri (Kaya, 2002c)

URANYUM TORYUM

Formül U Th

Atom NumarasıPeriyodik Grubu

92 Aktinit Nadir Toprak Elementi

90Aktinit Nadir Toprak Elementi

Nötron Sayısı 146 142

Atom Ağırlığı (gr) 238.03 232.04

Yoğunluk (gr/cm3) (20oC’de) 18.9 11.72

Oda Sıcaklığındaki Hali Katı, radyoaktif, çekilebilir, dövülebilir Katı, radyoaktif, çekilebilir, dövülebilir

Renk (metal) Gümüşümsü beyaz Gümüşümsü gri/beyaz

Fiziksel DataKabukOrbital1.İyonlaşma Potansiyeli (eV)2.İyonlaşma Potansiyeli (eV)3.İyonlaşma Potansiyeli (eV)Oksidasyon DurumuElektriksel İletkenlik

2, 8, 18, 32, 21, 9, 2[Rn] 5f36d17s2

6.19416, 5, 4, 30.0380*106

2, 8, 32, 18, 10, 2[Rn] 6d27s2

6.08 11.504 20.003 40.0653*106

Termal DataErgime Noktası (oC)Kaynama Noktası (oC)Spesifik Isı (J/gK)Fizyon Isısı (kJ/mol)Buharlaşma Isısı (kJ/mol)Termal İletkenlik (WcmK)

113238180.128.520477.00.276

175040000.1216.10514.400.540

Atomik Dataİyonik Yarıçapı (A)Kovalent Yarıçapı (A)Atomik Hacim (cm3/mol)Kristal Yapısı

0.811.4212.59Ortorombik

1.051.6519.9Yüzey Merkezli Küp

Ana Cevherleri (Doğada serbest halde bulunmaz, bileşik halinde bulunur)

Uranit (U02)

(Mak. U %88)

Monazit (Ce, La, Th, Y)PO4

(mak. Th %71)Torit (ThSiO2)

Torianit (ThO2)

HAFİF

EMNİYETLİ

ISI TRANSFERİ KOLAY

DENGELİ

Page 7: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Ort. Yer Kabuğundaki Miktarı (ppm) 2.7 9.6

Ort. Deniz Suyundaki Miktarı (ppm) 0.003 0.00005

Mineral Ömrü (Rezerv/Tüketim) (Yıl) 50-60 yıl +100yıl

Ort. Min. Üretilebilecek Tenör (%) 0.01

ABD’de kişi Başına Tüketim (g/kişi) 50

ABD’nin 2001 Yılı Stoku (t) 3219

Keşif Tarihi, Bulan, Yer 1789 (Martin Klaproth, Almanya) 1828 (Jöns Berzelius, İsveç)

1gr U/Th’ın Eşdeğer Yakıt KarşılığıPetrolKömürOdunDoğal Gaz

1228 kg (9 varil)3 ton7.5 ton1801320 m3

Bilinen Dünya Rezervi Toplamı (t) 2255000 (U3O8) 1400000 (ThO2)

Dünya’da Bulunan Ülkeler Avustralya, G.Afrika, Brezilya, Kanada, , Nijer, BDT Avusturya, Brezilya, Kanada, Arjantin, Hindistan, G. Afrika, ABD, Türkiye, Grönland

Yıllık Ort. Üretim Miktarı (t) 34582

Fiyatı ($/kg) 90 $/lb (U308) 27(ThNO3)

107.25 (ThO2, %99.9)

4823-15000 (Th metal %99.9)

Nükleer ÖzellikleriDengeli Nihai Bozunma ÜrünüParçalanma SırasıEn Yaygın Doğal İzotopları (Yarılanma Süresi)Diğer izotoplar

208Pb

Parçalanma sırasında daha fazla aşamadan geçip (15 kademe) daha çok radyoaktif çekirdek verir

238U (4.47*109 yıl)

208Pb

Parçalanma sırasında daha az aşamadan geçip (11 kademe), daha az radyoaktif çekirdek verir

232Th (1.4*1010 yıl)

Th 224-231 ve Th 233-235

Türkiye’deki Potansiyeli %0.04-0.08 U3O8 tenörlü Manisa-Köprübaşı yatağı 9129 t

rezerve sahipYozgat-Sorgun’da %0.1 U3O8 tenörlü yatak vardır

%0.21 ThO2 tenörlü 380000 t Eskişehir-Sivrihisar

kompleks cevheriMalatya-Kulancak’ta zuhur var

Kullanım Cam pigmenti, nükleer reaktör yakıtı ve bomba hammaddesi Mg-Th kuvvetli alaşımları, fotoelektrik hücre, yüksek kaliteli mercek, nötronlarla bombardıman sonucunda 233U’ya dönüştürülerek nükleer yakıt

DAHA BOL

DAHA UZUN ÖMÜRLÜ

DAHA UCUZ ve DAHA ÇEVRECİ

YERLİ/ÖZKAYNAK

Page 8: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

ÜLKELER TON

Avustralya 340.000

Hindistan 300.000

ABD 300.000

Norveç 180.000

Kanada 100.000

Güney Afrika 39.000

Brezilya 18.000

Malezya 4.500

Diğer Ülkeler 100.000

Toplam 1.381.500

DÜNYA TORYUM REZERVİ

Kaynak: U.S. Geological Survey, Mineral Commodity Summaries, January 2007

*Tahmin

Arjantin, Avustralya, Brezilya, Güney Afrika Cumhuriyeti, Kanada, Mısır, Norveç ve Tayland Uluslararası Atom Enerjisine (IAEA) kilogramı 80 $’a kadar mal edilebilen toryum rezervine sahip olduklarını bildirmişlerdi.

