the tree-bonacci

104
From the Boundary of Outer Space The Tribonacci Substitution The Tree-Bonacci General Results The Tree-Bonacci Thierry Coulbois with Xavier Bressaud, Arnaud Hilion, Martin Lustig Zaragoza, 13 de Julio 2007 Thierry Coulbois The Tree-Bonacci

Upload: others

Post on 19-Oct-2021

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Tree-Bonacci

Thierry Coulbois

with Xavier Bressaud, Arnaud Hilion, Martin Lustig

Zaragoza, 13 de Julio 2007

Thierry Coulbois The Tree-Bonacci

Page 2: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

From the Boundary of Outer Space: the Map Q

Theorem (Levitt-Lustig)

T: R-tree with very small, minimal action of FN by isometries ( i.e.T ∈ CVN) with dense orbits.

∃! Q : ∂FN → T (= T ∪ ∂T ) equivariant

∀un ∈ FN , s.t. (un)n∈N → X ∈ ∂FN

∀P ∈ T , s.t. (unP) converges

⇒ Q(X ) = lim unP.

Other Definition of Q

∀(un)n∈N → X , ∀P ∈ T , [P,Q(X )] =⋃n>0

⋂k>n

[P, ukP]

Thierry Coulbois The Tree-Bonacci

Page 3: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

From the Boundary of Outer Space: the Map Q

Theorem (Levitt-Lustig)

T: R-tree with very small, minimal action of FN by isometries ( i.e.T ∈ CVN) with dense orbits.

∃! Q : ∂FN → T (= T ∪ ∂T ) equivariant

∀un ∈ FN , s.t. (un)n∈N → X ∈ ∂FN

∀P ∈ T , s.t. (unP) converges

⇒ Q(X ) = lim unP.

Other Definition of Q

∀(un)n∈N → X , ∀P ∈ T , [P,Q(X )] =⋃n>0

⋂k>n

[P, ukP]

Thierry Coulbois The Tree-Bonacci

Page 4: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

From the Boundary of Outer Space: the Map Q

Theorem (Levitt-Lustig)

T: R-tree with very small, minimal action of FN by isometries ( i.e.T ∈ CVN) with dense orbits.

∃! Q : ∂FN → T (= T ∪ ∂T ) equivariant

∀un ∈ FN , s.t. (un)n∈N → X ∈ ∂FN

∀P ∈ T , s.t. (unP) converges

⇒ Q(X ) = lim unP.

Other Definition of Q

∀(un)n∈N → X , ∀P ∈ T , [P,Q(X )] =⋃n>0

⋂k>n

[P, ukP]

Thierry Coulbois The Tree-Bonacci

Page 5: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

From the Boundary of Outer Space: the Map Q

Theorem (Levitt-Lustig)

T: R-tree with very small, minimal action of FN by isometries ( i.e.T ∈ CVN) with dense orbits.

∃! Q : ∂FN → T (= T ∪ ∂T ) equivariant

∀un ∈ FN , s.t. (un)n∈N → X ∈ ∂FN

∀P ∈ T , s.t. (unP) converges

⇒ Q(X ) = lim unP.

Other Definition of Q

∀(un)n∈N → X , ∀P ∈ T , [P,Q(X )] =⋃n>0

⋂k>n

[P, ukP]

Thierry Coulbois The Tree-Bonacci

Page 6: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

From the Boundary of Outer Space: the Map Q

Theorem (Levitt-Lustig)

T: R-tree with very small, minimal action of FN by isometries ( i.e.T ∈ CVN) with dense orbits.

∃! Q : ∂FN → T (= T ∪ ∂T ) equivariant

∀un ∈ FN , s.t. (un)n∈N → X ∈ ∂FN

∀P ∈ T , s.t. (unP) converges

⇒ Q(X ) = lim unP.

Other Definition of Q

∀(un)n∈N → X , ∀P ∈ T , [P,Q(X )] =⋃n>0

⋂k>n

[P, ukP]

Thierry Coulbois The Tree-Bonacci

Page 7: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

From the Boundary of Outer Space: the Map Q

Theorem (Levitt-Lustig)

T: R-tree with very small, minimal action of FN by isometries ( i.e.T ∈ CVN) with dense orbits.

∃! Q : ∂FN → T (= T ∪ ∂T ) equivariant

∀un ∈ FN , s.t. (un)n∈N → X ∈ ∂FN

∀P ∈ T , s.t. (unP) converges

⇒ Q(X ) = lim unP.

Other Definition of Q

∀(un)n∈N → X , ∀P ∈ T , [P,Q(X )] =⋃n>0

⋂k>n

[P, ukP]

Thierry Coulbois The Tree-Bonacci

Page 8: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

The Attractive Real Tree of an Iwip Automorphism

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

ϕ ∈ Aut(F3) iwip

ϕ acts on Outer Space

North-South Dynamic on the Closure ofProjectivized Outer Space.

