the weak galerkin finite element method for solving the ...szhang/research/p/2020-16.pdf · at...

25
Advances in Applied Mathematics and Mechanics Adv. Appl. Math. Mech.,Vol. 12, No. 1, pp. 164-188 DOI: 10.4208/aamm.OA-2019-0088 February 2020 The Weak Galerkin Finite Element Method for Solving the Time-Dependent Integro-Differential Equations Xiuli Wang 1,2 , Qilong Zhai 3 , Ran Zhang 2, * and Shangyou Zhang 4 1 College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin, China 2 School of Mathematics, Jilin University, Changchun 130012, Jilin, China 3 School of Mathematics Science, Peking University, Beijing 100871, China 4 Department of Mathematics Science, University of Delaware, Newark 19716, USA Received 1 April 2019; Accepted (in revised version) 8 October 2019 Abstract. In this paper, we solve linear parabolic integral differential equations us- ing the weak Galerkin finite element method (WG) by adding a stabilizer. The semi- discrete and fully-discrete weak Galerkin finite element schemes are constructed. Op- timal convergent orders of the solution of the WG in L 2 and H 1 norm are derived. Several computational results confirm the correctness and efficiency of the method. AMS subject classifications: 65M60, 65M15, 65M12 Key words: Integro-differential problem, weak Galerkin finite element method, discrete weak gradient, discrete weak divergence. 1 Introduction Integro-differential equations [24] are used to simulate many phenomena in the fields of mathematics, dynamics and engineering technology [1, 9, 15]. It is also used in high- energy physics and biomedicine to help describe related physical phenomena and laws [7, 13]. Especially, in geology, the integro-differential equation [31] can be used to describe the fine three-dimensional problem of the interior of the earth to explore mineral prod- ucts and predict earthquakes [8]. It also plays an important role in aerodynamics [3]. For example, it blue can be used to study the Brown displacement and thermal diffu- sion of suspended grain in heterogeneous fluid. When determining the profile of airfoil, the integro-differential equation can be used to calculate the effect of circulation, lift and * Corresponding author. Emails: [email protected] (X. L. Wang), [email protected] (Q. L. Zhai), [email protected] (R. Zhang), [email protected] (S. Y. Zhang) http://www.global-sci.org/aamm 164 c 2020 Global Science Press

Upload: others

Post on 09-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

Advances in Applied Mathematics and MechanicsAdv. Appl. Math. Mech., Vol. 12, No. 1, pp. 164-188

DOI: 10.4208/aamm.OA-2019-0088February 2020

The Weak Galerkin Finite Element Method forSolving the Time-Dependent Integro-DifferentialEquations

Xiuli Wang1,2, Qilong Zhai3, Ran Zhang2,∗ and Shangyou Zhang4

1 College of Computer Science and Technology, Jilin University, Changchun 130012,Jilin, China2 School of Mathematics, Jilin University, Changchun 130012, Jilin, China3 School of Mathematics Science, Peking University, Beijing 100871, China4 Department of Mathematics Science, University of Delaware, Newark 19716, USA

Received 1 April 2019; Accepted (in revised version) 8 October 2019

Abstract. In this paper, we solve linear parabolic integral differential equations us-ing the weak Galerkin finite element method (WG) by adding a stabilizer. The semi-discrete and fully-discrete weak Galerkin finite element schemes are constructed. Op-timal convergent orders of the solution of the WG in L2 and H1 norm are derived.Several computational results confirm the correctness and efficiency of the method.

AMS subject classifications: 65M60, 65M15, 65M12

Key words: Integro-differential problem, weak Galerkin finite element method, discrete weakgradient, discrete weak divergence.

1 Introduction

Integro-differential equations [24] are used to simulate many phenomena in the fieldsof mathematics, dynamics and engineering technology [1, 9, 15]. It is also used in high-energy physics and biomedicine to help describe related physical phenomena and laws [7,13]. Especially, in geology, the integro-differential equation [31] can be used to describethe fine three-dimensional problem of the interior of the earth to explore mineral prod-ucts and predict earthquakes [8]. It also plays an important role in aerodynamics [3].For example, it blue can be used to study the Brown displacement and thermal diffu-sion of suspended grain in heterogeneous fluid. When determining the profile of airfoil,the integro-differential equation can be used to calculate the effect of circulation, lift and

∗Corresponding author.Emails: [email protected] (X. L. Wang), [email protected] (Q. L. Zhai), [email protected](R. Zhang), [email protected] (S. Y. Zhang)

http://www.global-sci.org/aamm 164 c©2020 Global Science Press

Page 2: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 165

resistance of the air [10]. Because of their application values, integro-differential equa-tions are essential and significant research subjects. In this paper, we consider the linearparabolic integro-differential equation in domain Ω⊂R2 with boundary ∂Ω: seek anunknown function u=u(x,t) satisfying:

ut(x,t)−∇·(A∇u(x,t))−∫ t

0∇·(B∇u(x,ζ))dζ= f (x,t), (x,t)∈Ω×(0,T], (1.1a)

u= g(x,t), (x,t)∈∂Ω×(0,T], (1.1b)u(x,0)=ψ(x), x∈Ω, (1.1c)

where x = x1,x2, A = [ai,j(x,t)]2×2, B = [bi,j(x,t)]2×2, At = [(ai,j)t(x,t)]2×2 and Bt =[(bi,j)t(x,t)]2×2. The matrix-valued functions A and B are sufficiently smooth and A issymmetric. They also satisfy the some properties with positive constants α1, α2, α3, β1, β2for any ξ,η∈R2 that

α1‖ξ‖2≤ ξT Aξ≤α2‖ξ‖2, ‖ξT Atη‖≤α3‖ξ‖‖η‖,‖ξTBη‖≤β1‖ξ‖‖η‖, ‖ξTBtη‖≤β2‖ξ‖‖η‖.

Several numerical methods for problem (1.1a)-(1.1c) have been proposed. The earli-est ones are the finite element (FE) methods [2, 4, 25] and the finite volume (FV) meth-ods [14, 16]. One important characteristic of the finite element method is that it can pre-serve the conservation of mass and momentum. This method is primarily applied for thediffusion problems and the existence and uniqueness are proved. However, the finite vol-ume method is preferred to the finite element method for conservation and stability. Andit is more suitable for the discretization of the conservation of laws. A FV-FE method [12]which combines the advantages of the above methods is proposed. However, these meth-ods require two mutually associated meshes. In order to reduce this correlation, manyexperts and scholars have proposed various discontinuous Galerkin methods. However,it is difficult to construct the penalty items of the discontinuous Galerkin method [5, 11].

Wang and Ye in 2011 proposed the weak Galerkin finite element for the second-orderelliptic equations [19,29]. The method is applied to many problems, such as Stokes equa-tions [17,18,20–22,28], Brinkman problem [23,27], Biharmonic equations [30], eigenvalueproblems [26] and Stochastic problems [6, 33] and so on. The partition of the domain canbe arbitrary polygonal or polyhedral. The construction of the approximated function issimple and satisfies the stability condition. The essence of the weak Galerkin finite ele-ment is that the classical operators are replaced by some weak operators. In paper [32],the weak Galerkin finite element method is applied to the linear parabolic integro-differential equations. It proposes the semi-discrete and fully-discrete weak Galerkinfinite element schemes. The optimal error estimates are obtained.

In this paper, we propose another weak finite element method by adding a stabi-lizer. The reason why we propose this method is that: firstly, the approximation spaceis easily constructed and simply satisfies the stability condition; moreover, the element

Page 3: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

166 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

of partition can be arbitrary polygon or polyhedron. That means, comparing with theliterature [32], the weak Galerkin finite element method with a stabilizer is more effec-tive in dealing with polygon meshes. In particular, polygonal meshes are widely used inthe geological fields, such as earthquake prediction, coal mining and petroleum storage,etc.. Therefore, the weak Galerkin finite element method with a stabilizer is more flexibleand has a wider range of applications. We also obtain the optimal order convergence incorresponding norms for the semi-discrete scheme and the fully-discrete scheme of theweak Galerkin finite element method, respectively.

