weak galerkin finite element methods and applications · weak galerkin finite element methods and...

40
Weak Galerkin Finite Element Methods and Applications Lin Mu [email protected] Computational and Applied Mathematics Computationa Science and Mathematics Division Oak Ridge National Laboratory Georgia Institute of Technology Oct 26-28, 2015 Lin Mu WGFEM and Applications Oct 26-29, 2015 1 / 34

Upload: others

Post on 23-Mar-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Weak Galerkin Finite Element Methods andApplications

Lin [email protected]

Computational and Applied MathematicsComputationa Science and Mathematics Division

Oak Ridge National Laboratory

Georgia Institute of TechnologyOct 26-28, 2015

Lin Mu WGFEM and Applications Oct 26-29, 2015 1 / 34

Page 2: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Outline

• Weak Galerkin Finite Element Methods• Motivation• Implementation

• Applications• Brinkman Problems• Multiscale Weak Galerkin Finite Element Methods• Solution Boundedness

• Summary and Future Work

Joint Work with: Dr. Junping Wang, Dr. Guowei Wei, Dr. Xiu Ye

Lin Mu WGFEM and Applications Oct 26-29, 2015 2 / 34

Page 3: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM

Table of Contents

1 Weak Galerkin Finite Element MethodsMotivationImplementation

2 ApplicationsBrinkman ProblemsMultiscale Weak Galerkin Finite Element MethodsSolution Boundedness

3 Summary and Future WorkSummaryFuture Work

Lin Mu WGFEM and Applications Oct 26-29, 2015 3 / 34

Page 4: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Motivation

Limitations of Continuous Finite Element Methods

• Lowest order of element does not work• P1 − P0 Continuous element not

stable for Stokes problem

• Difficult to construct high ordercontinuous elements.• C1 element: Argyris element,

polynomial with degree 5

• Not compatible to modern techniquesin scientific computing.• hp adaptive technique• Hybrid mesh

Figure: Argyris Finite Element

Figure: Hp adaptive FiniteElement

Figure: Hybrid mesh

Lin Mu WGFEM and Applications Oct 26-29, 2015 4 / 34

Page 5: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Implementation

Weak Galerkin Formulation

The weak form of the PDE: seeking u ∈ H10 (Ω) satisfying:

(a∇u,∇v) = (f, v), ∀v ∈ H10 (Ω).

Weak Galerkin finite element method: seeking uh ∈ Vh satisfying:

(a∇wuh,∇wv) + s(uh, v) = (f, v), ∀v ∈ Vh,where s(uh, v) =

∑K h−1K 〈u0 − ub, v0 − vb〉∂K .

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Honeycomb mesh Mesh with hanging nodes

Lin Mu WGFEM and Applications Oct 26-29, 2015 5 / 34

Page 6: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Implementation

Weak Galerkin Formulation

The weak form of the PDE: seeking u ∈ H10 (Ω) satisfying:

(a∇u,∇v) = (f, v), ∀v ∈ H10 (Ω).

Weak Galerkin finite element method: seeking uh ∈ Vh satisfying:

(a∇wuh,∇wv) + s(uh, v) = (f, v), ∀v ∈ Vh,

where s(uh, v) =∑

K h−1K 〈u0 − ub, v0 − vb〉∂K .

Like traditional FEM (CG) to compute (∇uh,∇v), for WG we need tocompute:1

(a∇wuh,∇wv) =∑K

(a∇wuh,∇wv)K .

1L. Mu, J. Wang, and X. Ye. Weak Galerkin Finite Element Methods on Polytopal Meshes. International Journal ofNumerical Analysis and Modeling. 12 (2015), 31-53.