Dünyada kesin toryum rezervleri konusunda sağlıklı bilgiler bulunmamaktadır. Eldeki veriler tahminden öteye geçmemektedir.

Page 9: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Country RAR Th (tonnes)

EAR Th (tonnes)

Brazil 606,000 700,000

Turkey 380,000 500,000

India 319,000 -

United States 137,000 295,000

Norway 132,000 132,000

Greenland 54,000 32,000

Canada 45,000 128,000

Australia 19,000 -

South Africa 18,000 -

Egypt 15,000 309,000

Other Countries

505,000 -

World Total 2,230,000 2,130,000

Another estimate of Reasonably Assured Reserves (RAR) and Estimated Additional Reserves (EAR) of thorium comes from OECD/NEA, Nuclear Energy, "Trends in Nuclear Fuel Cycle", Paris, France (2001). (http://en.wikipedia.org/wiki/Thorium)

RAR: Oldukça Makul İnandırıcı Rezerv

tahmini

EAR: İlave Rezerv tahmini

Page 10: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TÜRKİYE’DE TORYUM• Toryum aramaya yönelik ilk havadan proseksiyon çalışması 1959

yılında MTA tarafından başladı.• Bu çalışma sonucunda Eskişehir ili Sivrihisar ilçesinin kuzey

batısında Kızılcaören köyü yöresinde Toryum bulundu. Toryum yatağı hidrotermal-filon dolgusu şeklinde kompleks bir oluşumdur ve ortalama tenörü %0.21 ThO2’dir.

• 1970’li yıllarda toryum amaçlı, 1981-84 yılları arasında ise toryuma ilaveten florit (CaF2) (%37), barit (BaSO4) (%31) ve nadir toprak elementlerine (Basnezit) (Ce02, La2O3, Nd2O3) yönelik etütler tamamlanmıştır.

• Sivrihisar’daki nadir toprak elementleri ve toryum kompleks cevher yatağında yaklaşık 380 bin ton görünür ThO2 rezervi saptanmıştır. Söz konusu yatakta yeterli sayıda sondaj yapılmamıştır.

• Diğer taraftan, Malatya-Hekimhan-Kuluncak’ta da toryum bulunduğu tahmin edilmektedir. Bütün bu çalışmalar tamamlandığında Türkiye’nin toplam toryum rezervinin iki katına çıkma ihtimali bulunmaktadır.

• 1983’te kabul edilen 2840 sayılı devletçe işletilecek madenler yasasına göre bu yatakların (radyoaktif minerallerin) işletim hakkı, bulma hakkı saklı kalmak kaydıyla Eti Maden A.Ş.’ye devredilmiştir.

Page 11: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUM ZENGİNLEŞTİRME ÇALIŞMALARI

• Toryum cevherinin zenginleştirilmesiyle ilgili teknolojik sorunlar henüz tam olarak çözülememiştir.

• Maden Tetkik Arama (MTA), Türkiye Atom Enerjisi Kurumu (TAEK) ve Eti Maden A.Ş. tarafından yapılan teknolojik deneyler, yatağın doğrudan toryum olarak değerlendirilmesini henüz başaramamıştır.

• Toryumun hidrometalurjik asit liçiyle kazanılmasında işletme maliyetinin yüksek olduğu görülmüştür.

• Saha, nadir toprak elementleri, barit ve florit içerdiğinden, yatağın kompleks cevher olarak değerlendirilmesine ve toryumun yan ürün olarak kazanılmasına yönelik ciddi/kapsamlı çalışmaların Üniversitelerin katkılarıyla yapılması zorunludur.

• MTA, TAEK, Eti Maden ve Üniversitelerin ortak “Toryum Projesi” yapması gerekir.

