thesis defense presentation, maxwell fagin

28
Optimization of Supersonic Retropropulsive Flight for Human Class Missions to Mars Maxwell H. Fagin Advisor: Professor Michael J. Grant Purdue University, School of Aeronautics and Astronautics Thursday, December 10, 2015

Upload: max-fagin

Post on 17-Feb-2017

313 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thesis Defense Presentation, Maxwell Fagin

Optimization of

Supersonic Retropropulsive Flight for

Human Class Missions to Mars  

Maxwell H. Fagin Advisor: Professor Michael J. Grant

Purdue University, School of Aeronautics and Astronautics Thursday, December 10, 2015

Page 2: Thesis Defense Presentation, Maxwell Fagin

Since 1960, 13 spacecraft have made it to the top of Mars’ atmosphere…

…and 5 of them were destroyed trying to get to the surface.

Mars 2 Mars 3 Mars 6 Viking 1 Viking 2

Pathfinder Polar Lander Spirit Opportunity Beagle

Phoenix Curiosity

“Space is hard, but landing on Mars is harder.”

Background: History

Page 3: Thesis Defense Presentation, Maxwell Fagin

Two phases of entry, descent and landing (EDL):

Background: History

Terminal Phase High Energy Phase Altitude Range 150 km – 10 km 10 km – Surface  

Velocity Range   Mach 30 – Mach 1.5   Mach 1.5 – 0  

Critical Tasks  Dissipate orbital energy

Survive atmospheric heating Survive g-loads  

Reach target site Reconfigure for landing Achieve soft touchdown

Page 4: Thesis Defense Presentation, Maxwell Fagin

Background: History

Altitude (Potential Energy)

Velocity (Kinetic Energy)

Touchdown

β    >  200    

β  =  100    

β  =  50  

β =m

CD ⋅A

Ballistic Coefficient Entry Interface

Page 5: Thesis Defense Presentation, Maxwell Fagin

Background: History

Figure: Braun and Manning, 2012  

β =m

CD ⋅A

Page 6: Thesis Defense Presentation, Maxwell Fagin

Background: History

64  

90  

146  62  

65  

Apollo 330  

Figure: Schoenenberger et. al, 2009, Images: NASA  

Only occurs here.  All of this…  Not useful during high energy phase.  

?

Page 7: Thesis Defense Presentation, Maxwell Fagin

Modern Developments: IADs

β =m

CD ⋅AInflatable Aerodynamic Decelerators.  

Page 8: Thesis Defense Presentation, Maxwell Fagin

Modern Developments: SRP

1)  A  method  to  dissipate  energy  without  compromising  on  targe6ng  2)  Mass  penal6es  significant,  but  may  be  the  only  way  

Page 9: Thesis Defense Presentation, Maxwell Fagin

SRP: Historical Research

Mo6va6on:  Change  the  way  the  vehicle  flies  by  changing  the  shape  of  the  airflow  around  it,  WITHOUT  changing  the  shape  of  the  vehicle    Discoveries  that  an  axial  jet  can:  -­‐Displace  the  bow  shock  -­‐Negate  all  drag  -­‐Reduce  heat  load  (bow  shock  radia6on,  enthalpy  effects)  -­‐Discovery  that  a  peripheral  jet  can:  -­‐Displace  the  bow  shock  -­‐Enlarge  the  bow  shock  -­‐AUGMENT  DRAG  ON  THE  VEHICLE  (show  plot)  -­‐“Acts  as  a  force  mul6plier  for  the  engine”  

Page 10: Thesis Defense Presentation, Maxwell Fagin

SRP: Modern Research

Focus:  CFD  Reproduc6on  of  wind  tunnel  data  CFD  studies  of  nozzle  placement  and  cant  angle    The  SRP  Envelope:  Discussion  of  limits  and  why  they  are  there  Introduce  Concept  of  op6mal  C_T  Falcon  9  Flight  video  

Page 11: Thesis Defense Presentation, Maxwell Fagin

Thesis Background Mo6va6on  

 -­‐We  know  how  to  solve  this  problem.  We  did  it  for  the  moon.    -­‐Engines  at  high  enough  C_T  negate  aerodynamics    -­‐All  propulsive  lunar-­‐esque  landings  possible  (show  plot)    -­‐Cost  prohibi6ve,  TMI  mass  prohibi6ve  

 Aerodynamic  decelera6on  is  free,  propulsive  decelera6on  is  not.  But  we  need  a  propulsion  system  for  landing  accuracy.  

 -­‐As  long  as  we’ve  GOT  a  propulsive  system,  how  best  to  use  it?    -­‐Use  it  as  lible  as  possible  and  s6ll  land    -­‐Thrus6ng  full  through  the  SRP  envelope  is  throwing  away  free  decelera6on.  Why  not  

throble  back  and  use  it?    Gravity  losses  

Page 12: Thesis Defense Presentation, Maxwell Fagin

Thesis Background Goal  

 -­‐What  kind  of  vehicle  would  this  imply?  How  heavy?    -­‐For  what  landing  requirements  is  this  strategy  beneficial?    -­‐How  big  are  the  gravity  losses?  Are  they  offset  by  other  factors?    -­‐What  other  design  tradeoffs  are  required?  