Lin Mu WGFEM and Applications Oct 26-29, 2015 6 / 34

Page 7: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Implementation

Example of WG Element: P1(K0), P0(e)

Calculating: ∇wv ∈ [P0(K)]2, withv ∈ Vh = (v0, vb) : v0|K ∈ P1(K0), vb ∈ P0(e), vb = 0 on ∂Ω

Vh = spanΦ0,i,Φb,j, i = 1, . . . , np, j = 1, . . . , ne

Φ0,i =

P1(K) on K0

0, otherwise

Φb,j =

1, on ej

0, otherwise.

V0

Vbe1

e2

e3e3

e5

e6· · ·eℓ

Figure: (a). Φ0,i is defined on K0; (b).Φb,j is defined on ∂K.

(∇wv, q)|K = −(v0,∇ · q)|K + 〈vb, q · n〉|∂K⇒ ∇wΦ0,i|K = 0, ∇wΦb,j |K =

|ej ||K|nj,K .

Lin Mu WGFEM and Applications Oct 26-29, 2015 7 / 34

Page 8: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Implementation

Example of WG Element: P1(K0), P0(e)

Calculating: ∇wv ∈ [P0(K)]2, withv ∈ Vh = (v0, vb) : v0|K ∈ P1(K0), vb ∈ P0(e), vb = 0 on ∂Ω

Vh = spanΦ0,i,Φb,j, i = 1, . . . , np, j = 1, . . . , ne

Φ0,i =

P1(K) on K0

0, otherwise

Φb,j =

1, on ej

0, otherwise.

V0

Vbe1

e2

e3e3

e5

e6· · ·eℓ

Figure: (a). Φ0,i is defined on K0; (b).Φb,j is defined on ∂K.

(∇wv, q)|K = −(v0,∇ · q)|K + 〈vb, q · n〉|∂K

⇒ ∇wΦ0,i|K = 0, ∇wΦb,j |K =|ej ||K|nj,K .

Lin Mu WGFEM and Applications Oct 26-29, 2015 7 / 34

Page 9: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Implementation

Example of WG Element: P1(K0), P0(e)

Calculating: ∇wv ∈ [P0(K)]2, withv ∈ Vh = (v0, vb) : v0|K ∈ P1(K0), vb ∈ P0(e), vb = 0 on ∂Ω

Vh = spanΦ0,i,Φb,j, i = 1, . . . , np, j = 1, . . . , ne

Φ0,i =

P1(K) on K0

0, otherwise

Φb,j =

1, on ej

0, otherwise.

V0

Vbe1

e2

e3e3

e5

e6· · ·eℓ

Figure: (a). Φ0,i is defined on K0; (b).Φb,j is defined on ∂K.

(∇wv, q)|K = −(v0,∇ · q)|K + 〈vb, q · n〉|∂K⇒ ∇wΦ0,i|K = 0, ∇wΦb,j |K =

|ej ||K|nj,K .

Lin Mu WGFEM and Applications Oct 26-29, 2015 7 / 34

Page 10: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

WGFEM Implementation

Weak Galerkin Numerical Schemes

Weak Galerkin finite element method for Stokes equations:2 seeking(uh, ph) ∈ Vh ×Wh such that for all (v, q) ∈ Vh ×Wh

(∇wuh,∇wv) + s(uh,v)− (∇w · v, ph) = (f ,v)

(∇w · uh, q) = 0.

Weak Galerkin finite element method for Biharmonic equations:3

seeking uh ∈ Vh satisfying

(∆wuh,∆wv) + s(uh, v) = (f, v), ∀v ∈ Vh.

2J. Wang, and X. Ye. A Weak Galerkin Finite Element Method for the Stokes Equations, arXiv: 1302.2707.3L. Mu, J. Wang, and X. Ye. Weak Galerkin Finite Element Methods for the Biharmonic Equation on Polytopal Meshes.

Numerical Methods for Partial Differential Equations, 30 (2014): 1003-1029.