[Tϕ] repulsive fix point of ϕ (attractive of ϕ−1)

Tϕ has a very small minimal action of F3 by isometries withdense orbits.

Thierry Coulbois The Tree-Bonacci

Page 9: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

Constructing the Repulsive Tree Tϕ

Find a train-track representative for ϕ−1:

ϕ−1

a 7→ cb 7→ c−1ac 7→ c−1b

f

A 7→ DCB 7→ D−1AC 7→ BD 7→ C−1

Γ universal cover of Γ, f a cover map of f

dn(x , y) = d(f n(x),f n(y))λn

d∞ = lim dn

Tϕ = Γ/d∞, (H = f /d∞)

Thierry Coulbois The Tree-Bonacci

Page 10: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Map QThe Attractive Real Tree of an Iwip AutomorphismConstructing the Repulsive Tree

Summing Up

Tϕ has a very small minimal, minimal action of F3 byisometries with dense orbits.

Q : ∂F3 → Tϕ almost continuous.

Thierry Coulbois The Tree-Bonacci

Page 11: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = ab

ϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 12: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abac

ϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 13: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abac

ϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 14: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacaba

ϕ4(a) = abacabaabacab· · ·

ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 15: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacaba

ϕ4(a) = abacabaabacab· · ·

ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 16: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacaba

ϕ4(a) = abacabaabacab· · ·

ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 17: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacaba

ϕ4(a) = abacabaabacab· · ·

ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 18: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacaba

ϕ4(a) = abacabaabacab· · ·

ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 19: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 20: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 21: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 22: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 23: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 24: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 25: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·

ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 26: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

ϕ(a) = abϕ2(a) = abacϕ3(a) = abacabaϕ4(a) = abacabaabacab

· · ·ϕ∞(a) = abacabaabacababac . . .

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 27: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 28: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 29: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 30: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 31: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 32: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 33: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 34: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 35: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 36: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 37: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 38: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 39: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 40: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 41: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 42: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 43: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 44: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 45: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 46: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 47: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Tribonacci Substitution and its Attractive Fix Point

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

1 1 11 0 00 1 0

λ3 = λ2 +λ+ 1

Attracive Fix Point Xϕ = ϕ∞(a) ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 48: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectory

and a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 49: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectory

and a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 50: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectory

and a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 51: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectory

and a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 52: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 53: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 54: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 55: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 56: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 57: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 58: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 59: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 60: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 61: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 62: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 63: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 64: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 65: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 66: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 67: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 68: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 69: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 70: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 71: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 72: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 73: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 74: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 75: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 76: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 77: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 78: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 79: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 80: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 81: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 82: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 83: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 84: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 85: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 86: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 87: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 88: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 89: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 90: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

The Rauzy Fractal and the Piecewise Exchange

Each point has afutur trajectoryand a past

Trajectory:sequence of letters

L: set of possiblebi-infinitetrajectories

Q : L→ R iscontinuous

Attracive Fix Point Xϕ ∈ ∂F3

Xϕ = abacabaabacababacabaabacabacabaabacababacabaabac · · ·

Thierry Coulbois The Tree-Bonacci

Page 91: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

The Attractive Fix PointThe Rauzy Fractal and the Piecewise Exchange

Summing Up (2)

Tribonacci

ϕ : a 7→ abb 7→ acc 7→ a

ϕ is an Automorphism

Q : ∂F3 → Tϕ almostcontinuous

ϕ is a Substitution

Rauzy Fractal R

Q : L→ R continuous

Goal

Make the two maps Q coincide

Thierry Coulbois The Tree-Bonacci

Page 92: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Attractive Lamination

L set of bi-infinite possible trajectories in the Rauzy Fractal

finite subwords of Z ∈ L are subwords of Xϕ.

L is a Cantor Set.

Attractive Lamination (Bestvina-Feighn-Handel)

L is the Attractive Lamination of ϕ.

Both Q are defined on L

∀Z ∈ L, write Z = X−1Y then

Q(Z ) :=

Q(X ) = Q(Y ) ∈ Tϕ.

Theorem (Coulbois-Hilion-Lustig)

Q : L→ Tϕ is continuous.

Thierry Coulbois The Tree-Bonacci

Page 93: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Attractive Lamination

L set of bi-infinite possible trajectories in the Rauzy Fractal

finite subwords of Z ∈ L are subwords of Xϕ.

L is a Cantor Set.

Attractive Lamination (Bestvina-Feighn-Handel)

L is the Attractive Lamination of ϕ.

Both Q are defined on L

∀Z ∈ L, write Z = X−1Y then

Q(Z ) :=

Q(X ) = Q(Y ) ∈ Tϕ.

Theorem (Coulbois-Hilion-Lustig)

Q : L→ Tϕ is continuous.