The rest of this article is organized as follows. In Section 2, the preparatory workis presented. We propose semi-discrete and fully-discrete weak Galerkin finite elementschemes in Section 3. The error estimates in H1 norm and L2 norm are derived in Sec-tion 4. In Section 5, we provide the weak Galerkin finite element method for the primalintegro-differential. This part provides further theoretical support for the error estimatesin Section 4. Finally, several experiments are presented to verify the validity of abovetheoretical analysis.

2 Preparatory work

In order to construct the variational forms of the weak Galerkin finite element method,we first introduce serval definitions and notations.

In this paper, we use the standard definitions in the Sobolev space Hs(D). The as-sociated inner products and norms are denoted by (·,·)s,D and ‖·‖s,D with any s≥ 0,respectively. The space H0(D) coincides with L2(D). When D = Ω, we shall drop thesubscripts D and s in the norm and inner product notation. When D is an edge/face, theL2 inner product is represented by 〈·,·〉D.

It is a well-known fact that the classical variational form of the parabolic integro-differential equations (1.1a)-(1.1c) is to find u∈L2(0,T;H1(Ω)) satisfying respectively theinitial and boundary conditions (1.1b) and (1.1c) with t∈ (0,T], such that

(ut,v)+(A∇u,∇v)+∫ t

0(B∇u,∇v)dζ=( f ,v), ∀v∈H1

0(Ω).

Assume that Th is a partition of the domain Ω, which is a polygons in R2 or polyhedralin R3 and satisfies a set of shape regularity conditions [20]. Denote by T is an any elementwith ∂T as its boundary. Denote by Eh the set of all edges or faces in Th. For any elementT∈Th, denote by hT the diameter of T. Similarly, the diameter of e∈Eh is given by he. Wedefine the mesh size of partition Th as

h=maxT∈Th

hT.

Next, we introduce the weak Galerkin finite element space

Vh =v=v0,vb, v0∈Pk(T), vb∈Pk(e), ∀T∈Th, ∀e∈Eh,V0

h =v∈Vh, vb|∂Ω =0,

Page 4: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 167

where Pk(T) and Pk(e) are the sets of polynomials on T and e with the degree of poly-nomial no more than k. Note that, v0 is the internal functions and vb is the boundaryfunctions on each element T. There is no relationship between v0 and vb. We emphasizethat vb has a single value on each edge e∈Eh.

At last, we define the discrete weak gradient operator. For each v= v0,vb∈Vh, thediscrete weak gradient [19] is denoted by∇w,k−1v and defined by the following equation

(∇w,k−1v,τ)=−(v0,∇·τ)T+〈vb,τ ·n〉∂T, τ∈Pk−1(T).

In the following sections, we will drop the subscript k−1 of the discrete weak gradientwith the confusion.

3 Weak Galerkin finite element method

With the partition of the domain Ω, we define some projections. On each element T∈Th,Q0 is the L2 projection from L2(T) onto Pk(T). For each edge/face e∈ Eh, Qb is the L2

projection from L2(e) onto Pk(e). Combing the projections Q0 and Qb are written to Qh=Q0,Qb. Let Rh be a projection from [L2(T)]d onto [Pk−1(T)]d. The projections satisfythe commutative property ∇w(Qhu) = Rh(∇u), which is obtained by the definition ofdiscrete weak gradient and integration by parts [20].

Introduce two bilinear forms with a matrix-valued function S in Ω

s(w,v)= ∑T∈Th

h−1T 〈w0−wb,v0−vb〉∂T,

a(S,w,v)=(S∇ww,∇wv)T+s(w,v),

for all w,v∈Vh.From the above preparatory work, we present the semi-discrete weak Galerkin finite

element schemes for the linear parabolic integro-differential equations.

Weak Galerkin Algorithm 1. Find uh(t)=u0(t),ub(t)∈L2(0,T;Vh) satisfying

((u0)t,v0)+a(A,uh,v)+∫ t

0a(B,uh,v) dζ=( f ,v0), (3.1a)

ub(t)=Qbg, (3.1b)uh(0)=Ehu(0), (3.1c)

for any v=v0,vb∈V0h .

Let τ be the step size, ti= iτ for i=0,1,··· , uih :=uh(ti)=ui

0,uib and f i := f (ti). At the

time t= ti, the backward Euler differential quotient is given by

δtuih =

uih−ui−1

.

With δt, we construct the fully-discrete weak Galerkin finite element scheme as follows

Page 5: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

168 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Weak Galerkin Algorithm 2. Find uih = ui

0,uib ∈ L2(0,T;Vh) with any positive integer

1≤ i≤N such that

(δtui0,v0)+a(Ai,ui

h,v)+τi−1

∑j=0

a(Bj,ujh,v)=( f i,v0), (3.2a)

uib =Qbgi, (3.2b)

u0h =Ehu0, (3.2c)

for any v=v0,vb∈V0h .

Define the norm of space V0h as

|||v|||2= a(I,v,v),

where I is an identity matrix.

Lemma 3.1. |||v||| is a norm of weak Galerkin finite element space V0h .

Proof. When |||v|||=0, we get ∇wv=0 and v0 = vb on ∂T. From the fact ∇wv=0 and forany q∈ [Pk−1(T)]d, we have

0=(∇wv,q)T

=−(v0,∇·q)T+〈vb,q·n〉∂T

=(∇v0,q)T.

Considering the arbitrariness of q and letting q=∇v0, we obtain ‖∇v0‖2=0. That yieldsv0=C on each element. It follows from vb =0 on ∂Ω that v0=vb =0.

Lemma 3.2. For any v,w∈V0h , we have

|a(S,w,v)|≤C|||w||||||v|||,|a(A,v,v)|≥C|||v|||2.

Lemma 3.3. For the numerical solution to the semi-discrete weak Galerkin finite element scheme(3.1a) with initial and boundary conditions (3.1b) and (3.1c), there holds that

‖uh(t)‖2≤ eCt(‖uh(0)‖2+C

∫ t

0‖ f (ζ)‖2 dζ

).

Proof. Letting v=uh in the form (3.1a), we have

((u0)t,u0)+a(A,uh,uh)+∫ t

0a(B,uh,uh) dζ=( f ,u0).

Page 6: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 169

It follows from bilinear property of a(·,·,·) that

((u0)t,u0)≤ ( f ,u0),

i.e.,

12

ddt

∫Ω

u20(t) dx=((u0)t,u0)≤ ( f ,u0)≤C

(∫Ω

f 2 dx+∫

Ωu2

0(t) dx)

.

Integrating the above inequality with respect to t and using Gronwall lemma, we com-plete the proof of this lemma.

Theorem 3.1. The solution of the semi-discrete weak Galerkin finite element schemes (3.1a)-(3.1c) is unique.

Proof. It is enough to present that the following homogenous equations have a uniquezero solution

((u0)t,v)+a(A,uh,v)+∫ t

0a(B,uh,v) dζ=0, ∀v∈V0

h , 0≤ t≤T, (3.3a)

ub(t)=0 on ∂Ω, 0≤ t≤T, (3.3b)uh(0)=0,0. (3.3c)

Taking v=uh in (3.3a), we have

((u0)t,u0)+a(A,uh,uh)+∫ t

0a(B,uh,uh) dζ=0.

Considering the positive definiteness of matrix A, the boundedness of the matrix B, theCauchy-Schwarz inequality and the Young’s inequality, we get

12

ddt(u0,u0)=

12

ddt

∫Ω

u20 dx=((u0)t,u0),

a(A,uh,uh)≥α1|||uh|||2,

−∫ t

0a(B,uh(ζ),uh(t)) dζ≤C

∫ t

0|||uh(ζ)|||2 dζ+

α1

2|||uh|||2.