Lin Mu WGFEM and Applications Oct 26-29, 2015 8 / 34

Page 11: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications

Table of Contents

1 Weak Galerkin Finite Element MethodsMotivationImplementation

2 ApplicationsBrinkman ProblemsMultiscale Weak Galerkin Finite Element MethodsSolution Boundedness

3 Summary and Future WorkSummaryFuture Work

Lin Mu WGFEM and Applications Oct 26-29, 2015 9 / 34

Page 12: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

Application 1: Brinkman Problems

Brinkman equations:

−ε2∆u + u +∇p = f , in Ω,

∇ · u = g, in Ω

where 0 ≤ ε2 ≤ 1.Stokes equations:

−∆u +∇p = f , in Ω,

∇ · u = 0, in Ω

Darcy equations:

u +∇p = 0, in Ω,

∇ · u = g, in Ω

Lin Mu WGFEM and Applications Oct 26-29, 2015 10 / 34

Page 13: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

Challenge of algorithm design for the Brinkman equations

• The main challenge for solving Brinkman equations is in theconstruction of numerical schemes that are stable for both the Darcyflow and the Stokes flow.

• Stokes stable elements such as Crouzeix-Raviart element, MINIelement and Taylor-Hood element do not work well for the Darcy flow(small ε).

• Darcy stable elements such as RT elements and BDM elements donot work well for the Stokes flow (large ε).

Lin Mu WGFEM and Applications Oct 26-29, 2015 11 / 34

Page 14: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG methods for the Brinkman equations

The weak form of the Brinkman equations: find(u, p) ∈ H1

0 (Ω)d × L20(Ω) s.t. for (v, q) ∈ H1

0 (Ω)d × L20(Ω)

ε2(∇u,∇v) + (u,v)− (∇ · v, p) = (f ,v),

(∇ · u, q) = (g, q).

Weak Galerkin finite element methods4 for the Brinkman equations:find (uh, ph) ∈ Vh ×Wh s.t. for (v, q) ∈ Vh ×Wh

ε2(∇wuh,∇wv) + (u0,v0) + s(uh,v)− (∇w · v, ph) = (f ,v),

(∇w · uh, q) = (g, q),

wheres(v,w) =

∑K∈Th

h−1K 〈v0 − vb,w0 −wb〉∂K .

4Mu, L., Wang, J., Ye, X.. A stable numerical algorithm for the Brinkman equations by weak Galerkin finite elementmethods. Journal of Computational Physics. (2014)

Lin Mu WGFEM and Applications Oct 26-29, 2015 12 / 34

Page 15: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

Uniform convergence rate of WG method

Theorem (Mu, Wang, Ye, 2014, Uniform convergence rate)

Let (u; p) ∈ (H10 (Ω) ∩Hk+1(Ω))d × L2

0(Ω) ∩Hk(Ω) with k ≥ 1 be thesolution of the Brinkman equations and (uh; ph) ∈ Vh ×Wh be thesolutions of the weak Galerkin methods. Then

|||Qhu− uh|||+ ‖Qhp− ph‖ ≤ Chk(‖u‖k+1 + ‖p‖k),‖Q0u− u0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k).

where C is a constant independent of h and ε.

Lin Mu WGFEM and Applications Oct 26-29, 2015 13 / 34

Page 16: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Example 1. Let Ω = (0, 1)2, u = curl(sin2(πx) sin2(πy)), andp = sin(πx).

Table: Numerical Convergence Test for Crouzeix Raviart element, Raviart Thomas element, andWG element.

ε 1 2−2 2−4 2−8 0

Crouzeix-Raviart rate H1,velocity 0.98 0.97 0.74 0.03 -0.03rate L2,pressure 1.00 0.93 0.98 0.12 -0.03

Raviart-Thomas rate H1,velocity -0.07 -0.07 0.28 0.97 0.97rate L2,pressure -0.04 0.08 0.86 1.01 1.01

WG-FEM rate H1,velocity 1.00 0.99 0.98 0.97 0.97rate L2, velocity 2.00 2.00 1.96 1.91 1.91rate L2, pressure 1.00 1.00 0.99 0.98 0.98

Lin Mu WGFEM and Applications Oct 26-29, 2015 14 / 34

Page 17: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Example 1. Let Ω = (0, 1)2, u = curl(sin2(πx) sin2(πy)), andp = sin(πx).

