thermal energy harvesting plasmonics based chemical sensors library/events/2015/crosscutting... ·...

21
WWW.SUNYIT.EDU WWW.SUNYCNSE.COM Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter SUNY Colleges of NanoScale Science and Engineering CNSE Fall 2014

Upload: dinhkhue

Post on 05-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Thermal Energy Harvesting Plasmonics Based Chemical Sensors

Prof. Michael A. Carpenter SUNY Colleges of NanoScale Science and Engineering

CNSE Fall 2014

Page 2: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Harsh Environment Chemical Sensors

Nanocomposite Materials • Optical analysis of Au and Ag SPR bands • YSZ matrix material • 500-800°C operating environment • SOFC, Jet engines, turbines • CO, H2, O2, NOx, RxS

Goals of Research are Three-Fold 1.  Develop prototype materials for

use in next generation sensing devices •  Sensitivity, reliability,

selectivity 2.  Determine fundamental material

properties/dynamics/kinetics which govern the sensing mechanism

3.  Develop new sensing strategies and paradigms

Need for new sensing technologies to meet the requirements for zero emission energy sources

Page 3: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

General Overview of Plasmonics Lab Bench

3

Sapphire Substrate

30 – 300nm

YSZ, CeO2, TiO2 Au

Abs

orpt

ion

Wavelength (nm) 400 600 800

624

625

626

627

628

629

630

Peak

Pos

ition

Time

ON ON OFF OFF

Exposure Plot

YSZ = Yttria Stabilized Zirconia

Experimental Setup

Page 4: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

t

E

+ time = t

5 - 100 nm

time = t + T/2

-

-

+

Background - Au Nanoparticles as Optical Beacons For Transduction Events

Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer, Berlin, 1995

( ) 30

2

R4m)(21N

πεχε eib

m

eΩ++

radius particle-Rconst. dielectric trans.Interband-)(

constant dielectric (YSZ)matrix - space free ofty permittivi -

masselectron - mnumberelectron free - N

Frequency SPR -

ibm

0

Ω

Ω

χ

ε

εe

400 500 600 700 800 900 10000

1

2

3

4

5

Abs

orpt

ion

Inte

nsity

(a.u

.)

Wavelength (nm)

Fit Range

Lorentzian Fit toSPR Adsorption Peak

Page 5: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Example of Data Acquisition

5

Abs

orba

nce

Wavelength (nm) 400 600 800

Peak Position

Time

Pea

k P

ositi

on

Air NO2 in Air Air

Exposure Plot

600

610

( )mε21N+

Δ∝ΔΩH2 CO NO2

Reducing

Oxidizing Rogers, P. H.; Sirinakis, G.; Carpenter, M. A. J. Phys. Chem. C 2008, 112, 6749 Baltrus, J. P.; Ohodnicki, P. R.; Joy, N. A.; Carpenter, M. A.; Appl. Surf. Sci., 313, 19-25 (2014).

Rogers, P. H., Sirinakis, G., Carpenter, M. A., J.Phys. Chem. C, 112, 8784-90 (2008).

Page 6: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Selectivity Challenge How to Discriminate

Between Gases?

Data Analysis (extract selective information)

Materials (influence selective reactions)

Metal Oxide Gold Particles

• Principal Component Analysis • Linear Discriminant Analysis • (Neural Networks, Cluster Analysis…)

• Size • Shape

• YSZ • TiO2 • CeO2

Exposure Conditions

• Temperature

G. Dharmalingam, N. A. Joy, B. Grisafe, M. A. Carpenter, Beilstein Journal of Nanotechnology, 3, 712 (2012)

Page 7: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Sensor  Array  Studies:  Material  Control  

H2   CO   NO2  Exposure  1   200   200   2  

Exposure  2   500   300   5  

Exposure  3   1000   500   10  

Exposure  4   5000   1000   20  

Exposure  5   10000   2000   98  

Element 1: MBE grown CeO2 with implanted gold • Ceria is 200nm thick • Gold is implanted to depth of ~75nm • Post annealed to 1000oC • Gold particle size ~30nm • Au ~ 8 at. %

Element 2: PVD Au-YSZ •  ~30nm thick Au-YSZ • Au particle size ~25nm • ~10 at.% Au

Element 3: PVD Au-TiO2 •  ~30nm thick Au-TiO2 • Au particle size ~25nm • ~10 at.% Au

500oC

• Simultaneously Compare Sensing Characteristics • PCA performed for Selectivity • Detailed analysis to be completed for sensing mechanism analysis

Page 8: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

10 15 20 25 30 35 40 45 50 55

3.552

3.584

3.616

3.648

4.063

4.080

4.097

4.114

3.842

3.859

3.876

3.893

Time (hr)

Au-TiO2 film

Pea

k-S

quar

ed (e

V2 ) Au-YSZ film

Au-CeO2 filmSimultaneous H2 Exposures in Air

H2   CO   NO2  Exposure  1   200   200   2  

Exposure  2   500   300   5  

Exposure  3   1000   500   10  

Exposure  4   5000   1000   20  

Exposure  5   10000   2000   98  

Page 9: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

H2  ΔPeak  vs  Concentra@on  

0 2000 4000 6000 8000 100000.00

0.02

0.04

0.06

0.08

0.10

Δ

Peak

-Squ

ared

(eV

2 )

H2 Concentration (ppm)

Au-TiO2 5% O2

Au-TiO2 10% O2

Au-TiO2 Air Au-CeO2 5% O2

Au-CeO2 10% O2

Au-CeO2 Air Au-YSZ 5% O2

Au-YSZ 10% O2

Au-YSZ Air

0 2000 4000 6000 8000 100000.00

0.02

0.04

0.06

0.08

0.10

Δ

Peak

-Squ

ared

(eV

2 )

CO Concentration (ppm)

Au-YSZ 5% O2

Au-YSZ 10% O2

Au-YSZ Air Au-TiO2 5% O2

Au-TiO2 10% O2

Au-TiO2 Air Au-CeO2 5% O2

Au-CeO2 10% O2

Au-CeO2 Air

H2   CO   NO2  Exposure  1   200   200   2  

Exposure  2   500   300   5  

Exposure  3   1000   500   10  

Exposure  4   5000   1000   20  

Exposure  5   10000   2000   98  

Challenging selectivity issues for CO and H2!