It follows from these equations above that

12

ddt

∫Ω

u20 dx+

α1

2|||uh|||2≤C

∫ t

0|||uh(ζ)|||2 dζ.

Integrating above equation from 0 to t, we obtain

12‖u0(t)‖2+

α1

2

∫ t

0|||uh|||2 dζ≤C

∫ t

0

∫ ζ

0|||uh(ς)|||2 dς dζ. (3.4)

Page 7: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

170 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Since ‖u0(t)‖2≥0, so we have the fact

α1

2

∫ t

0|||uh|||2 dζ≤C

∫ t

0

∫ ζ

0|||uh(ς)|||2 dς dζ.

From Gronwall inequality, we get ∫ t

0|||uh|||2 dζ≤0.

Considering the property of norm |||uh|||≥0, we obtain uh=0, which means u0=ub=0.

Theorem 3.2. The solution of the fully-discrete weak Galerkin finite element schemes (3.2a)-(3.2c) is unique.

Proof. It is analogous to prove the Theorem 3.1. Consider the following homogeneousequations

(δtui0,v0)+a(Ai,ui

h,v)+τi−1

∑j=0

a(Bj,ujh,v)=0, ∀v∈V0

h , 1≤ i≤N, (3.5a)

uib =0 on ∂Ω, 1≤ i≤N, (3.5b)

u0h =0,0. (3.5c)

Taking v=uih in (3.5a), we get

(δtui0,ui

0)+a(Ai,uih,ui

h)+τi−1

∑j=0

a(Bj,ujh,ui

h)=0, 1≤ i≤N.

It follows from backward Euler form, the positive definiteness and boundedness ofa(·,·,·) and the Young’s inequality that

a(Ai,uih,ui

h)≥α1|||uih|||2,

(δtui0,ui

0)=1

2τ((ui

0,ui0)−(ui−1

0 ,ui−10 )+(ui

0−ui−10 ,ui

0−ui−10 ))≥ 1

2τ(‖ui

0‖2−‖ui−10 ‖

2),

and

−τi−1

∑j=0

a(Bj,ujh,ui

h)≤β1τi−1

∑j=0|||uj

h|||·|||uih|||≤Cβ1τ

i−1

∑j=0|||uj

h|||2+

α1

2|||ui

h|||2.

Summing up all above equations yields

12τ

(‖ui0‖2−‖ui−1

0 ‖2)+

α1

2|||ui

h|||2≤Cβ1τi−1

∑j=0|||uj

h|||2. (3.6)

Page 8: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 171

Accumulating inequality (3.6) with i from 1 to k−1 for 1≤ k≤N+1, we obtain

‖uk−10 ‖2+α1τ

k−1

∑i=1|||ui

h|||2≤Cβ1(τ)2

k−1

∑i=1

i−1

∑j=1|||uj

h|||2. (3.7)

Considering the discrete Gronwall inequality with the fact ‖uk−10 ‖2≥0, we arrive at

τk−1

∑i=1|||ui

h|||2≤0, 1≤ k≤N+1,

which yields uih =0 with 1≤ i≤N. This theorem is completed.

4 Error estimates

In this section, we derive the error equations and error estimates for the semi-discreteand fully-discrete weak Galerkin finite element schemes. First, we define an ellipticalprojection Eh, which is similar to Wheeler’s projections in [23], for the exact solutionu∈L2(0,T;H1(Ω)) of the linear parabolic integro-differential equations (1.1a)-(1.1c). WithEh we define an equation with a fixed time t∈ (0,T] such that

a(A,Ehu,v)+∫ t

0a(B,Ehu,v) dζ=(−∇·(A∇u),v)−

∫ t

0(∇·B(∇u),v) dζ,

Ebu=Qbg on ∂Ω,

for any v=v0,vb∈V0h .

Denote

e=Ehu−uh, ρ=Qhu−Ehu, η=u−Qhu,ξ=Q0ut−δt(Q0u), ρt =Qhut−Ehut, ηt =ut−Qhut.

4.1 Semi-discrete WG error estimates

Firstly, we derive the semi-discrete error equations. Then, we use the error equations toderive the semi-discrete error estimates in H1 norm and L2 norm.

Lemma 4.1. Assume uh ∈ L2(0,T;Vh) is the numerical solution of semi-discrete WG schemes(3.1a)-(3.1c) and u∈ L2(0,T;H1(Ω)) is the exact solution of linear parabolic integro-differentialequations (1.1a)-(1.1c) for 0< t≤T. Then, for any v∈V0

h , we have

((e0)t,v0)+a(A,e,v)+∫ t

0a(B,e,v) dζ=−((ρ0)t,v0). (4.1)

Page 9: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

172 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Proof. Testing the integral differential equation (1.1a) by v=v0,vb∈V0h and considering

the definition of projection Eh, we get

(ut,v)+a(A,Ehu,v)+∫ t

0a(B,Ehu,v) dζ=( f ,v0). (4.2)

It follows from the semi-discrete variational equation (3.1a) that

(E0ut−(u0)t,v0)+a(A,Ehu−uh,v)+∫ t

0a(B,Ehu−u,v) dζ=−(Q0ut−E0ut,v0).

Following the definition of e and ρ, we obtain the semi-discrete error equation.

Theorem 4.1. Assume u∈ L2(0,T;Hs+1(Ω)) and uh∈ L2(0,T;Vh) are the solutions of integro-differential equations (1.1a)-(1.1c) and semi-discrete weak Galerkin finite element variationalforms (3.1a)-(3.1c), respectively. There exists a positive constant C independent of h satisfying

‖e‖2≤Ch2(s+1)∫ t

0(‖u‖2

s+1+‖ut‖2s+1) dζ, (4.3a)

|||e|||2≤Ch2(s+1)∫ t

0(‖u‖2

s+1+‖ut‖2s+1) dζ. (4.3b)

Proof. Firstly, taking v= e in the semi-discrete error equation (4.1), we have

((e0)t,e0)+a(A,e,e)=−((ρ0)t,v0)−∫ t

0a(B,e,e) dζ.

It follows from property of a(·,·,·), the Cauchy-Swarch inequality and the Young’s in-equality that

((e0)t,e0)=12

ddt(e0,e0)=

12‖e0‖2, a(A,e,e)≥α1|||e|||2,

−∫ t

0a(B,e,e)≤

∫ t

0β1|||e|||2 dζ, −((ρ0)t,e0)≤C‖(ρ0)t‖2+

12‖e0‖2,

which leads to

ddt‖e0‖2+|||e|||2≤C

∫ t

0|||e|||2 dζ+C(‖(ρ0)t‖2+‖e0‖2).

Integrating above equation from 0 to t with the fact e(·,0)=0 yields

‖e0‖2+∫ t

0|||e|||2 dζ≤C

∫ t

0

(∫ τ

0|||e|||2 dς+‖e0‖2

)dζ+C

∫ t

0‖(ρ0)t‖2 dζ.

By the Gronwall’s inequality and the estimate of ‖(ρ0)t‖ in the Theorem 5.3, we obtainan error estimate formula (4.3a).

Page 10: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 173

Next, for each fixed t, letting v= et in semi-discrete error equation (4.1) yields

((e0)t,(e0)t)+a(A,e,et)=−∫ t

0a(B,e,et) dζ−((ρ0)t,(e0)t).

Since ddt a(S,e,e)= a(St,e,e)+2a(S,e,et) with S∈A,B, we obtain

‖(e0)t‖2+12

ddt

a(A,e,e)

=12

a(At,e,e)− 12

a(B,e,e)+12

∫ t

0a(Bt,e,e) dζ−((ρ0)t,(e0)t). (4.4)

Using the definition of |||·|||, the property of A and B and the Young’s inequality, weobtain

a(A,e,e)≥α1|||e|||2, a(At,e,e)≤α3|||e|||2,

−a(B,e,e)≤β1|||e|||2, a(Bt,e,e)≤β2|||e|||2,

and

−((ρ0)t,(e0)t)≤14‖(ρ0)t‖2+‖(e0)t‖2.