Table: Numerical Convergence Test for Crouzeix Raviart element, Raviart Thomas element, andWG element.

ε 1 2−2 2−4 2−8 0

Crouzeix-Raviart rate H1,velocity 0.98 0.97 0.74 0.03 -0.03rate L2,pressure 1.00 0.93 0.98 0.12 -0.03

Raviart-Thomas rate H1,velocity -0.07 -0.07 0.28 0.97 0.97rate L2,pressure -0.04 0.08 0.86 1.01 1.01

WG-FEM rate H1,velocity 1.00 0.99 0.98 0.97 0.97rate L2, velocity 2.00 2.00 1.96 1.91 1.91rate L2, pressure 1.00 1.00 0.99 0.98 0.98

Lin Mu WGFEM and Applications Oct 26-29, 2015 14 / 34

Page 18: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Example 1. Let Ω = (0, 1)2, u = curl(sin2(πx) sin2(πy)), andp = sin(πx).

Table: Numerical Convergence Test for Crouzeix Raviart element, Raviart Thomas element, andWG element.

ε 1 2−2 2−4 2−8 0

Crouzeix-Raviart rate H1,velocity 0.98 0.97 0.74 0.03 -0.03rate L2,pressure 1.00 0.93 0.98 0.12 -0.03

Raviart-Thomas rate H1,velocity -0.07 -0.07 0.28 0.97 0.97rate L2,pressure -0.04 0.08 0.86 1.01 1.01

WG-FEM rate H1,velocity 1.00 0.99 0.98 0.97 0.97rate L2, velocity 2.00 2.00 1.96 1.91 1.91rate L2, pressure 1.00 1.00 0.99 0.98 0.98

Lin Mu WGFEM and Applications Oct 26-29, 2015 14 / 34

Page 19: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Next, we use the Brinkman equation in the following equivalent form forthe following more practical examples:

−µ∆u +∇p+ µκ−1u = f , in Ω (1)

∇ · u = 0, in Ω (2)

u = g. (3)

Here κ denotes the permeability. Below, we shall:

(1) Taking both µ and κ as variants.

(2) Investigate the performance of weak Galerkin algorithm to morepractical problems.

For all the following test problems, we have the same setting:

Ω = (0, 1)× (0, 1), µ = 0.01, f = 0,g = [1, 0]T .

Lin Mu WGFEM and Applications Oct 26-29, 2015 15 / 34

Page 20: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Example 2. Fluid flow in Vuggy reservoirs.

Figure: (a) Profile of κ−1 for vuggy medium; (b) Pressure profile; (c) Velocity of x component;(d) Velocity of y component.

Lin Mu WGFEM and Applications Oct 26-29, 2015 16 / 34

Page 21: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Example 3. Flow through fibrous materials.

Figure: (a) Profile of κ−1 for fibrous materials; (b) Pressure profile; (c) Velocity of xcomponent; (d) Velocity of y component.

Lin Mu WGFEM and Applications Oct 26-29, 2015 17 / 34

Page 22: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Brinkman

WG Methods for Brinkman Problems

Example 4. Flow through open foam.

Figure: (a) Profile of κ−1 for open foam; (b) Pressure profile; (c) Velocity of x component; (d)Velocity of y component.