 

Page 13: Thesis Defense Presentation, Maxwell Fagin

Study Details: Planet Planet  

 -­‐Proper6es    -­‐MOLA  

 

Page 14: Thesis Defense Presentation, Maxwell Fagin

Study Details: Atmosphere Planet  

 -­‐Proper6es    -­‐MOLA  

 

Page 15: Thesis Defense Presentation, Maxwell Fagin

Study Details: Equations of Motion

V =Velocityh = Altitudes = Downrangeγ = Flight Path Angle

dVdt

= −FDm− g ⋅sin(γ )

dγdt=FLmV

− gcos(γ )

dhdt=V ⋅sin(γ )

dsdt=V ⋅cos(γ )

F!"

Drag

g

γ

α

h^

F!"

Lift

s^

V!"

For non-propulsive 2D motion over a flat planet…  

Equations of Motion  

Page 16: Thesis Defense Presentation, Maxwell Fagin

Study Details: Equations of Motion

T!" D

!"

V!"

!sγ

α

!h

ε

εvect

!L

ω p

V =Velocityh = Altitudes = Downrangeγ = Flight Path Angle

Page 17: Thesis Defense Presentation, Maxwell Fagin

dγdt=

FLmV

⋅cos(σ ) + − gcos(γ ) +Vrcos(γ ) + 2wp cos(φ)cos(ψ) +

Study Details: Equations of Motion

dVdt

= −FDm

+ − g ⋅sin(γ )

Coriolis

w2prvcos(φ) cos(γ ) ⋅cos(φ)+ sin(γ ) ⋅sin(φ) ⋅sin(ψ)[ ]Centrifugal

(Planet’s Rotation)

Centrifugal (Vehicle’s motion)

dψdt

=FLmvsin(σ )cos(γ )

+ −Vrcos(γ )cos(ψ)tan(φ) + 2wp tan(γ )cos(φ)sin(ψ)− sin(φ)( )+

Gravity Aerodynamics

Aerodynamics Centrifugal

(Vehicle’s motion) Coriolis

−w2

prv ⋅cos(γ )

⋅ sin(φ) ⋅cos(φ) ⋅cos(ψ)[ ]Centrifugal (Planet’s Rotation)

Transform for 3D motion over a flat planet…  

Page 18: Thesis Defense Presentation, Maxwell Fagin

Study Details: Spacecraft

Orion  aerodynamics    -­‐Propulsion  system    -­‐LOX-­‐Methane  vs.  hypergolic,  why  later  is  more  likely  for  first  crew.  

Page 19: Thesis Defense Presentation, Maxwell Fagin

Study Details: Trajectory

Keplerian  Ballis6c  Pull  Up  Level  Flight  SRP  envelope  behavior  Review  Each  Phase  and  Cri6cal  Aspects  

Page 20: Thesis Defense Presentation, Maxwell Fagin

Results: Drag Preservation Model

Overview  of  p(C_T)  law  Deriva6on  of  op6mal  throbling  law  

Page 21: Thesis Defense Presentation, Maxwell Fagin

Results: Optimal Throttling

Review  SRP  envelope,  and  C_T  driven  throble  law  sec6on  

Page 22: Thesis Defense Presentation, Maxwell Fagin

Results: Propellant Savings vs. L/D

Design  curves  from  thesis,  and  interpreta6on.  Likely  L/D  for  vehicle  to  fly.  

Page 23: Thesis Defense Presentation, Maxwell Fagin

Results: Downrange vs. L/D

Design  curves  from  thesis,  and  interpreta6on.  Extent  of  range  control  possible.    Spend  extra  6me  on  these  slides,  emphasize  results.  

Page 24: Thesis Defense Presentation, Maxwell Fagin

Future Work: Indirect Optimization

GPOPS,  path  constraints,  contour  following  controls  

Page 25: Thesis Defense Presentation, Maxwell Fagin

Future Work: Lifting Body, HL20

Discussion  of  Kshi6j+Cordell,  agbody  thrust  op6on  

Page 26: Thesis Defense Presentation, Maxwell Fagin

Future Work: Extended SRP envelope

Stall  speed  as  Mach  number  limit  to  SRP  envelope.  Benefits  to  entering  envelope  from  Mach  number  limit  Expected  small  gravity  losses  

Page 27: Thesis Defense Presentation, Maxwell Fagin

Summary

Restatement  of  goals,  and  answer  of  ques6ons:    -­‐What  kind  of  vehicle  would  this  imply?  How  heavy?  

 -­‐For  what  landing  requirements  is  this  strategy  beneficial?    -­‐How  big  are  the  gravity  losses?  Are  they  offset  by  other  factors?    -­‐What  other  design  tradeoffs  are  required?  

Page 28: Thesis Defense Presentation, Maxwell Fagin

References and Questions