Substituting all these forms into (4.4) yields

12

ddt|||e|||2≤C(|||e|||2+‖(ρ0)t‖2)+C

∫ t

0|||e|||2 dζ.

Integrating the above formula with respect to t, we have

|||e|||2≤C∫ t

0|||e|||2 dζ+C

∫ t

0‖(ρ0)t‖2 dζ.

From Gronwall inequality and the estimate of ‖(ρ0)t‖, we obtain an error estimate for-mula (4.3b).

4.2 Fully-discrete WG error estimates

Firstly, we derive the fully discrete error equations. Then, we use the error equations toderive the fully-discrete error estimates in H1 norm and L2 norm.

Lemma 4.2. Let uh∈L2(0,T;Vh) be the numerical solution of fully-discrete WG schemes (3.2a)-(3.2c) and u∈ L2(0,T;H1(Ω)) be the exact solution of linear parabolic integro-differential equa-tions (1.1a)-1.1c with 0< t≤T. Then, for any v∈V0

h and 1≤ i≤N, we have

(δtei0,v0)+a(Ai,ei,v)=−(ξ i

0,v0)−(δtρi0,v0)−

∫ ti

0a(B,Ehu,v)dζ+τ

i−1

∑j=0

a(Bj,ujh,v).

Page 11: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

174 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Proof. Using v= v0,vb∈V0h to test the integro-differential equation (1.1a) and the defi-

nition of Eh, we have

(Q0ut,v0)+a(A,Ehu,v)+∫ t

0a(B,Ehu,v) dζ=( f ,v0).

Considering the fully-discrete variational forms and the equation above with t= ti and1≤ i≤N, we obtain

(δtei0,v0)+a(Ai,ei,v)=−(ξ i

0,v0)−(δtρi0,v0)−

∫ ti

0a(B,Ehu,v) dζ+τ

i−1

∑j=0

a(Bj,ujh,v).

Thus, we complete the proof.

Similarly, following the error estimates of semi-discrete WG schemes, we constructthe error estimates of fully-discrete WG schemes in H1 norm and L2 norm, respectively.

Theorem 4.2. Let unh ∈ L2(0,T;Vh) be the solution of the problems (5.3a)-(5.3b) arising from

fully-discrete weak Galerkin finite element schemes (3.2a)-(3.2c). Assume u∈ L2(0,T;Hs+1(Ω))is the exact solution of integro-differential problems (5.3a)-(5.3b). Then, for any v∈V0

h , 1≤k≤Nand n=0,1···, we obtain

‖ek0‖2≤Cτ2

(‖utt‖2

L2(0,T;L2)+‖u‖2L2(0,T;Hs+1)+‖ut‖2

L2(0,T;Hs+1)

)+Ch2(s+1)

(‖u‖2

L2(0,T;Hs+1)+‖ut‖2L2(0,T;Hs+1)

).

Proof. Taking v= ei in Lemma 4.2 for the fully-discrete error equation, we have

(δtei0,ei

0)+a(Ai,ei,ei)

=−(ηi0,ei

0)−(δtρi0,ei

0)−∫ ti

0a(B,Ehu,ei) dζ+τ

i−1

∑j=0

a(Bj,Ehu(tj),ei)

−τi−1

∑j=0

a(Bj,Ehu(tj)−ujh,ei), 1≤ i≤N.

It follows from the backward Euler form, the definition of |||·||| and the Young’s inequalitythat

|(δtei0,ei

0)|=1

2τ((ei

0,ei0)−(ei−1

0 ,ei−10 )+(ei

0−ei−10 ,ei

0−ei−10 ))≥ 1

2τ(‖ei

0‖2−‖ei−10 ‖

2),

|a(Ai,ei,ei)|≥α1|||ei|||2.

Notice that

ξ i0=Q0ui

t−δt(Q0ui)=Q0(uit−δtui)=Q0

(1τ

∫ ti

ti−1(ζ−ti−1)utt(ζ) dζ

),

Page 12: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 175

we obtain

‖ξ i0‖≤C‖

∫ ti

ti−1|utt(ζ)|dζ‖≤C

(τ∫ ti

ti−1‖utt‖2dζ

) 12

.

So, we have

|(ξ i0,ei

0)|≤C‖ξ i0‖2+

14‖ei

0‖2≤Cτ∫ ti

ti−1‖utt‖2 dζ+

14‖ei

0‖2.

Thanks to

‖δtρi0‖2=

∥∥∥ρi0−ρi−1

∥∥∥2=

1τ2

∥∥∥∫ ti

ti−1(ρ0)t dζ

∥∥∥2≤ 1

τ

∫ ti

ti−1‖(ρ0)t‖2 dζ,

we get

|−(δtρi0,ei

0)|≤Cτ

∫ ti

ti−1‖(ρ0)t‖2 dζ+

14‖ei

0‖2.

Sinceddt(B∇w(Ehu))=Bt∇w(Ehu)+B∇w(Ehut),

we obtain ∣∣∣∣∣∫ ti

0a(B,Ehu,ei) dζ−τ

i−1

∑j=0

a(Bj,Ehu(tj),ei)

∣∣∣∣∣=∫ ti

0s(Ehu,ei) dζ−τ

i−1

∑j=0

s(Ehu(tj),ei)

+

(i−1

∑j=0

∫ tj+1

tj[B∇w(Ehu(ζ))−Bj∇w(Ehu(tj))] dζ,∇wei

).

We have the fact ∣∣∣∣∣(

i−1

∑j=0

∫ tj+1

tj[B∇w(Ehu(ζ))−Bj∇w(Ehu(tj))] dζ,∇wei

)∣∣∣∣∣=

(i−1

∑j=0

∫ tj+1

tj

∫ ζ

tj

ddς

[B∇w(Ehu(ς))] dςdζ,∇wei

)

=

(i−1

∑j=0

∫ tj+1

tj

∫ ζ

tj[Bt∇w(Eh(ς))+B∇w(Ehut(ς))] dςdζ,∇wei

)

≤(

i−1

∑j=0

∆t∫ tj+1

tj[Bt∇w(Eh(ς))+B∇w(Ehut(ς))]dς,∇wei

)

Page 13: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

176 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

=

(τ∫ ti

0[Bt∇w(Eh(ζ))+B∇w(Ehut(ζ))] dζ,∇wei

)≤Cτ2

(‖u‖2

L∞(0,T;Hs+1)+‖ut‖2L∞(0,T;Hs+1)

)+

α1

6|||ei|||2,

and ∣∣∣∣∣∫ ti

0s(Ehu,ei) dζ−τ

i−1

∑j=0

s(Ehu(tj),ei)

∣∣∣∣∣=

i−1

∑j=0

∫ tj+1

tjs(Ehu,ei) dζ−

i−1

∑j=0

∫ tj+1

tjs(Ehu(tj),ei) dζ

=i−1

∑j=0

∫ tj+1

tjs(Ehu−Ehu(tj),ei) dζ

=i−1

∑j=0

∫ tj+1

tj∑

T∈Th

h−1T 〈(E0u−Ebu)−(E0u(tj)−Ebu(tj)),ei

0−eib〉∂T dζ

≤ ∑T∈Th

⟨i−1

∑j=0

τ∫ tj+1

tjh−1

T [E0ut(ζ)−Ebut(ζ)] dζ,ei0−ei

b

⟩∂T

≤ ∑T∈Th

τ

⟨∫ ti

0h−1

T [E0ut(ζ)−Ebut(ζ)] dζ,ei0−ei

b

⟩∂T

≤Cτ2‖ut‖2L∞(0,T;Hs+1)+

α1

6|||ei|||2.