Page 10: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Sensor Array Analysis: Applying PCA

Gas off Gas on

Wavelength

Abs

orpt

ion

Inte

nsity

Gas on - Gas off =

142 144

3.88

3.89

3.90

Peak

Pos

ition

(eV

2 )

Time (hr)

Gas on

Gas off

Δ A

bsor

ptio

n In

tens

ity

Wavelength

~390-1000nm = 630 variables

45 Observations: 5 concentrations 3 Analytes 3 O2 backgrounds

Page 11: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Very good separation

PCA Analysis of Sensor Array Data

• 630 variables x 3 array elements = 1890 variables

• 45 observations (5 gas concentrations, 3 target gases & 3 [O2])

• Greater separation in PCA space

N. A. Joy, P. H. Rogers, M. I. Nandasiri, S. Thevuthasan, M. A. Carpenter,, Analytical Chemistry, 84, 10437, (2012)

Page 12: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Integration challenges for Plasmonics based sensors

Page 13: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

General Methodology

•  Sample placed in tube furnace which is at 600C

•  Sample position is in location where temperature is 500C

•  CCD spectrometer images both bare quartz substrate for reference of thermal energy as well as nanorod sample

•  Measures absorbance spectra as function of time and gas exposure

Thermal energy harvesting plasmonic based chemical sensors

N. Karker, G. Dharmalingam, M. A. Carpenter, ACS Nano, 8, 10953 (2014).

•  No external incident light source needed

•  Only requires thermal energy and an emission gas sensitive sample that absorbs the thermal energy

Page 14: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Tuning the NR to Thermal Energy

500#

1000#

1500#

2000#

2500#

3000#

3500#

4000#

4500#

5000#

0# 2# 4# 6# 8# 10# 12# 14# 16#

Wavelen

gth*(nm)*

Nanorod*Aspect*Ra7o*

2222 cm-1

2857 cm-1

4000 cm-1

6667 cm-1

NIR

Mid IR

Rod width: 45nm Rod Length: 70 to 670nm

Aspect ratio = Length / width

• Higher aspect ratio rods absorb further into NIR-mid IR

• Potential for lowering energy harvesting operation temperature

• Tune interfacial chemistry to enable energy harvesting chemical sensor at a range of temperatures

Page 15: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

•  Room temperature NIR spectra showing the longitudinal plasmon peak of the ebeam lithography patterned 44x170nm Au nanorod sample.

•  eSEM image of the 44x170nm Au nanorod sample.

Thermal Energy Harvesting – NIR

Page 16: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Sensing Data: Air-NO2 Experiment

2 pp

m N

O2

5 pp

m N

O2

10 p

pm N

O2

50 p

pm N

O2

100

ppm

NO

2

Uses Real-time Io, Baseline corrected

500C

Page 17: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Sensing Data: Air-CO Experiment

2 pp

m C

O

5 pp

m C

O

10 p

pm C

O

50 p

pm C

O

100

ppm

CO

Uses Real-time Io, Baseline corrected

500C

Page 18: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Calibration curves

Averages 15 values

Page 19: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

PCA analysis- Selectivity

(a) Full spectrum PCA performed on wavelength range of 1150nm-1600nm.

(b) Reduced wavelength PCA uses wavelengths of 1325, 1410, 1450nm with similar selectivity as with the full spectrum PCA. •  Integration is further simplified if through the use of a select number of wavelengths, the

target gases of interest can be detected with the requisite selectivity •  In summary, these results prove that there is no need for either a white light source or a

spectrometer to selectively detect emission gases under harsh environment conditions Action Items: 1) Design of integrated assembly, 2) Optimization of NIR thermal energy harvesting methods, 3) Optimize selectivity in gas mixtures

Page 20: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Summary and Future Work q  Demonstrated selectivity enhancements through array analysis with

PCA as well as materials optimization q  Developed ebeam lithography techniques for depositing patterns of

Au-metal oxide nanoparticle arrays q  Demonstrated thermal stability and sensing characteristics of

nanorod samples q  Sensor testing of large rod arrays in progress q  Demonstrated for the first time the plasmonics based thermal

energy harvesting enabled chemical sensors q  Integration of this approach into a packaged fiber based design is

currently in progress in collaboration with UTAS

Page 21: Thermal Energy Harvesting Plasmonics Based Chemical Sensors Library/Events/2015/crosscutting... · ! Thermal Energy Harvesting Plasmonics Based Chemical Sensors Prof. Michael A. Carpenter

WWW.SUNYIT.EDU � WWW.SUNYCNSE.COM

Acknowledgements

Funding: US-DOE, NSF & UTC-Aerospace

CNSE Dr. Zhouying Zhao (Research Scientist) Dr. Phillip Rogers Dr. Nicholas Joy Dharmalingam, Gnanaprakash (Ph.D.) Nick Karker (Ph.D.) Vitor Rossi (Ph.D.) Brian Janiszewski(UG) Mike Briggs(UG) Ryan O’Connor(UG)

DOE-NETL Dr. Paul Ohodnicki Dr. John Baltrus Univ. of Minnesota Dr. Sang-hyun Oh Dr. Tim Johnson Dan Klemme (Ph.D.)

PNNL Thevuthasan, Suntharampillai