Page 12: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

NÜKLEER ENERJİ

DEZAVANTAJLARI

• Atık sorunu (yok etme, insan ve çevre açısından kuşkular/ önyargılar taşıyor),

• Yüksek maliyet (yapım ve yakıt çevrimi),

• Atom bombası yapılma ihtimali,

• Emniyet sorunu• Yenilenemeyen enerji oluşu,

• Yolsuzluk, kararsızlık• İki başarısız ihale yapıldı

AVANTAJLARI

• Konsantre yakıt (üretim ve taşıma gideri düşük, atık az) kullanır,

• Yakıt ucuz ve uzun süreli ihtiyaç stoklanabilir,

• Yerli kaynak var ve güvenilir (zamanında ve kesintisiz) arz sağlar,

• Ekonomik ve çevreyi kirletmez (sera ve asit yağmuru etkisi yok),

• Enerji açığımızı hızla kapatacak kapasitede,

• İleri ve kalkınmayı hızlandırıcı teknoloji,

• Kaynak çeşitliliği sağlar,

1 kg Uranyum = 17 t Taş kömürü = 11 ton Petrol

Page 13: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

NÜKLEER YAKIT OLARAK TORYUMUN TARİHÇESİ

Toryum, ya plaser monazit ((Ce,La, Th, Nd, Y)PO4) yataklarından (Hindistan) kolay/ucuz olarak kazanılmakta ya da kompleks cevherlerden (Türkiye) zor/pahalı olarak kazanılabilir.

Toryum (Th232) direkt olarak kendiliğinden “bölünen/fisil” radyoaktif yakıt olmayıp, nükleer reaktör içinde nötron bombardımanı ile bölünebilir ürün (U233) veren “verimli” bir maddedir.

Yakıt çevrim sorunu aşılıyor

U233, U235 ve Pu-239’dan daha

yüksek nötron verimi sahiptir

1993’te Th’un U yerini alacağı kanıtlandı.

Page 14: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUM YAKITLI REAKTÖRLERE İLGİNİN NEDENLERİ

• Enerji alanındaki araştırmalar ve yeni küçük taşınabilir, dördüncü kuşak toryumlu reaktörlerin gündeme gelmesi ve nükleer silahlardan/bombadan kaçış, Hindistan ve Norveç (Thor Energy) gibi toryum zengini ülkelerin toryumu alternatif nükleer yakıt olarak görmeleri sonucunda toryum üretimin yakın gelecekte büyük artışlar kaydedeceği de bir gerçektir.

• Ucuz, temiz ve emniyetli nükleer enerji Th ve U karışımı ile elde edilebilir.

• Th’un %100’ü, U’un ise %0.7’si zenginleştirme sonunda yakıt olarak kullanılabilmektedir.

• Th zincir reaksiyon vermez, çevrim gerektirse de nötron bombardımanı kesilince reaktörde yanma durur.

5 yıl boyunca 1GW ENERJİ üretmek için 5 ton Th veya 200 ton U yakıta ihtiyaç var.

Page 15: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

DÜNYADA 1945’DEN BUGÜNE KADAR TORYUM YAKITLI KULLANILMIŞ

PROTOTİP REAKTÖRLER

• Radkowski Hafif Su Reaktörü (LWR)• Yüksek Sıcaklıklı Gaz-Soğutmalı Reaktörler

(HTGR)• Hızlı Üretici Reaktör (FBR)• Ağır Su Reaktörleri (PHWR)• Basınçlı Su Reaktörleri (PWR)• Enerji Yükselteçli/Hızlandırıcılı Reaktörler

(Energy Amplifier) (EA)• Hızlandırıcı Sürücü Sistemleri (ADS) • Çakıl Yataklı Modüler Reaktörlerde (PBMR)

Page 16: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Enerji Yükselteçli/Hızlandırıcılı Reaktörler (EA)4. KUŞAK TORYUM YAKITLI SSTAR REAKTÖRÜ

• Nobel ödülü sahibi Prof. Carlo Rubbia, Avrupa Birliği Nükleer Enerji Merkezinde (CERN) tasarlandı.

• Toryum yakıtı kullanan, hızlandırıcı ile tetiklenen yeni tip nükleer santrallar, henüz deneme safhasında olmasına rağmen geleceğin ana enerji kaynağı olacaktır.

• Parçalanma hızı proton hızlandırıcısı tarafından belirlenir ve kontrol edilir.

• Eğer hızlandırıcı proton göndermeyi keserse, reaktördeki parçalanma anında durur. Bu yüzden bu reaktörlerde durma kolay olmakta ve olası kazalar (erime/patlama) önlenmektedir.

• Th yakıtlı reaktörlerden çıkan atıklar U-yakıtlı reaktörler-den çıkan atıklara nazaran daha kısa-ömürlüdür. Yani Th-yakıtlı reaktörler daha çevrecidir.

• Diğer enerji kaynaklarıyla karşılaştırıldığında 3-5 kat daha ucuz enerji sağlayabilecektir.

Page 17: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

SSTAR TORYUM REAKTÖRÜ (4. KUŞAK NÜKLEER REAKTÖRLER)

• Düşük basınçlı, • Erimiş Pb veya Pb-Bi soğutmalı, • Küçük ve kompakt, • Buhar jeneratörü reaktör tankı içinde bulunan,• Kendi kendini yöneten, • Birkaç cm koruyucu muhafaza kullanan,• Yeni-yakıt besleme ve yanmış yakıt uzaklaştırma için süre

harcanmayan,• Sürekli ve çok az personelle çalışan,• Yatırım maliyeti düşük, ekonomik, • Nükleer emniyeti fazla, • Atık üretimi minimum ve nükleer bomba yapımında kullanılacak

plütonyum üretimi daha az,• Gelişmekte olan ülkelere daha uygun,• Bu reaktörlerin ticari olarak kullanımı 2010-2020’lerde başlaması

tahmin edilmektedir.