From the property of a(·,·,·), we get

τi−1

∑j=0

a(Bj,Ehu(tj)−ujh,ei)≤β1τ

i−1

∑j=0|||Ehu(tj)−uj

h||||||ei|||

≤Cτ2j−1

∑j=0|||ej|||2+ α1

6|||ei|||2.

Combing all the equations above, we get

‖ei0‖2−‖ei−1

0 ‖2+2α1τ|||ei|||2

≤Cτ2∫ ti

ti−1‖utt‖2 dζ+τ‖ei

0‖2+C∫ ti

ti−1‖(ρ0)t‖2dζ

+Cζ3(‖u‖2

L∞(0,T;Hs+1)+‖ut‖2L∞(0,T;Hs+1)

)+α1τ|||ei|||2+Cτ3

j−1

∑j=0|||ej|||2.

Page 14: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 177

Accumulating the above equation with i from 1 to k−1, we obtain

‖ek−10 ‖2+α1τ

k−1

∑i=1|||e|||2

≤Cτ2∫ tk−1

0‖utt‖2 dζ+τ

k−1

∑i=1‖ei

0‖2+C∫ tk

0‖(ρ0)t‖2 dζ

+Cτ2(‖u‖2

L∞(0,T;Hs+1)+‖ut‖2L∞(0,T;Hs+1)

)+Cτ3

k−1

∑i=1

i−1

∑j=1|||ej|||2,

where 1≤ k≤ N+1. Following the Gronwall inequality and the estimates of |||ρ|||, weobtain the fully-discrete error estimate.

Theorem 4.3. Let unh∈Vh be the solution of the problems (5.3a)-(5.3b) arising from fully-discrete

weak Galerkin finite element schemes (3.2a)-(3.2c). Assume u∈ L2(0,T;Hs+1(Ω)) is the exactsolution of (5.3a)-(5.3b). Then, for any v∈Vh, 1≤ k≤N and n=0,1···, we have

|||ek|||2≤Cτ2(‖utt‖2

L2(0,T;Hs+1)+‖ut‖2L∞(0,T;L2)+‖u‖

2L∞(0,T;Hs+1)

)+Ch2(s+1)

(‖ut‖2

L2(0,T;Hs+1)+‖u‖2L2(0,T;Hs+1)

).

Proof. Letting v=δtei in the fully-discrete error equation in Lemma 4.2, we obtain

‖δtei0‖2+a(Ai,ei,δtei)

=−(ξ i0,δtei

0)−(δtρi0,δtei

0)−∫ ti

0a(B,Ehu,δtei) dζ+τ

i−1

∑i0=0

a(Bi0 ,ui0h ,δtei)

=−(ξ i0,δtei

0)−(δtρi0,δtei

0)+δt

(∫ ti

0a(B,Ehu,ei) dζ−τ

i−1

∑j=0

a(Bj,ujh,ei)

)

− 1τ

(∫ ti

ti−1a(B,Ehu,ei−1) dζ−τa(Bi−1,Ehu(ti−1),ei−1)

)−a(Bi−1,ei−1,ei−1).

We estimate the second term and the right hand side terms as follows

a(Ai,ei,δtei)≥ 12τ

(a(Ai,ei,ei)−a(Ai,ei,ei−1)),

−(ξ i0,δtei

0)|≤C(‖ξ i0‖2+

14‖δtei

0‖2),

|−(δtρi0,δtei

0)|≤C‖δtρi0‖2+

14‖δtei

0‖2,

|a(Bi−1,ei−1,ei−1)|≤C|||ei−1|||2.

Page 15: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

178 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Notice that ∣∣∣∣∣ 1τ(∫ ti

ti−1a(B,Ehu,ei−1) dζ−τa(Bi−1,Ehu(ti−1),ei−1)

)∣∣∣∣∣=

∣∣∣∣∣ 1τ(∫ ti

ti−1(B∇w(Ehu),∇wei−1) dζ−τ(Bi−1∇w(Ehu(ti−1)),∇wei−1)

)∣∣∣∣∣+

∣∣∣∣∣ 1τ(∫ ti

ti−1s(Ehu,ei−1) dζ−τs(Ehu,ei−1)

)∣∣∣∣∣,where ∣∣∣∣∣ 1τ

(∫ ti

ti−1(B∇w(Ehu),∇wei−1) dζ−τ(Bi−1∇w(Ehu(ti−1)),∇wei−1)

)∣∣∣∣∣=

∣∣∣∣∣(

∫ ti

ti−1(B∇w(Ehu)−Bi−1∇w(Ehu(ti−1))) dζ,∇wei−1)

)∣∣∣∣∣=

∣∣∣∣∣(

∫ ti

ti−1

∫ ζ

ti−1

ddς

(B∇w(Ehu(ς))) dςdζ,∇wei−1

)∣∣∣∣∣=

∣∣∣∣∣(

∫ ti

ti−1

∫ ζ

ti−1(Bt∇w(Ehu)+B∇w(Ehut))dςdζ,∇wei−1

)∣∣∣∣∣≤Cτ

(β1‖u‖2

L∞(0,T;Hs+1)+β2‖ut‖2L∞(0,T;Hs+1)

) 12 |||ei−1|||

≤Cτ2(

β1‖u‖2L∞(0,T;Hs+1)+β2‖ut‖2

L∞(0,T;Hs+1)

)+|||ei−1|||2,

and ∣∣∣∣∣ 1τ(∫ ti

ti−1s(Ehu,ei−1) dζ−τs(Ehu,ei−1)

)∣∣∣∣∣=

∣∣∣∣∣ 1τ∫ ti

ti−1s(Ehu−Ehu(ti−1),ei−1) dζ

∣∣∣∣∣=

∣∣∣∣∣ 1τ∫ ti

ti−1∑

T∈Th

h−1T 〈E0u−Ebu−(E0u(ti−1)−Ebu(ti−1)),ei−1

0 −ei−1b 〉∂T dζ

∣∣∣∣∣≤∣∣∣∣∣ ∑T∈Th

⟨∫ ti

ti−1h−1

T (E0ut(ζ)−Ebut(ζ)) dζ,ei−10 −ei−1

b

⟩∂T

∣∣∣∣∣≤Cτ2‖u‖2

L∞(0,T;Hs+1)+|||ei−1|||2.

Page 16: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 179

Summing the equations above, we get

τ‖δtei0‖2+a(Ai,ei,ei)−a(Ai,ei,ei−1)

≤Cτ2∫ ti

ti−1‖utt‖2 dζ+C

∫ ti

ti−1‖(ρ0)t‖2 dζ+Cτ|||ei−1|||2

+Cτ3(

β1‖u‖2L∞(0,T;Hs+1)+β2‖ut‖2

L∞(0,T;Hs+1)

)+2τδt

(∫ ti

0a(B,Ehu,ei) dζ−τ

i−1

∑j=0

a(Bj,ujh,δtei)

).

Adding the above with respect to i from 1 to k with e00=0 and 1≤ k≤N, we have

|||ek|||2≤Cτ2∫ tk

0‖utt‖2 dζ+C

∫ tk

0‖(ρ0)t‖2 dζ+Cτ

k

∑i=1|||ei|||2

+Cτ2(‖u‖2

L∞(0,T;Hs+1)+‖ut‖2L∞(0,T;Hs+1)

)−2

(∫ tk

0a(B,Ehu,ek) dζ−τ

k−1

∑j=0

a(Bj,ujh,ek)

).

It follows from the proof of the estimates of ‖ek0‖ that

∫ tk

0a(B,Ehu,ek) dζ−τ

k−1

∑j=0

a(Bj,ujh,ek)

≤Cτ2(‖u‖2

L∞(0,T;Hs+1)+‖ut‖2L∞(0,T;Hs+1)

)+

12|||ek|||2.