Lin Mu WGFEM and Applications Oct 26-29, 2015 18 / 34

Page 23: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Application 2: Multiscale Weak Galerkin Finite ElementMethods

• Many scientific and engineering problems involve multiple scales

• Difficulty of direct numerical solution: size of the computation

ε = 0.4, P = 1.8 ε = 0.2, P = 1.8 ε = 0.1, P = 1.8

Figure: Plot of a(x/ε) = 14+P (sin(2πx/ε)+sin(2πy/ε))

Lin Mu WGFEM and Applications Oct 26-29, 2015 19 / 34

Page 24: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Multiscale Weak Galerkin Finite Element Methods

• Capture the multiscale structure of the solution via localized basisfunctions

• Basis functions contain information about the scales that are smallerthan the local numerical scale (muliscale information)

Let TH be a partition of Ω into coarse elements K. On each elementK ∈ TH , Ψj is the solution of the local problem: Ψj = Φe,j on ∂K and

aK(Ψj , v) = 0, ∀v ∈ V 0h (K)

Define WG multiscale vector space:

V SH = spanΨ1, · · · ,Ψn.

Weak Galerkin multiscale method: Find ΦH ∈ V SH satisfying

a(ΦH , v) = (f, v),∀v ∈ V SH (4)

Lin Mu WGFEM and Applications Oct 26-29, 2015 20 / 34

Page 25: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Part I: Multiscale Weak Galerkin FEM (MsWG)

K

K

1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

16

Figure: Coarse Mesh VS Fine Mesh Degree of Freedom

Theorema Let ΦH and uh be the solutions of the WG multiscale method insnapshot space and WG method on the find grid respectively. Then wehave

|||uh − ΦH ||| ≤ CH‖f‖. (5)

aEfendiev, Y., Mu, L., Wang, J., Ye, X. A weak Galerkin general mutiscale finite element method, in processing.

Lin Mu WGFEM and Applications Oct 26-29, 2015 21 / 34

Page 26: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Part I: Multiscale Weak Galerkin FEM (MsWG)

K

K 1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

16

Figure: Coarse Mesh VS Fine Mesh Degree of Freedom

Theorema Let ΦH and uh be the solutions of the WG multiscale method insnapshot space and WG method on the find grid respectively. Then wehave

|||uh − ΦH ||| ≤ CH‖f‖. (5)

aEfendiev, Y., Mu, L., Wang, J., Ye, X. A weak Galerkin general mutiscale finite element method, in processing.

Lin Mu WGFEM and Applications Oct 26-29, 2015 21 / 34

Page 27: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Part I: Multiscale Weak Galerkin FEM (MsWG)

K

K 1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

16

Figure: Coarse Mesh VS Fine Mesh Degree of Freedom

Theorema Let ΦH and uh be the solutions of the WG multiscale method insnapshot space and WG method on the find grid respectively. Then wehave

|||uh − ΦH ||| ≤ CH‖f‖. (5)

aEfendiev, Y., Mu, L., Wang, J., Ye, X. A weak Galerkin general mutiscale finite element method, in processing.

Lin Mu WGFEM and Applications Oct 26-29, 2015 21 / 34

Page 28: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Numerical Results for MsWG

Example 5. Problem is set as Ω = (0, 1)2, a = I and u = cos(πx) cos(πy).

Table: Example 5. Convergence rate for triangular mesh: Linear and quadratic weak Galerkinelements.

Mesh |||uh − ΦH ||| order ‖uh − ΦH‖ order

Linear weak Galerkin element

Level 1 7.2215e-2 2.3575e-2

Level 2 2.0804e-2 1.7954 5.9408e-3 1.9885

Level 3 5.9682e-3 1.8015 1.4881e-3 1.9972

Level 4 1.6698e-3 1.8376 3.7220e-4 1.9993

Level 5 4.5799e-4 1.8663 9.3060e-5 1.9998

Level 6 1.2382e-4 1.8871 2.3266e-5 1.9999

Quadratic weak Galerkin element

Level 1 1.2218e-2 1.5319e-3

Level 2 2.1856e-3 2.4829 1.9107e-4 3.0031

Level 3 3.8978e-4 2.4873 2.3849e-5 3.0021

Level 4 6.9196e-5 2.4939 2.9786e-6 3.0012

Level 5 1.2256e-5 2.4972 3.7217e-7 3.0006

Level 6 2.1667e-6 2.4999 4.6511e-8 3.0003

Lin Mu WGFEM and Applications Oct 26-29, 2015 22 / 34

Page 29: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Example 6: a(x/ε) = 14+P (sin(2πx/ε)+sin(2πy/ε)) and u =

√4−P 2

2 (x2 + y2).