Thierry Coulbois The Tree-Bonacci

Page 94: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Attractive Lamination

L set of bi-infinite possible trajectories in the Rauzy Fractal

finite subwords of Z ∈ L are subwords of Xϕ.

L is a Cantor Set.

Attractive Lamination (Bestvina-Feighn-Handel)

L is the Attractive Lamination of ϕ.

Both Q are defined on L

∀Z ∈ L, write Z = X−1Y then

Q(Z ) :=

Q(X ) = Q(Y ) ∈ Tϕ.

Theorem (Coulbois-Hilion-Lustig)

Q : L→ Tϕ is continuous.

Thierry Coulbois The Tree-Bonacci

Page 95: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Attractive Lamination

L set of bi-infinite possible trajectories in the Rauzy Fractal

finite subwords of Z ∈ L are subwords of Xϕ.

L is a Cantor Set.

Attractive Lamination (Bestvina-Feighn-Handel)

L is the Attractive Lamination of ϕ.

Both Q are defined on L

∀Z ∈ L, write Z = X−1Y then Q(Z ) :=Q(X ) = Q(Y ) ∈ Tϕ.

Theorem (Coulbois-Hilion-Lustig)

Q : L→ Tϕ is continuous.

Thierry Coulbois The Tree-Bonacci

Page 96: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Attractive Lamination

L set of bi-infinite possible trajectories in the Rauzy Fractal

finite subwords of Z ∈ L are subwords of Xϕ.

L is a Cantor Set.

Attractive Lamination (Bestvina-Feighn-Handel)

L is the Attractive Lamination of ϕ.

Both Q are defined on L

∀Z ∈ L, write Z = X−1Y then Q(Z ) :=Q(X ) = Q(Y ) ∈ Tϕ.

Theorem (Coulbois-Hilion-Lustig)

Q : L→ Tϕ is continuous.

Thierry Coulbois The Tree-Bonacci

Page 97: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Compact Core of Tϕ

1 L (Attractive Lamination) is compact

2 Q : L→ Tϕ is continuous

Compact Core of Tϕ

K = Q(L) is a compact subtree of Tϕ.

Thierry Coulbois The Tree-Bonacci

Page 98: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Theorem (Bressaud)

The Core K of the tree Tϕ embeds continuously and surjectively tothe Rauzy Fractal.

LQ

Q

>>>

>>>>

K // // R

Thierry Coulbois The Tree-Bonacci

Page 99: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

The Peano Curve in the Rauzy Fractal

−10

−5

0

5

10

15

20

−30

−20

−10

0

10

20

−30

−20

−10

0

10

20

30

Thierry Coulbois The Tree-Bonacci

Page 100: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

The Peano Curve in the Rauzy Fractal

−10

−5

0

5

10

15

20

−30

−20

−10

0

10

20

−30

−20

−10

0

10

20

30

Thierry Coulbois The Tree-Bonacci

Page 101: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Proof

LQ

Q

>>>

>>>>

K // R

1 Q(Z ) = Q(Z ′) ∈ Tϕ ⇒ Q(Z ) = Q(Z ′) ∈ R.

2 Thus the bottom arrow exist.

3Theorem (Coulbois-Hilion-Lustig)

The topology on K is completely determined by L.

4 Thus the bottom arrow is continuous.

Thierry Coulbois The Tree-Bonacci

Page 102: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

Attractive LaminationCompact Core of our Real TreeThe Peano in the Rauzy FractalThe Partial Isometries

Partial Isometries

Definition

Action of a, b and c on Tϕ restrict to partial isometries of K .

L1(K ) set of infinite (on the right) possible trajectories.

Definition of Q

Q : L1(K ) → KX 7→ source of X

Q is continuous.

L(K ): possible bi-infinite trajectories.

Theorem (Coulbois-Hilion-Lustig)

L(K ) = L

Thierry Coulbois The Tree-Bonacci

Page 103: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

General Results

T an R tree with a very small minimal action of FN with denseorbits.

[Levitt-Lustig]

Q : ∂FN → T (= T ∪ ∂T ), equivariant, continuous for theobservers’ topology on T .

[Coulbois-Hilion-Lustig]

Dual lamination L(T ) = Z bi-infinite |Z = X−1Y , Q(X ) = Q(Y )L(T ) completely determines T (but may be not the metric)

Thierry Coulbois The Tree-Bonacci

Page 104: The Tree-Bonacci

From the Boundary of Outer SpaceThe Tribonacci Substitution

The Tree-BonacciGeneral Results

General Results (2)

[Coulbois-Hilion-Lustig]

Limit set of T for a basis A: ΩA = Q(L(T )).

Compact Core KA of T : convex hull of ΩA.

System of Isometries (KA,A) completly determines T .

Thierry Coulbois The Tree-Bonacci