wireless power transfer using maxwell and simplorer · • maxwell + simplorer maxwell...

38
Wireless Power Transfer using Maxwell and Simplorer Zed (Zhangjun) Tang Mark Christini Takahiro Koga ANSYS, Inc.

Upload: dangbao

Post on 04-Jan-2019

503 views

Category:

Documents


32 download

TRANSCRIPT

Page 1: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Wireless Power Transfer using Maxwell and Simplorer

Zed (Zhangjun) TangMark ChristiniTakahiro KogaANSYS, Inc.

Page 2: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Wireless Power Supply System for EV• Inductive type

1mm        1cm         10cm         1m          10m         100m

100%

50%

0%

Transfer Distance

Efficiency Resonance type

Inductive type(~15W) Inductive type(~50kW)

Ref: EE Times Japan 2009.10

ACPower

Inverter

Cable

Capacitor

Primary CoilPrimary Coil

Secondary CoilSecondary Coil

BatteryRectifier/Charger

MaxwellSimplorer

Page 3: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Geometry

Page 4: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Schematic

20kW @ 400V/20kHz

Core

CoilShield Plate

Secondary Coil

Primary Coil

Page 5: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Materials

Secondary

Primary

500mm410mm

90mm

90mm330mm

400mm

Magnetic Core• Material : FDK 6H40 (Bs=0.53T, μi=2400)

Winding Coil• Litz wire : 0.25φ × 384 parallel turns• Conductivity : 5.8×107[S/m]• Primary : 10 turns• Secondary : 5 turns

Page 6: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

ANSYS MechanicalThermal/Stress

RMxprtMotor Design

SimplorerSystem Design

PP := 6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

TorqueD2D

MaxwellElectromagnetic Components

PExprtMagnetics

Q3DParasitics

Model order Reduction

Co-simulation

Field Solution

Model Generation

Optimization

ANSYS CFDThermal

Electromechanical Design Flow

Page 7: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

• Solves 2-D and 3-D electromagnetic field problems using FEA

• Five Solution Types: Electrostatic, Magnetostatic, Eddy Current, Transient Electric, Transient Magnetic

• Determines R,L,C, forces, torques, losses, saturation, time-induced effects

• Simulation of: Power Magnetics, Inductors, Transformers, Motors, Generators, Actuators, Bus bars

• Co-simulation with Simplorer

• Direct link from PExprt, RMxprt

• Direct link to ANSYS Mechanical

Maxwell ‐ Introduction

Page 8: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

• Three Basic Simulation Types:• Circuits• Block Diagrams• State Machines

• Multi‐domain simulator for electrical, magnetic, mechanical, fluid, and thermal systems

• Integrated analysis with EM tools (Maxwell, PExprt, Q3D, RMxprt, HFSS) and thermal tools (ANSYS CFD, ANSYS Icepack)

• Co‐simulation with Maxwell and Simulink• Optimization and Statistical analysis • VHDL‐AMS capability

SUM2_6

CONST

id_ref

G(s)

GS2

I

I_PART_id

GAIN

idLIMIT

yd

UL := 9

LL := ‐9

GAIN

P_PART_id

KP := 0.76

IMP = 0

IMP = 1IMP = 0IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

Circuits

Block Diagrams

State Machines

12

R1 R2 R3 R450 1k 1k50

C1 C2

3.3u

3.3u

V0 := 5 V0 := 0

N0005

N0003N0004

N0002

Simplorer ‐ Introduction

Page 9: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Solution Flow Chart

• Maxwell + Simplorer

MaxwellMagnetostatic

MaxwellEddy Current Simplorer

AC / TRImpedance Model

Circuit / Drive / Controller designWaveform, Efficiency, Power factor, Response

MaxwellEddy Current

Fields, Losses

Core, Winding

GapSliding

Page 10: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Maxwell / Magnetostatic

• L, M, k : • Self Inductance• Mutual Inductance• Coupling Coefficient

k=0.54

L1   MM    L2

M

L1

L2

Page 11: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Maxwell / Magnetostatic

Inductance L, MCoupling factor kFieldCore saturation

Mag B

Coupling factor k – sliding gap

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00Sliding [mm]

0.00

0.20

0.40

0.60

0.80

1.00

Mat

rix1.