Page 18: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

SSTAR 4. KUŞAK

TORYUM REAKTÖRÜ

100 megawatlık

küçük, kapalı (sealed), taşınabilir, özerk

(autonomous) SSTAR reaktörleri

15 yükseklikte, 3 m genişlikte ve 500 t

ağırlığındadır

Hızlı protonlar kurşun hedeften nötron üretiyor.

Bunlar Th232’yi U233’e dönüştürüyor

Page 19: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUM-YAKITLI NÜKLEER REAKTÖRLERİN

URANYUM-YAKITLI REAKTÖRLERE OLAN AVANTAJLARI 1. Toryum hem daha ucuz hem de doğada uranyuma nazaran 3.5 kat daha

boldur.

2. Küresel toryum rezervleri dünya enerji ihtiyacımızı binlerce yıl karşılayabilir. Oysa 50-60 yıllık uranyum rezervi kalmıştır.

3. Toryumlu reaktörlerde üretilen birim enerji başına daha az yakıt tüketilir ve yaklaşık iki kat daha az nükleer atık üretilir.

4. Yüksek ısı iletkenliği ve erime sıcaklığı nedeniyle daha güvenli/ emniyetlidir. Dördüncü jenerasyon Th reaktörleri, üçüncü jenerasyon U reaktörlerine nazaran reaktörün erime/patlama olasılığını kaldırdığından hem daha emniyetli hem de kendini daha kısa sürede geri ödemektedir

5. Toryum reaktörlerinde ısı transferi daha kolaydır.

6. Th ya Pu-239 veya zenginleştirilmiş U235 ile birlikte; ya da Th-U-Pu bir arada yakıt olarak kullanılabilmektedir. Th-yakıtlı reaktörler geleneksel nükleer reaktörlerden atık olarak çıkan Pu’da yakabilir .Th, U’dan 40 kat fazla enerji verir.

Page 20: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUM-YAKITLI NÜKLEER REAKTÖRLERİN URANYUM-YAKITLI REAKTÖRLERE OLAN

AVANTAJLARI

7. Aynı miktar enerji üretmek için Th reaktörlerinden çıkan atom bombası yapılabilen Pu, U reaktörlerinden çıkan Pu’dan 5-7 kat daha azdır. Nükleer silahların yayılmasını (proliferation) engellemek amacıyla Th esaslı reaktörler U esaslılardan daha barışçıldır.

8. Th-yakıtlı reaktörlerde yeniden yakıt yükleme süresi U’lu reaktörlerden 2-3 kat daha uzundur. Th’un örtü olarak (blanket) kullanıldığı yakıt sistemlerinde reaktörde kalış süresi (9-10 yıl) U çekirdekten (seed) daha fazladır. Bu hem yakıt verimini artırır hem de yakıt maliyetini düşürür.

9. 2010 ve 2020 yılları arasında, küresel enerji krizini çözmek için pratik olarak sınırsız enerji kaynağı Th kullanılacaktır.

10.Th-yakıtlı reaktörlerde elektrik üretim maliyeti U-yakıtlı reaktörlerden 10 kat daha ucuza olacaktır.

Page 21: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

S O N U Ç L A R• Gelişmekte olan ülkeler için nükleer enerji kalkınma ve enerji

ihtiyacını karşılama için şarttır.• Dünya enerji talebi küresel ısınma ve sera gazı etkisi ile sürekli

artmaktadır. Bu yüzden nükleer enerji ve alternatif stratejik Th-yakıtı gelecekte önem kazanacaktır.

• Nükleer enerji üretiminde Th-yakıt, enerji maliyetini, uzun süre yanması ve azaltılmış yakıt tüketiminden dolayı, düşürmektedir.

• Th232’den U233 üretimi, U zenginleştirmekten oldukça kolaydır.• Th-yakıtlı reaktörlerin atıkları U-yakıtlılardan hem miktar olarak az

hem de daha kısa-ömürlüdür (radyo-aktiftir).• Th-yakıt birçok mevcut reaktörde direk, bazılarında küçük

modifikasyon sonucu kullanılabilir.• Th-U yakıt(ları) kaynar sulu (BWR), basınçlı sulu (PWR), Candu

(PHWR) ve Enerji Yükselteçli (EA) reaktörler için gelecek vaat etmektedir.

Page 22: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

• Türkiye dünyada büyük rezervli düşük tenörlü kompleks Th yatağına sahip olması ve nükleer enerji reaktörleri kurma planları nedeniyle yerli nükleer yakıt olabilecek Th’a gereken önemi verip hem kompleks yerli Th cevherini zenginleştirme hem de Th-yakıtlı reaktörler konusunda Ar-Ge çalışmalarına önem vermesi gerekmektedir.