Using the Gronwall inequality and the estimate of ‖(ρ0)t‖, we have

|||ek|||2≤Cτ2(‖utt‖2

L2(0,T;Hs+1)+‖ut‖2L∞(0,T;L2)+‖u‖

2L∞(0,T;Hs+1)

)+Ch2(s+1)

(‖ut‖2

L2(0,T;Hs+1)+‖u‖2L2(0,T;Hs+1)

).

Thus, we complete the proof.

5 WG for primary integro-differential equation

In this section, we firstly present several results regarding approximation properties ofthe L2 projections Rh and Qh. Then, we provide the H1 norm and L2 norm for the linearintegro-differential equation without the item ut, respectively, to support the analysis ofprevious error estimates.

Page 17: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

180 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Lemma 5.1 ( [19]). Let Th be a finite element partition of Ω satisfying the shape regularity [20]and w∈Hr+1 and ρ∈Hr(Ω) with 1≤ r≤ k. Then, for 0≤ s≤1 we have

∑T∈Th

h2sT ‖w−Q0w‖2

T,s≤Ch2(r+1)‖w‖2r+1,

∑T∈Th

h2sT ‖∇w−Q0(∇w)‖2

T,s≤Ch2r‖w‖2r+1.

Theorem 5.1. Let u∈Hs+1(Ω) be the exact solution of linear integro-differential equation with-out the item ut. According to the definition of ρ, then

|||ρ|||≤Chs(‖u‖2

s+1+∫ t

0‖u‖2

s+1 dζ

) 12

, 0≤ t≤T. (5.1)

Proof. It follows from the definition of Eh and integrating by parts with any v∈V0h that

a(A,Ehu,v)+∫ t

0a(B,Ehu,v) dζ

=−(∇·(A∇u),v0)−∫ t

0(∇·(B∇u),v0) dζ

=(A∇u,∇v0)− ∑T∈Th

〈A∇u·n,v0−vb〉∂T+∫ t

0(B∇u,∇v0) dζ

−∫ t

0∑

T∈Th

〈B∇u·n,v0−vb〉∂T dζ.

By the definition of a(·,·,·) and discrete weak gradient, commutativity and integrating byparts, we have

a(A,Qhu,v)+∫ t

0a(B,Qhu,v) dζ

=(ARh(∇u),∇wv)+∫ t

0(BRh(∇u),∇wv) dζ+s(Qhu,v)+

∫ t

0s(Qhu,v) dζ

=(ARh(∇u),∇v0)+ ∑T∈Th

〈ARh(∇u)·n,vb−v0〉∂T+s(Qhu,v)+∫ t

0s(Qhu,v) dζ

+∫ t

0(BRh(∇u),∇v0) dζ+

∫ t

0∑

T∈Th

〈BRh(∇u)·n,vb−v0〉∂T dζ.

From the above two equations, we obtain

a(A,ρ,v)+∫ t

0a(B,ρ,v) dζ

=(A(Rh(∇u)−∇u),∇v0)+∫ t

0(B(Rh(∇u)−∇u),∇v0) dζ

+l(A,u,v)+∫ t

0l(B,u,v) dζ+s(Qhu,v)+

∫ t

0s(Qhu,v) dζ, (5.2)

Page 18: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 181

wherel(S,u,v)= ∑

T∈Th

〈S(Rh(∇u)−∇u)·n,vb−v0〉∂T.

Taking v=ρ in the error equation (5.2), we get

a(A,ρ,ρ)=−∫ t

0a(B,ρ,ρ) dζ+(A(Rh(∇u)−∇u),∇ρ0)+

∫ t

0l(B,u,ρ) dζ

+l(A,u,ρ)+s(Qhu,ρ)+∫ t

0(B(Rh(∇u)−∇u),∇ρ0) dζ

+∫ t

0s(Qhu,ρ) dζ.

The properties of A and B, the Cauchy-Schwarz, approximation properties and the traceinequality yield

‖a(A,ρ,ρ)‖≥α1|||ρ|||2,

|l(A,u,ρ)|=∣∣∣ ∑

T∈Th

〈A(Rh(∇u)−∇u)·n,ρ0−ρb〉∂T

∣∣∣≤C|||ρ|||·

(∑

T∈Th

‖Rh(∇u)−u‖2T+h2‖∇(Rh(∇u)−u)‖2

T

)1/2

≤Ch2s‖u‖2s+1+

α1

6|||ρ|||2,

|s(Qhu,ρ)|=∣∣∣∣∣ ∑T∈Th

h−1〈Q0u−Qbu,ρ0−ρb〉∂T

∣∣∣∣∣≤∣∣∣∣∣ ∑T∈Th

h−1〈Q0u−u,ρ0−ρb〉∂T

∣∣∣∣∣≤Ch2s‖u‖2

s+1+α1

6|||ρ|||2,

and

‖(A(Rh(∇u)−∇u),∇ρ0)‖≤C‖Rh(∇u)−∇u‖·‖∇ρ0‖

≤Ch2s‖u‖2s+1+

α1

6|||ρ|||2,∣∣∣∣∫ t

0(B(Rh(∇u)−∇u),∇ρ0) dζ

∣∣∣∣≤Ch2s∫ t

0‖u‖2

s+1 dζ+C∫ t

0|||ρ|||2 dζ,∣∣∣∣−∫ t

0a(B,ρ,ρ) dζ

∣∣∣∣≤β1

∫ t

0|||ρ|||2 dζ,∣∣∣∣∫ t

0l(A,u,ρ) dζ

∣∣∣∣≤Ch2s∫ t

0‖u‖2

s+1 dζ+C∫ t

0|||ρ|||2 dζ,∣∣∣∣∫ t

0s(Qhu,ρ) dζ

∣∣∣∣≤Ch2s∫ t

0‖u‖2

s+1 dζ+C∫ t

0|||ρ|||2 dζ.

Page 19: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

182 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

Combining these inequalities, we get

|||ρ|||2≤C∫ t

0|||ρ|||2 dζ+Ch2s‖u‖2

s+1+Ch2s∫ t

0‖u‖2

s+1 dζ.

Using the Gronwall inequality, we obtain the error estimate in H1 norm.

Next, we estimate ‖ρ‖. Assume ω∈H1(Ω) is the exact solution of the elliptic problemwith a Drichlet boundary condition

−∇·(A∇ω)=ρ0 in Ω, (5.3a)ω=0 on ∂Ω. (5.3b)

We presume that the dual problem has the H1(Ω)-regularity property

‖ω‖2≤C‖ρ0‖.

Theorem 5.2. Let u∈Hs+1(Ω) be the exact solution of linear integro-differential equation with-out the term ut. We have the following error estimate for ρ0:

‖ρ0‖≤Chs+1(‖u‖2

s+1+∫ t

0‖u‖2

s+1dζ

) 12

, 0≤ t≤T. (5.4)

Proof. Testing the elliptic problem (5.3a) against ρ0, we have

‖ρ0‖2=(−∇·(A∇ω),ρ0)=(A∇ω,∇ρ0)− ∑T∈Th

〈A∇ω ·n,ρ0〉∂T

=((A−A)(∇ω−Rh(∇ω)),∇ρ0)+(ARh(∇ω),∇ρ0)

− ∑T∈Th

〈A∇ω ·n,ρ0−ρb〉∂T

=((A−A)(∇ω−Rh(∇ω)),∇ρ0)+a(A,Qhω,ρ)−s(Qhω,ρ)−l(A,ω,ρ), (5.5)

where using the fact (A(∇ω−Rh∇ω),ρ0) = 0 and ∑T∈Th〈A∇ω ·n,ρb〉= 0. Considering

Eq. (5.5) and taking v=Qhω in the error equation (5.2), we obtain

‖ρ0‖2=−∫ t

0(B∇wρ,Rh(∇ω)−∇ω) dζ−

∫ t

0(∇wρ,B∇ω) dζ

−∫ t

0s(ρ,Qhω) dζ+((A−A)(∇ω−Rh(∇ω),∇ρ0)

+l(A,ω,ρ)−s(Qhω,ρ)−((A−A)(∇u−Rh(∇u)),∇(Q0ω))

−∫ t

0((B−B)(∇u−Rh(∇u)),∇(Q0ω)) dζ+l(A,u,Qhω)

+∫ t

0l(B,u,Qhω) dζ+s(Qhu,Qhω)+

∫ t

0s(Qhu,Qhω) dζ.