Cpl

Coe

f(Cur

rent

_1,C

urre

nt_2

)

3D_Static_sliding_kCoupling - k ANSOFT

Curve InfoMatrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='50mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='100mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='150mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='200mm'

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00Sliding [mm]

0.00

0.20

0.40

0.60

0.80

1.00

Mat

rix1.

Cpl

Coe

f(Cur

rent

_1,C

urre

nt_2

)

3D_Static_sliding_kCoupling - k ANSOFT

Curve InfoMatrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='50mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='100mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='150mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='200mm'

Core Shape/MaterialNumber of turnsCurrent Amp.Gap

Page 12: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

0.00

0.01

0.10

1.00

Gap

[met

er]

2D_Static_BHMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

1

10

100

1000

Gap

[mm

]

2D_StaticMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

Maxwell / MagnetostaticVerification for core saturation:

Linear Material(Initial permeability)

Nonlinear Material(BH curve)

Specification Area

Saturation

X: Gap [mm] / Y: Input Current [A] / Color: Mutual inductance [nH]

21LLkM

Specification Area

Page 13: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

0.00 100.00 200.00 300.00 400.00H (A_per_meter)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

B (t

esla

)Maxwell / Magnetostatic• Verification for core saturation

• Core’s BH curve, Mag_B field plot• No magnetic saturation

Nonlinear BH curve

~0.4T

Maximum point : 0.26T

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

0.00

0.01

0.10

1.00

Gap

[met

er]

2D_Static_BHMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

Specification Area

Page 14: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Maxwell / Eddy Current• State Space Modeling for Simplorer

• Frequency domain impedance(R,L) model for circuit simulation

• AC fields and Losses (after circuit simulation)

Page 15: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Maxwell / Eddy Current Solver

Core Shape/MaterialNumber of turnsFrequencyGapShield Shape/Material

AC CharacteristicsInductance L, MCoupling factor kFieldCore HysteresisShield

Shield Plate (Aluminum)

Core(Power Ferrite)

No Shielding Shielding

Page 16: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Simplorer with Maxwell State Space Model

AC / Frequency domain TR / Time domain

Page 17: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Efficiency Map• Output/Input Power• Tuned capacitance for each conditions• Blue valley vs sliding indicates poor design (coil too small)

90%

50%

20%

%100

cos

in

out

PPVIP

Efficiency[%]

Sliding [mm]Gap [mm]

Gap Sliding

Max.96%

Page 18: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

0

0

0

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1uF

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

Y1 [

A]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

200.00

700.00

Y1 [

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

0.00

125.00

250.00

Y1 [A

]

-1000.00

-500.00

0.00

500.00

873.02

Y2 [V

]

MX1: 2.9200MX2: 2.9811

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

0.0610

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

PWRProbe

PWR_Probe1

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

PWRProbe

PWR_Probe2

0

0

0

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1uF

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

Y1 [A

]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

200.00

700.00

Y1 [

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

0.00

125.00

250.00

Y1 [A

]

-1000.00

-500.00

0.00

500.00

873.02

Y2 [V

]

MX1: 2.9200MX2: 2.9811

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

0.0610

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

PWRProbe

PWR_Probe1

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

PWRProbe

PWR_Probe2

Maxwell – Simplorer System Simulation

AC400V Rectify InverterWireless Power Transformer Battery

Controller

Page 19: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

0

0

0

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1uF

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

Y1 [A

]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

200.00

700.00

Y1 [

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

0.00

125.00

250.00

Y1 [A

]

-1000.00

-500.00

0.00

500.00

873.02

Y2 [V

]

MX1: 2.9200MX2: 2.9811

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

0.0610

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

PWRProbe

PWR_Probe1

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

PWRProbe

PWR_Probe2

0

0

0

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1uF

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

Y1 [A

]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

200.00

700.00

Y1 [

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

0.00

125.00

250.00

Y1 [A

]

-1000.00

-500.00

0.00

500.00

873.02

Y2 [V

]