Table: Example 6. Convergence rate: Linear weak Galerkin element on triangular mesh withfixed H = 1/8.

ε = 0.4 ε = 0.2 ε = 0.1

H/h ‖uh − ΦH‖ order ‖uh − ΦH‖ order ‖uh − ΦH‖ order

1 7.960e-2 2.998e-1 2.134e-1

2 1.196e-2 2.7 8.689e-2 1.8 1.959e-1 0.12

4 1.012e-3 3.6 4.289e-3 4.3 5.518e-2 1.8

8 2.596e-4 2.0 5.943e-4 2.9 2.839e-3 4.3

16 6.494e-5 2.0 1.611e-4 1.9 3.389e-4 3.1

32 1.624e-5 2.0 4.028e-5 2.0 9.330e-5 1.9

64 4.060e-6 2.0 1.007e-5 2.0 2.333e-5 2.0

Lin Mu WGFEM and Applications Oct 26-29, 2015 23 / 34

Page 30: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Part II: Basis Reduction

Associated each Ei, an edge in coarse mesh TH , We will solve aneigenvalue problem: find λ and Zi ∈ VH(Ei) in ω(Ei) such that

ai(Zi, w) = λiSi(Zi, w), ∀w ∈ Θi (6)

where

ai(v, w) =∑K∈ωi

(a∇wv,∇ww)K + h−1〈v0 − vb, w0 − wb〉∂K ,

Si(v, w) =∑K∈ωi

h−1〈v0 − vb, w0 − wb〉∂K .

Eigenvalues and eigenvectors:

λi1 ≤ λi2 ≤ · · · ≤ λiJi ,Zi1, Zi2, · · · , ZiJi

Lin Mu WGFEM and Applications Oct 26-29, 2015 24 / 34

Page 31: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Part II: Basis Reduction

Define ξij =∑Ji

m=1 zij,mΨi,m, m = 1, · · · , Ji. Define V r

H(Ei) ⊂ VH(Ei) for

Mi ≤ Ji, V rH(Ei) = spanξi1, ξi2, · · · , ξiMi

. Let V rH be s subspace of VH ,

VrH = ∪Mi=1VrH .

Find uH ∈ V rH such that

a(uH , v) = (f, v), ∀v ∈ V rH . (7)

Theorem

Let uh and uH be the solutions of the WG method on the fine grid andthe WG-GMS method respectively. The we have for k = 1

|||uh − uH ||| ≤ C(H‖f‖+ Λ−1/2|||ΨH |||), (8)

where Λ = minMi=1 λiMi

with M the number of E ∈ E0H and ΨH is the

solution of weak Galerkin multiscale methods.

Lin Mu WGFEM and Applications Oct 26-29, 2015 25 / 34

Page 32: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications MsWG

Numerical Experiment of GMsWG

0 5 10 15 2010

−2

10−1

100

101

102

103

Figure: Example 7. (a). Plot of high contrast coefficient; (b). Reduction of eigenvalues; (c).Reference solution; (d). GMsWG solution.

Table: Example 7. Error profiles.

n = 100, N = 5 n = 100, N = 10 n = 100, N = 20dof per E ‖uH − uh‖/‖uh‖ ‖uH − uh‖/‖uh‖ ‖uH − uh‖/‖uh‖

1 8.0463e-01 4.4399e-01 4.7785e-02

3 5.2420e-01 1.6139e-01 3.3018e-02

5 2.9955e-01 7.6311e-02 2.9196e-02

7 2.3309e-01 7.3175e-02 2.8767e-02

9 2.3153e-01 7.1989e-02 2.8051e-02

10 2.3114e-01 7.1358e-02 2.8051e-02

20 2.3011e-01 7.1358e-02 -

40 2.3000e-01 - -

Lin Mu WGFEM and Applications Oct 26-29, 2015 26 / 34

Page 33: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Solution Boundedness

Application 3: Solution Boundedness

Example 8: (Numerical Locking) In this test, the permeability tensor isdefined by5

D =

(1 00 δ

), with δ = 105 or 106.