Page 20: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 183

In order to get the estimates, we estimate the form term by term. Using the definition ofthe discrete weak gradient, the trace inequality and the property of projection yield∣∣∣∣∫ t

0(B∇wρ,Rh(∇ω)−∇ω) dζ

∣∣∣∣≤C∫ t

0‖∇wρ‖‖Rh(∇ω)−∇ω‖ dζ

≤Ch∫ t

0‖ω‖2|||ρ||| dζ,∥∥∥∫ t

0(∇wρ,B∇ω) dζ

∥∥∥=∥∥∥∫ t

0(ρ0,∇·(B∇ω)) dζ

∥∥∥≤∫ t

0‖ρ0‖ ‖ω‖2dζ,

|(A−A)(∇ω−Rh(∇ω)),∇ρ0|≤Ch2‖A‖1,∞ ·‖ω‖2|||ρ|||,

and

|s(Qhu,Qhω)|≤C

(∑

T∈Th

h−1T ‖Q0u−u‖2

∂T

) 12(

∑T∈Th

h−1T ‖Q0ω−ω+ω−Qbω‖2

∂T

) 12

≤Chs+1‖u‖s+1‖ω‖2,

|l(A,u,Qhω)|=∣∣∣ ∑

T∈Th

〈A(Rh(∇u)−∇u)·n,Q0ω−ω+ω−Qbω〉∂T

∣∣∣≤Chs+1‖u‖s+1‖ω‖2.

Following the estimate of |||ρ|||, the definition of the discrete weak gradient, the traceinequality and the property of projection, we have

|s(Qhω,ρ)|≤Ch‖ω‖2|||ρ|||, |l(A,ω,ρ)|≤Ch‖ω‖2|||ρ|||,∣∣∣∣∫ t

0((B−B)(∇u−Rh(∇u)),∇(Q0ω))dζ

∣∣∣∣≤Ch∫ t

0‖ω‖2‖ρ‖ dζ,

|((A−A)(∇u−Rh(∇u)),∇(Q0ω))|≤Chs+1‖ω‖2‖u‖s+1,

and ∣∣∣∣∫ t

0s(Qhu,Qhω)dζ

∣∣∣∣≤Chs+1∫ t

0‖u‖s+1‖ω‖2dζ,∣∣∣∣∫ t

0s(ρ,Qhω) dζ

∣∣∣∣≤Ch∫ t

0‖ρ‖‖ω‖2dζ,∣∣∣∣∫ t

0l(B,u,Qhω)dζ

∣∣∣∣≤Chs+1∫ t

0‖u‖s+1‖ω‖2dζ.

From the estimate of |||ρ|||, regularity property and the Cauchy-Schwarz inequality, weget

‖ρ0‖2≤ 12‖ρ0‖2+C

∫ t

0‖ρ0‖2dζ+Chs+1

(‖u‖2

s+1+∫ t

0‖u‖2

s+1dζ

).

Page 21: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

184 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

According to the Gronwall inequality, we obtain

‖ρ0‖≤Chs+1(‖u‖2

s+1+∫ t

0‖u‖2

s+1dζ

) 12

.

The proof of this theorem is completed.

Similar to the proof of Theorem 5.1 and Theorem 5.2, we can obtain the estimate of ρt.

Theorem 5.3. If ut∈L∞(0,T;Hs+1(Ω)), there is a positive C with 0≤ t≤T such that

|||ρt|||≤Chs(‖u‖2

s+1+‖ut‖2s+1+

∫ t

0(‖u‖2

s+1+‖ut‖2s+1) dζ

) 12

,

‖(ρ0)t‖≤Chs+1(‖u‖2

s+1+‖ut‖2s+1+

∫ t

0(‖u‖2

s+1+‖ut‖2s+1) dζ

) 12

.

6 Numerical example

We present several numerical examples to verity the order of convergence with weakGalerkin finite element method by adding the stabilizer for the linear parabolic integro-differential equation (1.1a)-(1.1c).

Example 6.1. We solve (1.1a) over the square domain Ω=(0,1)×(0,1) where

A=

(3+x−y 1/2

1/2 4−x+y

), B=

(x+y −1/2−1/2 x+y

),

Ω=(0,1)×(0,1),

and the exact solution is chosen as

u(x,y,t)= e−tx(1−x)y(1−y). (6.1)

We use Pk weak Galerkin finite elements on rectangular grids where the first levelgrid is the domain itself and each grid is refined in to the half-sized grid to form the nextlevel grid. We choose τ=10−4 and compute the solution up to T=1. The errors and theorders of convergence are listed in Table 1.

Example 6.2. We solve (1.1a) where

A=

(1 00 1

), B=β1

(0 −1/2−1/2 0

), β1=1 or 10,

f =1, g=0, ψ=0, Ω×(0,T)=(0,1)×(0,1)×(0,1).

We do not know the exact solution. The numerical solutions are plotted in Fig. 1, wherewe can see the effect of memory integral.

Page 22: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 185

Table 1: Example 6.1. The errors and the orders of convergence for solving (6.1).

Tk ‖Qhu−uh‖0 hn ‖Qhu−uh‖1,h hn |||Qhu−uh||| hn

P1 weak Galerkin finite element method4 0.1528E-02 1.90 0.7005E-02 1.08 0.4221E-02 1.345 0.3889E-03 1.97 0.3601E-02 0.96 0.1176E-02 1.846 0.9743E-04 2.00 0.1876E-02 0.94 0.3031E-03 1.96

P2 weak Galerkin finite element method4 0.6438E-04 3.07 0.1997E-02 2.04 0.1397E-02 2.275 0.7492E-05 3.10 0.4782E-03 2.06 0.2871E-03 2.286 0.9107E-06 3.04 0.1161E-03 2.04 0.5943E-04 2.27

P3 weak Galerkin finite element method2 0.1048E-02 3.70 0.1140E-01 2.55 0.1315E-01 2.933 0.6760E-04 3.95 0.1529E-02 2.90 0.1657E-02 2.994 0.4138E-05 4.03 0.1891E-03 3.02 0.1967E-03 3.07

P4 weak Galerkin finite element method2 0.9909E-04 5.06 0.1826E-02 4.07 0.2976E-03 2.943 0.3014E-05 5.04 0.1079E-03 4.08 0.2582E-04 3.534 0.1551E-06 4.28 0.6457E-05 4.06 0.1910E-05 3.76

Figure 1: Example 6.2. The weak Galerkin solution for β=1 (bottom) and for β=10 (top).

7 Conclusions

In this paper, we developed another weak Galerkin finite element method with a sta-bilizer, which provides more options to choose elements of partition, for solving linearparabolic and primary integro-differential problems. The semi-discrete and fully-discreteweak Galerkin finite element schemes were constructed. The semi-discrete WG scheme

Page 23: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

186 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

was proved to be stable with respect to the right hand side. The fully-discrete WG schemewas discretized by the backward Euler method. The optimal orders of convergence wereobtained in L2 and H1 norms. Numerical examples confirmed theoretical analysis.

Acknowledgements

The research of Qilong Zhai was supported in part by China Natural NationalScience Foundation (No. 11901015) and China Postdoctoral Science Foundation(Nos. 2018M640013 and 2019T120008). The research of Ran Zhang was supported inpart by China Natural National Science Foundation (Nos. 91630201, U1530116, 11726102,11771179, 93K172018Z01, 11701210, JJKH20180113KJ and 20190103029JH) and by the Pro-gram for Cheung Kong Scholars of Ministry of Education of China, Key Laboratory ofSymbolic Computation and Knowledge Engineering of Ministry of Education.