MX1: 2.9200MX2: 2.9811

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

0.0610

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

PWRProbe

PWR_Probe1

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

PWRProbe

PWR_Probe2

Maxwell – Simplorer System Simulation

AC400V Rectify InverterWireless Power Transformer Battery

Controller

Page 20: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Simplorer:  Design Driver Controller in a System Level Simulation

Circuit DriverController

AC/TR ResponseWaveformEfficiency

Page 21: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Back to Maxwell: Core Hysteresis Loss Using the Current Amplitude and Phase from Simplorer

Hysteresis Loss 

Considering Magnetic Loss tangent

tan1 jj

Freq [kHz]Core1st_LossSetup1 : LastAdaptivePhase='0deg'

Core2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 0.909102 0.313144

3D_EddyCore Loss ANSOFT

Core loss[W]

Primary

Secondary

Page 22: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Back to Maxwell: Shield Surface Loss Using the Current Amplitude and Phase from Simplorer

Surface Loss

Key Point:Impedance boundary BC

Primary Secondary

Freq [kHz]Shield1st_LossSetup1 : LastAdaptivePhase='0deg'

Shield2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 22.938675 37.886583

3D_EddyShield Loss ANSOFT

Freq [kHz]Shield1st_LossSetup1 : LastAdaptivePhase='0deg'

Shield2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 22.938675 37.886583

3D_EddyShield Loss ANSOFT

Shield Loss[W]

Page 23: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Back to Maxwell: Field Solution Using the Current Amplitude and Phase from Simplorer

Magnetic Field Intensity

0.00 0.20 0.40 0.60 0.80 1.00Distance [meter]

0.00

0.00

0.01

0.10

1.00

10.00

Mag

_B [m

Tesl

a]

2D_EddyXY Plot 1 ANSOFT

Curve InfoMag_B

Setup1 : LastAdaptiveFreq='20kHz' Phase='0deg'

0.00 0.20 0.40 0.60 0.80 1.00Distance [meter]

0.00

0.00

0.01

0.10

1.00

10.00

Mag

_B [m

Tesl

a]

2D_EddyXY Plot 1 ANSOFT

Curve InfoMag_B

Setup1 : LastAdaptiveFreq='20kHz' Phase='0deg'

Magnetic Field Density

Distance

Distance

Page 24: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Back to Maxwell and Link to HFSS• Maxwell → HFSS Dynamic Link

• Magnetic source solved by Maxwell and Link to HFSS field solution• Far Field and Large Area electromagnetic solution• HFSS can handle a car body object as 2D sheet object

Maxwell

HFSS

Page 25: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Back to Maxwell and Link to HFSS• Maxwell → HFSS Dynamic Link

• Magnetic source solved by Maxwell and Link to HFSS field solution• Far Field and Large Area electromagnetic solution• HFSS can handle a car body object as 2D sheet object

Maxwell

HFSS

Page 26: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Thermal /Stress Analysis using Workbench• Maxwell 3D Eddy Current losses can be imported directly to ANSYS steady‐state thermal and stress solver for mechanical analysis

Page 27: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

100.00

300.00

Y1 [V

]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455

0.0030

Curve Info Y Axis rmsWM1.I

TR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

100.00

300.00

Y1 [V

]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455

0.0030

Curve Info Y Axis rmsWM1.I

TR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

Rload

10ohm

Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

Conclusion• Wireless power transfer for HEV/EV’s can easily be simulated with ANSYS electromagnetic and circuit simulation tools.

• The full solutions requires a system level approach. • ANSYS Products can also support multi‐physics simulation, such as combined Thermal / Structure for mechanical analysis.

Page 28: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Wireless power supply implementation for electric vehicles batteries charging

Ing. Andrea Serra, Dott. Giovanni Falcitelli, Ing. Emiliano D’AlessandroEnginSoft S.p.A.

Alfredo SonnanteVision s.r.l.

Page 29: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

• Vision is a young consulting company specialized in design, management, promotion anddistribution of industrial systems and innovative technology infrastructures.