• Kurulacak/seçilecek nükleer santralların hem U hem de Th yakıtlı çalışması, ucuz, yerli ve güvenilir enerji arzı açısından çok önemlidir.

• Bugün enerjisinin %70’ini ithal eden Türkiye için önemli bir enerji kaynağı olabilecek Th, Türkiye’nin enerji sorununun çözümüne yardımcı olabilir ve en önemlisi enerjide bağımsızlık sağlayabilir.

• Ülkemizde radyoaktif yakıt olabilecek U ve Th cevher yataklarının yeniden ciddi bir şekilde aranması, haritalanması ve zenginleştirilmesine acilen ihtiyaç vardır. Rezervler dünya literatürüne geçirilmelidir.

Toryum hem Eskişehir hem de Türkiye açısından geleceğin nükleer yakıtı olma açısından gereken ilgiyi acilen görmelidir.

Toryum yatağının bulunduğu Eskişehir ili, Türkiye’de nükleer yakıt zenginleştirmede öncü il olmalıdır.

TÜRKİYE ENERJİ POLİTİKALARI AÇISINDAN SONUÇLAR

Page 23: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ
Page 24: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

ABD dünyanın uydusu ay yüzeyinde toryum bulmuştur. Toryum ay yüzeyinde bulunan 4. en yaygın

elementtir.

Page 25: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

DÜNYA ENERJİ TALEBİ DEĞİŞİMİ• Enerji talebinin sürekli artmakta,• Enerjinin daha çok gelişmekte olan ülkelere gerekmekte,• Son yıllarda fosil yakıtların sebep olduğu küresel ısınma,• Kyoto protokoluna göre CO2 emisyonu sınırlamaları,• Fosil yakıtların enerji talebini karşılayamaz durumda olması,• Fosil yakıtlardan petrol ve doğal gazın 50-60 yıl sonra tükeneceği gerçeği,

NÜKLEER ENERJİYİ TEKRAR ÖN PLANA TAŞIMAKTADIR

GELİŞMEKTE OLAN ÜLKELERİN ENERJİ İHTİYACI:

- Yeni, küçük, ekonomik, emniyetli, taşınabilir ve uzun süre enerji sağlayan nükleer reaktörlere ihtiyacı var,

- Otomatik kontrollu, daha az bakım, yakıt besleme ve değiştirme gerektiren enerji sistemlerine ihtiyaç var,

- Enerji alt yapısı yetersiz,- Eğitimli kalifiye personel yok.

-

Page 26: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

ÜLKELER 1998 1999 2000 2001

Hindistan 5.000 5.000 5.000 5.000

Malezya 517 1.147 818 510

Brezilya 200 200 200 200

Sri Lanka 200 200 - -

Toplam 5.920 6.550 6.020 5.710

Kaynak: World Mineral Statistics, British Geological Survey, 1995-99*Tahmin

DÜNYA MONAZİT ÜRETİMİ (T)

Dünya toryum üretiminin büyük çoğunluğunu Hindistan gerçekleştirmektedir. Tablodaki ülkelere ilaveten, Çin, Endonezya, Nijerya, G. Kore, K. Kore ve eskiden Sovyetler Birliğine bağlı olan bazı ülkelerin de monazit ürettiği tahmin edilmekle birlikte kesin veriler bulunmamaktadır. ABD 1994 yılından beri monazit üretimi

yapmamakta ve daha çok uranyum üretimine konsantre olmaktadır. Dünya toryum talebinin yetersiz oluşu ve şimdilik çıkarma maliyetlerinin yüksekliği nedeniyle

Türkiye de toryum üretimi yapmamaktadır.

Toryumun enerji dışı kullanım alanlarının sınırlı olması üretiminin cazibesini azaltmaktadır.

Page 27: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TORYUMUN ENERJİ DIŞI KULLANIM ALANLARI

• Th-Mg alaşımı Yüksek sıcaklığa mukavim ve hafif alaşım(%2-3 Th)

• Toryum Nitrat Kaynak elektrodu yapımıMagnetron katot tüpleri ve hareketli dalga tüpleri (TWT) imalatında kullanılır. Bu tüpler mikro dalga frekansında elektron yaydıklarından hava trafik kontrol, gözlem, hava tahmini radar sistemlerinde; silah sistemlerinde ve mikro dalga fırınlarda

kullanılır. ThO2 Yüksek ısı dayanımına sahip (3300°C)

Havacılık ve uzay araştırmalarında Welsbach lamba fitil/gömlekleri (fener, lüx, pikniklambalarında)Pota ve seramik parça imalatındaYüksek kaliteli mercek imalatındaBilimsel cihazlardaPetrol distilasyonun daSülfürik asit üretimindeAmonyağın nitrik aside dönüştürülmesinde katalizör olarak

• Th metal Tungsten lamba filamentleri kaplamasındaElektronik cihazlarda ve TV’lerde

Page 28: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

GELENEKSEL NÜKLEER REAKTÖRLER

• Sayı: Dünyada aktif 465 nükleer reaktör var.• Yakıt: Tamama yakını yakıt olarak doğal uranyum/kısmen zenginleş-

tirilmiş uranyum (%4) kullanır. Ayrıca Th, Th-U, Th-Pu, Th-U-Pu yakıt olarak kullanılabilir.