The exact solution is taken to be u = sin(2πx)e−2π√

1/δy. We considerelliptic problem with non-homogeneous Neumann boundary condition andright hand side is f = −∇ · (D∇u). The uniqueness of solution is enforcedby∫

Ω udx = 0.Some numerical locking for finite element scheme.

5Raphaele Herbin and Florence Hubert, Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on GeneralGrids, Finite volumes for complex applications V, Wiley, 2008.

Lin Mu WGFEM and Applications Oct 26-29, 2015 27 / 34

Page 34: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Solution Boundedness

Numerical Results for Numerical Locking Problem

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure: Example 8. (a). Mesh 1; (b). Exact solution.

Table: Example 8. Maxmimum and Minimum values of CG and WG element on Mesh 1.

Continuous element WG element

δ = 1e5 Min Max Min Max

-1.293e-2 1.320e-2 -6.227e-1 7.035e-1

δ = 1e6 Min Max Min Max

-1.548e-3 1.283e-3 -5.822e-1 7.6469e-1

Lin Mu WGFEM and Applications Oct 26-29, 2015 28 / 34

Page 35: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Solution Boundedness

Numerical Results for Numerical Locking Problem

Table: Example 8. Maxmimum and Minimum values of CG and WG element on Mesh 2 andMesh 3.

Continuous element WG element

δ = 1e5 Min Max Min Max

Mesh 2 -3.768e-2 3.816e-2 -9.018e-1 9.709e-1

Mesh 3 -1.137e-1 1.134e-1 -9.964e-1 9.952e-1

δ = 1e6 Min Max Min Max

Mesh 2 -3.807e-3 3.807e-3 -9.432e-1 9.474e-1

Mesh 3 -1.202e-2 1.198e-2 -9.950e-1 9.875e-1

Lin Mu WGFEM and Applications Oct 26-29, 2015 29 / 34

Page 36: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Applications Solution Boundedness

Plots for Numerical Locking Problem

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Figure: Example 8. CG solution (top) and WG solution (bottom) for δ = 106 on Mesh 1, Mesh3, and Mesh 5.

Lin Mu WGFEM and Applications Oct 26-29, 2015 30 / 34

Page 37: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Summary

Table of Contents

1 Weak Galerkin Finite Element MethodsMotivationImplementation

2 ApplicationsBrinkman ProblemsMultiscale Weak Galerkin Finite Element MethodsSolution Boundedness

3 Summary and Future WorkSummaryFuture Work

Lin Mu WGFEM and Applications Oct 26-29, 2015 31 / 34

Page 38: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Summary Summary

Summary

• The Weak Galerkin finite element methods provide a generalframework for numerical simulation of partial differential equations.

• The Weak Galerkin Method employs discontinuous functions and canbe performed on meshes with almost arbitrary shape.

• The degree of freedom of WG-FEM can be reduced efficiently bySchur complement.

• Simple formulation and easy implementation.

Lin Mu WGFEM and Applications Oct 26-29, 2015 32 / 34

Page 39: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Summary Future Work

Future Work

• Weak Galerkin simulation of electrostatics problems

• Domain decomposition preconditioner and parallel applications

• Hp adaptive of weak Galerkin finite element methods

Lin Mu WGFEM and Applications Oct 26-29, 2015 33 / 34

Page 40: Weak Galerkin Finite Element Methods and Applications · Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa

Summary Future Work

Thank you!

Contact me at: [email protected]

Lin Mu WGFEM and Applications Oct 26-29, 2015 34 / 34