• It proposes and provides technologies and innovative services for enterprises, publicinstitutions and private users, through research programs with international partners andpilot actions.

• In the automotive research framework, Vision promotes the E‐way® project, that is theresult of a collaboration between Vision and the Italian Region of Puglia. The latterapproved a measure of financial relief for the start‐up of innovative micro‐enterprises(Regional Regulation Nr. 25 of 11.21.2008) .

• Vision mission is to innovate actual vehicles power chain, through power supply systemsbased on WPT (Wireless Power Transfer).

Page 30: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

E‐way® system consists of an electromagnetic carpet with emitters that can transfer power

to a collector placed under the car floor in order to charge its batteries WHILE the vehicle is

moving.

2) Emitters carpet

3) Asphalt layer

5) Car collector

6) Car batteries

Page 31: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: physical aspects

A more complex model needs to bedefined and more parameters can affectsimulations and correspondent results.

A “dynamic” approach must beimplemented in order to considerelectromechanical interactions.

Virtual prototyping should be based on atransient to transient (Simplorer toMaxwell) analysis in order to evaluate allphysic phenomena involved in thisapplication.

Page 32: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: physical aspects

Current densities can be induced on the collector coil as a consequence of thefollowing separated and independent effects:

Motion coupling

The relative motion between the emitter and the collector concatenates a space variant 

magnetic flux and generates the correspondent f.e.m.

Motionless coupling

Alternate source currents in the emitters generate a time variant magnetic flux that concatenates with the collector (even if the 

latter does not move).

Page 33: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: numerical approach

In order to take in account both the time and space variations (AC and motion), the numerical analysisshould theoretically be carried on through a transient to transient with motion simulation(Simplorer+Maxwell with motion).However, in this case, the time stepping for the analysis should be fine enough to follow the much higherfrequency periodicity of the alternate current.

A possible Simplorer scheme for a transient to transient with motion analysis

Page 34: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: numerical approach

A typical vehicle cruise speed, that is the relative speed between the emitter and the collector carpet, isaround 90km/h (25m/sec). This means that the induced current frequency is around 25Hz/de (where de isthe distance between two consecutive collector rows of the carpet).

If• emitters and collectors have similar

size• emitters are adjacent in the carpet• emitters’ alternate current are

more than 100Hz

The frequency of the current induced byflux time variations and of the currentsinduced by flux space variations are quitedifferent.

Physic phenomena are frequencydecoupled and can be analyzed throughdifferent numerical approaches.

Page 35: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: numerical approach

Motionless coupling

A parametric, as a function of different position of the collector with respect to the carpet, 

transient analysis will be performed to evaluate the main stationary system performances.

Motion coupling

A velocity driven mechanical transient analysis will be performed to evaluate the main 

dynamic system performances.

Transient (Simplorer) to transient with motion (Maxwell) system control.

Transient (Simplorer) to transient without motion (Maxwell) system control.

Page 36: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: sample results

Sample of the induced currents on a collector that moves at 90km/h over an “one row carpet” of emittersplaced at one meter distance each other.Current amplitudes increase as soon as they cross one of the emitters’ section.

Page 37: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: sample results

Sample of the induced currents on the collector that moves at 90km/h over an “one row carpet” ofemitters placed at one meter distance each other.Current amplitudes increase as soon as they cross one of the emitters’ section.

Page 38: Wireless Power Transfer using Maxwell and Simplorer · • Maxwell + Simplorer Maxwell Magnetostatic Maxwell Eddy Current Simplorer Impedance Model AC / TR Circuit / Drive / Controller

Eway®: sample results

Sample of the induced forces on the collector that moves at 90km/h (toward the x direction of thecoordinate system) over an “one row carpet” of emitters placed at one meter distance each other.Current amplitudes increase as soon as they cross one of the emitters’ section.

Forces along the x direction are mainlyresistive and they oppose to the motion.The correspondent power is dissipated andcannot be collected.

Forces along the z direction do notgenerate mechanical work but they suggestthat some energy can be collected towardbatteries. This behavior reflects thealternator working principle, where theprimary winding is represented by theplanar carpet and the secondary winding isrepresented by the collector.