• U235(%0.7) zincir reaksiyon verir oysa U238 (%99.3) zincir reaksiyon vermez, Th nötron bombardımanı ile U233 dönüştürülür.

• Yakıt Tüketimi: 65000 t/y U Üretici: 19 firma• Soğutma/Modülasyon: Su, gaz, erimiş Pb, erimiş Pb-Bi,helyum/grafit• Atık Miktarı: 60 m3/y (30-50 t/y) (60000 t/y kül)• Atık Yok Etme: 5 yıl su havuzunda geçici dinlendirme, 30 yıl toprak

üzerinde ara depolama daha sonra 200-900 m derinlikteki yer altı madenlerinde sürekli depolama/okyanus çukurlarına atma.

• Güç: 1100KW/1.1GW (Atatürk Barajı) • Fiatı: 2.5-3.5 milyar $ (Doğal U yakıt kullanan Candu %10-20 daha

pahalı)• Bakım: 50 milyon $/y Yakıt: 30 milyon $/y Personel: 50 milyon $/y• Personel: 500 kişi İnşa Süresi: 5-6 yıl

Page 29: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

DÜNYA ENERJİ TALEBİNİN %17’Sİ NÜKLEER SANTRALLARDAN SAĞLANIR

3E: ENERJİ-EKONOMİ-EKOLOJİ DENGESİNİ İYİ OLUŞTUR

Page 30: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

ENERJİ SORUNU NASIL ÇÖZÜLÜR

• 1. Yap-İşlet veya Yap-İşlet-devret modelleri uygulanmalı,

• 2. Yabancı ve özel sektör girişi hızlandırılmalı,• 3. Otoprodüktör özendirilmeli,• Enerji tasarrufu ve verimliliği özendirilmeli (4 milyar

kwh tasarruf imkanı var),• Kayıp kaçak önlenmeli. (%20 → %8)• Yalıtıma önem verilmeli• Yerli üretim artırılmalı• Arz çeşitlendirilmeli

Page 31: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ
Page 32: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

NÜKLEER REAKTÖR ÜRETİCİLERİ

• AREVA: 1958, Fransız, Framatome kökenli, Siemens’i aldı.– Kurulu güç açısından en büyük firma.– 100/303 adet PWR inşa etti.– Yakıt hazırlama, reaktör tasarımı, inşaat, entrümantasyon, nükleer

ölçüm sistemleri, mühendislik alanlarının tümünde hizmet veren tek firma.

WESTINGHOUSE: 1957, ABD’li, Japon Toshiba 2006’da satın aldı.- 98 PWR ve 17 BWR inşa etti.AECL: 1952, Kanada’lı.- 48 Candu (PHWR) inşa etti.- Doğal Uranyumla çalışır.ATOMSTROYEXPORT: Rus, 1998 sonra yeniden yapılandı.- 30 VVER tipi santralı Bulgaristan, Macaristan, Çek Cumh.,

Slovakya’ya inşa etti.GE: 1950, ABD’li, 2007’de %40 hisseyi Japon Hitachi’ye sattı.- 90 adet BWR ve 10 adet nükleer santral Japonya’da inşa etti

Page 33: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TÜRKİYE’DE URANYUM

Türkiye’de uranyum araması 1960’lı yıllarda başlamış ve

Manisa-Salihli-Köprübaşı (Sedimanter, %0.04 U3O8, 2852 t)

Yozgat-Sorgun

(Sedimanter, %0.1 U3O8, 3850 t)

Uşak-Fakıllı ve Küçükçavdar

(Sedimanter, %0.05 U3O8, 490 t)

(Sedimanter, %0.08 U3O8, 490 t)

Aydın-Demirtepe

(Damar, %%0.08 U3O8, 1729 t)

sahalarında ekonomik olabilecek 9129 ton uranyum rezervi tespit edilmiştir.

MTA 1980’li yıllarda uranyumu zenginleştirip sarı pasta elde

etmişken, üretim maliyeti yüksek diyerek, çalışmalar durdurulup,

çalışanlar dağılmıştır. DÜNYA REZERVİ: 3.8 milyon ton

Tenör düşük, rezerv az, fiatlar düşük

Page 34: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

ABD ve Dünyada Toryumlu Nükleer Enerji Üretiminin Tarihçesi

• 1945-1958: Toryum nükleer reaktörlerde yakıt olarak nükleer enerjinin doğduğu 1950’li yıllarda başladı. ABD’deki önemli Brookhaven, Oak Ridge ve Los Alamos laboratuarlarında kullanıldı.

• 1958-1980: Th’un enerji uygulamaları bir çok prototip Th araştırma reaktörünün ABD, Almanya, Rusya ve Fransa’da inşa edilmesiyle arttı. 6000 t Th zenginleştirildi.