References

[1] BASHIR AHMAD AND S SIVASUNDARAM, Dynamics and stability of impulsive hybrid setvaluedintegro-differential equations with delay, Nonlinear Anal. Theory, Methods Appl., 65(11) (2006),pp. 2082–2093.

[2] HONGBO CHEN AND TIANLIANG HOU, A priori and a posteriori error estimates of H1-Galerkinmixed finite element methods for optimal control problems governed by pseudo-hyperbolic integro-differential equations, Appl. Math. Comput., 328 (2018), pp. 100–112.

[3] GAMAL N. EDIT, Optimal control computation for integro-differential aerodynamic equations,Math. Methods Appl. Sci., 21(7) (1998), pp. 653–664.

[4] DEEPJYOTI GOSWAMI, AMIYA K. PANI AND SANGITA YADAV, Optimal error estimates of twomixed finite element methods for parabolic integro-differential equations with nonsmooth initial data,J. Sci. Comput., 56(1) (2013), pp. 131–164.

[5] STIG LARSSON, VIDAR THOMEE AND LARS B. WAHLBIN, Numerical solution of parabolicintegro-differential equations by the discontinuous Galerkin method, Math. Comput. Am. Math.Soc., 67(221) (1998), pp. 45–71.

[6] JINGZHI LI, XIAOSHEN WANG AND KAI ZHANG, Multi-level Monte Carlo weak Galerkinmethod for elliptic equations with stochastic jump coefficients, Appl. Math. Comput., 275 (2016),pp. 181–194.

[7] ZHIHUI LIU AND ZHONGHUA QIAO, WongZakai approximations of stochastic Allen-Cahn equa-tion, Int. J. Numer. Anal. Model., 16(5) (2019), pp. 681–694.

[8] F. G. MAKSUDOV AND T. M. RASULOV, Solution of problems for a nonlinear system of integro-differential equations that characterizes the process of displacement of petroleum from strata by min-eral, Azerbaidzhan. Gos. Univ. Baku, 12(7) (1981), pp. 66–70.

[9] SEAN MCKEE, Volterra integral and integro-differential equations arising from problems in engi-neering and science, Bull. Inst. Math. Appl., 24(9-10) (1988), pp. 135–138.

[10] ABDELAZIZ MENNOUNI, Airfoil polynomials for solving integro-differential equations with loga-rithmic kernel, Appl. Math. Comput., 218(24) (2012), pp. 11947–11951.

Page 24: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188 187

[11] K. MUSTAPHA, H. BRUNNER, H. MUSTAPHA AND D. SCHOTZAU, An hp-version discontin-uous Galerkin method for integro-differential equations of parabolic type, SIAM J. Numer. Anal.,48(4) (2011), pp. 1369–1396.

[12] K. S. SCHMID, S. GEIGER AND K. S. SORBIE, Higher order FE-FV method on unstructured gridsfor transport and two-phase flow with variable viscosity in heterogeneous porous media, J. Comput.Phys., 241 (2013), pp. 416–444.

[13] ZHONGHUA QIAO, A new multi-component diffuse interface model with Peng-Robinson equationof state and its scalar auxiliary variable (SAV) approach, Commun. Comput. Phys., 26(5) (2019),pp. 1597–1616.

[14] FATEMEH SHAKERI AND MEHDI DEHGHAN, A high order finite volume element method forsolving elliptic partial integro-differential equations, Appl. Numer. Math., 65 (2013), pp. 105–118.

[15] A. S. C. SINHA, Integro-differential equations arising in population dynamics and control systems,Int. J. Control, 27(4) (1978), pp. 571–577.

[16] RAYTCHO D. SINHA, RAJEN K. EWING AND RICHARD E. LAZAROV, Some new error esti-mates of a semidiscrete finite volume element method for a parabolic integro-differential equation withnonsmooth initial data, SIAM J. Numer. Anal., 43(6) (2006), pp. 2320–2343.

[17] TIAN TIAN, QILONG ZHAI AND RAN ZHANG, A new modified weak Galerkin finite elementscheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329 (2018), pp. 268–279.

[18] JUNPING WANG, RUISHU WANG, QILONG ZHAI AND RAN ZHANG, A systematic study onweak galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 74(3)(2018), pp. 1369–1396.

[19] JUNPING WANG AND XIU YE, A weak Galerkin finite element method for second-order ellipticproblems, J. Comput. Appl. Math., 241(1) (2013), pp. 103–115.

[20] JUNPING WANG AND XIU YE, A weak Galerkin finite element method for the stokes equations,Adv. Comput. Math., 42(1) (2016), pp. 155–174.

[21] XIULI WANG, A class of weak Galerkin finite element methods for the incompressible fluid model,Adv. Appl. Math. Mech., 11(2) (2019), pp. 360–380.

[22] XIULI WANG, QILONG ZHAI, RUISHU WANG AND RABEEA JARI, An absolutely stable weakGalerkin finite element method for the Darcy-Stokes problem, Appl. Math. Comput., 331 (2018),pp. 20–32.

[23] XIULI WANG, QILONG ZHAI AND RAN ZHANG, The weak Galerkin method for solving theincompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), pp. 13–24.

[24] XINGFA YANG, Jacobi spectral collocation method based on Lagrange interpolation polynomials forsolving nonlinear fractional integro-differential equations, Adv. Appl. Math. Mech., 10(6) (2018),pp. 1440–1458.

[25] ELIZABETH G. YANIK AND GRAEME FAIRWEATHER, Finite element methods for parabolic andhyperbolic partial integro-differential equations, Nonlinear Anal. Theory Methods Appl., 12(8)(1988), pp. 785–809.

[26] QILONG ZHAI, HEHU XIE, RAN ZHANG AND ZHIMIN ZHANG, The weak Galerkin method forelliptic eigenvalue problems, Commun. Comput. Phys., 26(1) (2019), pp. 160–191.

[27] QILONG ZHAI, RAN ZHANG AND LIN MU, A new weak Galerkin finite element scheme for theBrinkman model, Commun. Comput. Phys., 19(05) (2016), pp. 1409–1434.

[28] QILONG ZHAI, RAN ZHANG AND XIAOSHEN WANG, A hybridized weak Galerkin finite elementscheme for the Stokes equations, Sci. China Math., 58(11) (2015), pp. 2455–2472.

[29] HONGQIN ZHANG, YONGKUI ZOU, YINGXIANG XU, QILONG ZHAI AND HUA YUE, WeakGalerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model.,

Page 25: The Weak Galerkin Finite Element Method for Solving the ...szhang/research/p/2020-16.pdf · At last, we define the discrete weak gradient operator. For each v=fv 0,v bg2V h, the

188 X. L. Wang, Q. L. Zhai, R. Zhang and S. Y. Zhang / Adv. Appl. Math. Mech., 12 (2020), pp. 164-188

13(4) (2016), pp. 525–544.[30] RAN ZHANG AND QILONG ZHAI, A weak Galerkin finite element scheme for the Biharmonic

equations by using polynomials of reduced order, J. Sci. Comput., 64(2) (2015), pp. 559–585.[31] WEISHAN ZHENG, Convergence analysis of Legendre-Collocation spectral methods for second order

Volterra integro-differential equation with delay, Adv. Appl. Math. Mech., 11(2) (2019), pp. 486–500.

[32] AILING ZHU, TINGTING XU AND QIANG XU, Weak Galerkin finite element methods for linearparabolic integro-differential equations, Numer. Methods Partial Differential Equations, 32(5)(2016), pp. 1357–1377.

[33] HONGZE ZHU, YONGKUI ZOU, SHIMIN CHAI AND CHENGUANG ZHOU, Numerical approxi-mation to a stochastic parabolic PDE with weak Galerkin method, Numer. Math. Theory MethodsAppl., 11(3) (2018), pp. 604–617.