• 1980-2000: ABD başkanları Ford ve Carter nükleer enerjiyi desteklemedi. Th yakıtlı reaktörlere ilgi azaldı. ABD’nin yeterli toryum rezervlerine sahip olmaması ve uranyum yataklarına sahip olmasından dolayı uranyum yakıtlı reaktörleri desteklemektedir. Son onlarca yıldır, birçok ulus (Almanya, Hindis-tan, Rusya, İngiltere, Japonya, Brezilya ve ABD) (Th-U), (Th-Pu) ve (Th-U-Pu) yakıtlı reaktörleri denemektedir. Bazı devletler toryum yakıtlı gaz/su soğutmalı güç reaktörleri ile ilgili çalışmaları terk etse de 1990’ların ortalarından beri dünyanın önemli toryum rezervlerine sahip ülkeler toryum yakıtlı reaktörlere ilgisini artırarak sürdürmektedir.

• 2000 yılından Bugüne: Dünyanın ikinci büyük monazit yataklarına sahip Hindistan bir milyar nüfusuna yerli enerji üretmek için nükleer enerjiyle ilgilenmektedir. Ayrıca dünyanın 4. büyük toryum rezervine sahip Norveçli Thor Energy Mart 2007’de toryum yakıtlı nükleer reaktör kurma isteğini açıklamıştır (Reuters, 2007). Thor Energy mevcut nükleer teknoloji ile 2 GW’lık yaklaşık 4 milyar $’a Norveç’in enerji ihtiyacının %15’ini karşılayacak toryum yakıtlı reaktör yapma isteğini hükümete bildirmiştir. AB, ABD, Kanada; Japonya, Rusya, Pakistan ve bazı Asya ülkeleri (Endonezya, Vietnam, Malezya, Çin vs) toryumlu reaktörlerle ilgilenmektedir.

Page 35: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

CERN: Avrupa Nükleer Araştırma Merkezi

• 1954’te Cenevre’de 12 Avrupa ülkesi tarafından kuruldu.• Nükleer Araştırmaları ortak yapmak ve ABD karşısında güçlü olmak

için oluşturuldu.• Bugün 20 üyesi var. Ayrıca ABD, Rusya, Japonya, İsrail, Çin,

Hindistan, Pakistan, İran’la işbirliği yapılıyor.• Ülkeler GSMH’ları oranında bütçeye katkı yapıyor.• Yüksek enerji fiziği ve jenerik teknolojilerle ilgili Ar-Ge yapar.• Dünyanın en büyük parçacık hızlandırıcısına sahip.• Parçacık hızlandırıcısı 21.yy’ın 10 kritik teknolojisi içinde.• Türkiye CERN’de gözlemci (TEAK) statüsündedir.• 1993’te nükleer yakıt olarak Th’un U yerini alacağı kanıtlandı.• 1998’te Th yakıtlı reaktör fizibilitesi tamamlandı.• Test amaçlı protip hızlandırıcı 2005’de yapıldı.• Seri üretim 2010 yılında yapılabilir.• Bilim adamlarımız bu çalışmalara katılmalı.

Kişi Başına GSMH ($) 1955 1995TÜRKİYE 300 2500JAPONYA 280 25000G. KORE 70 15000

Nükleer Enerji

Page 36: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

TÜRKİYE İÇİN REAKTÖR SEÇİMİ

• Türkiye’de kurulacağı açıklanan nükleer santrallerin reaktör tipi de tartışma konusudur. Dünyada ağırlıklı olarak CANDU, yani ağır su ile basınçlı su reaktörleri (PWR) bulunmaktadır. Bu anlamda 1GW elektrik gücündeki bir PWR reaktörünün maliyeti 2.2 ile 2.5 milyar dolar arasında değişmektedir. Söz konusu santrallerin elektrik verimliliği daha yüksektir. CANDU reaktörlerinin ilk yatırım maliyeti diğer reaktörlere göre %10-20 daha yüksek olan bir teknolojiye sahiptir. Ancak zenginleştirilmiş uranyum yerine doğal uranyum kullanıldığı için bu tip reaktörlerin işletim maliyeti daha düşüktür. Türkiye'nin uranyum ve toryum kaynaklarını kullanma isteğine cevap verebilecek en avantajlı teknoloji olarak CANDU ve enerji hızlandırıcılı (EA) reaktörler gösterilebilir. Bugün inşa halindeki 27 reaktörün 8'i CANDU’dur. Hindistan bu tip reaktörlerden 6 tane inşa edilmektedir

Page 37: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

NÜKLEER ENERJİDE URANYUMUN GELECEĞİNE BAKIŞ

• Enerji tüketimindeki hızlı artışla birlikte dünyadaki kömür, petrol, doğalgaz gibi fosil yakıtların en fazla 50 yıl içinde tükenmesi beklenmektedir. Bu fosil yakıtların çevreye yaydığı CO2 ve SO2 gibi gazlar tüm dünyanın iklimini canlıların yaşayamayacağı bir hale getirmekte, kömür santrallarından çıkan küllerdeki radyoaktivite de havada yayılarak solunum ve sindirim yolları ile vücutta depolanabilmektedir. Mevcut nükleer santralları ise atom bombası için plütonyum üretmek üzere dizayn edilmiş, daha sonra nükleer enerji üretimine adapte edilmişlerdir. Bu eski tip santralların atık problemleri ve kaza olasılıkları nedeni ile insanlık daha temiz, güvenli ve devamlılığı olan bir enerji kaynağına ihtiyaç duymaktadır

Page 38: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

SİVRİHİSAR TORYUM CEVHERİ

• Sivrihisar yatağı çok çeşitli minerallerden oluştuğu için kompleks cevher olarak adlandırılmaktadır. Bu yatakta florit (%37,44), barit (%31,04) ve bastnazit (%3,14) amaçlı çalışmalar 0-50 metre derinlikte yürütülmüş, toryum amaçlı çalışmalar ise 400 metre derinliğe kadar ulaşmıştır. Bu çalışmalar sonucu bulunan yaklaşık 380 bin ton toryumun ortalama tenörünün %0.21 olduğu saptanmıştır

• Bu yataklardaki toryum tenörü seçme numunelerde %3’e kadar çıkabilmektedir. Tenörün dağılımı homojen olmadığından tüm sahayı kapsayacak bir harita çıkarılamamış, hesaplamalarda her bir damardan alınan örneklerin kimyasal analiz sonuçlarının geometrik ortalaması alınmıştır.

Page 39: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

ThO2 Rezervi Ortalama Tenör (%)

Küçük Höyüklü Sektörü

97.560 0,196

Koca Devebağırtan Sektörü

286.424 0,217

Toplam 383.984 0,212

Eskişehir-Sivrihisar Toryum Rezervleri* (T)

Kaynak: MTA, ETİ HOLDİNG, TAEK*Tahmin

•Toryum yatağı hidrotermal-filon dolgusu şeklinde kompleks bir oluşumdur .

Page 40: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

DÜNYADA EN FAZLA 60 YILLIK URANYUM KALDI

•Nükleer santrallerde yakıt olarak zenginleştirilmiş uranyum kullanılıyor. Dünya üzerinde faaliyet gösteren 465 nükleer santralin yıllık uranyum ihtiyacı 65 bin ton seviyesinde bulunuyor. Dünyanın toplam uranyum rezervi ise 11 milyon ton düzeyinde. Araştırmalar bugün çıkarılan uranyum miktarının talebe göre en çok 60 yıl yeteceğini gösteriyor. Dünyada 19 uranyum üreticisi var. Bu ülkeler dünya uranyum üretiminin % 90'ını karşılıyor

Page 41: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Atıklar 35 Yıl Bekletiliyor• Son rakamlara göre ortalama bir nükleer santralinin maliyeti 3-5 milyar

dolar arasında değişiyor. Büyük ölçekli bir santral ise yılda yaklaşık 1.1 GWS(Atatürk Barajı kadar) enerji üretiyor. Bu büyüklükte bir santral yılda ortalama 60 m3 radyoaktif atık üretiyor. Bu teknolojiyi kullanan ülkeler atıkları 70°C varan yüksek ısıları nedeniyle önce santral yakınlarında bulunan soğuk su havuzlarında 'dinlendiriyor. Bu dinlendirme 5 yıl sürüyor. Ardından ara depolama safhası başlıyor. Soğuyan radyoaktif maddeler toprak altına gömülmeden önce ışıma oranının düşmesi için genellikle toprak üzerinde bulunan ara depolarda yaklaşık 30 yıl daha bekletiliyor. Bu depolar 60 cm’lik beton ve çelikten oluşan duvarlarıyla her türlü deprem, sel ve yangına karşı dayanacak şekilde inşa ediliyor. Son depolama safhasında ise yaklaşık 35 yıldan beri bekletilen atıklar toprak altına gömülüyor. Bunun için eski ve kurumuş maden ocakları kullanılıyor. Bu yer altı depolarının derinlikleri ise 200-900 m arasında değişiyor. İşin bu kadar uzun sürmesi atıkların içerisinde bulunan ağır metal adı verilen maddelerin etrafa yaydıkları radyasyonun azalmamasından kaynaklanıyor.

Page 42: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Avrupa'nın Nükleer Atıkları

• Avrupa'da bu atıklardan tam 12 bin ton toprak altında bulunuyor.

• Bu rakama her yıl bin 730 t yeni atık ekleniyor.

• Son verilere göre Avrupa'da halen 145 nükleer santral faaliyet gösteriyor.

• Alman Nükleer Enerji Kurumu'nun rakamlarına göre bu atıkları güvenli olarak ortadan kaldırmanın yıllık faturası ise 30-35 milyon Euro arasında değişiyor.

Page 43: TORYUM NÜKLEER YAKITININ PERSPEKTİFİ,  ve ÜLKEMİZDE ENERJİ ÜRETİMİ AÇISINDAN ÖNEMİ

Nükleer atık sorunu