the role of host factors in semliki forest virus infectiontiivistelmä – referat – abstract host...

53
The Role of Host Factors in Semliki Forest Virus Infection Lauri Ilmari Aurelius Pulkkinen 013865957 Pro gradu Master’s Program in General Microbiology University of Helsinki, Department of Biosciences & Institute of Biotechnology Supervised by Dr. Giuseppe Balistreri, Docent © Lauri Pulkkinen, 2017

Upload: others

Post on 16-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • The Role of Host Factors in Semliki Forest

    VirusInfection

    LauriIlmariAureliusPulkkinen

    013865957

    Progradu

    Master’sPrograminGeneralMicrobiology

    UniversityofHelsinki,DepartmentofBiosciences&InstituteofBiotechnology

    SupervisedbyDr.GiuseppeBalistreri,Docent

    ©LauriPulkkinen,2017

  • 1

    Tiedekunta–Fakultet–FacultyFacultyofBiologicalandEnvironmentalSciences

    Laitos–Institution–DepartmentDepartmentofBiosciences

    Tekijä–Författare–AuthorLauriIlmariAureliusPulkkinenTyönnimi–Arbetetstitel–TitleTheRoleofHostFactorsinSemlikiForestVirusInfectionOppiaine–Läroämne–SubjectGeneralmicrobiologyTyönlaji–Arbetetsart–LevelProGradu

    Aika–Datum–Monthandyear7/2017

    Sivumäärä–Sidoantal–Numberofpages52

    Tiivistelmä–Referat–AbstractHost factorsplaycrucialroles invirus infections.Virusesexploitvariouscellularprocessesand are counteracted by an arsenal of host antiviral defenses. Characterization of theseinteractions is crucial for understanding the viral life cycle and developing novel antiviraltreatments. Semliki Forest virus (SFV) is a positive-strand RNA alphavirus that has beenusedasamodelvirusformultipleclinicallysignificantdiseasessuchas lethalencephalitis.The aim of this thesis was to identify host factors that affect SFV infection to betterunderstandthebiologyofSFV,andtoprovidecandidatetargetsfortherapiesagainstmoreseriousalphavirusinfections.Here I have conducted follow up studies on a previously performed genome-wide siRNAscreen thathinted thatanumberofgeneshavenovel functions inSFV infection. Iusedanautomated high-throughput imaging-based approach to confirm the roles of these hostfactorsinSFVinfection.Forcomparison,Ialsousedasimilarstrategytotestifthesegenesaffect negative-strand RNA virus infections, using vesicular stomatitis virus (VSV).Additionally,IstudiedwhetherthehostfactorsaffectingSFVinfectionsperformtheirrolesin the entry and penetration, or post-penetration steps using a previously developedendocyticbypassassay.Iidentifiedtheγ-aminobutyricacid(GABA)transporter,SLC6A13,asapotentialreceptorforSFV.IalsodescribeothernovelgenesthathaverolesinSFVorVSVinfections.Inaddition,IshowthatTNP01,RPL18,ETF1,DMN2,andGNDPA1promote,andHDAC6counteractsSFVinfection in the entry andmembrane penetration steps. Furthermore, I report that in thelater stages of the infection DDX54 boosts and EIF2B3, EIF4G1, PHB2, EDF1, DDX47, andDHX57hinderSFV.Avainsanat–Nyckelord–KeywordsHost-virusinteractions,siRNA,Automatedhigh-throughputmicroscopy,RNAvirus,SLC6A13,GAT-2,SemlikiForestvirus,VesicularstomatitisvirusOhjaajataiohjaajat–Handledare–SupervisororsupervisorsGiuseppeBalistreriSäilytyspaikka–Förvaringställe–WheredepositedViikkiScienceLibrary/YMBOlibraryMuitatietoja–Övrigauppgifter–Additionalinformation

  • 2

    Tiedekunta–Fakultet–FacultyBio-jaympäristötieteellinentiedekunta

    Laitos–Institution–DepartmentBiotieteidenlaitos

    Tekijä–Författare–AuthorLauriIlmariAureliusPulkkinenTyönnimi–Arbetetstitel–TitleTheRoleofHostFactorsinSemlikiForestVirusInfectionOppiaine–Läroämne–SubjectYleinenmikrobiologiaTyönlaji–Arbetetsart–LevelProGradu

    Aika–Datum–Monthandyear7/2017

    Sivumäärä–Sidoantal–Numberofpages52

    Tiivistelmä–Referat–AbstractIsäntäsolujenproteiinitovatmerkittävässäroolissavirusinfektioissa.Viruksethyödyntäväthuomattavaa määrää isäntiensä luontaisista ominaisuuksista, ja solut puolustautuvatviruksia vastaan monin tavoin. Virusten ja isäntäsolujen välisten vuorovaikutustenselvittäminen on välttämätöntä virusten biologian ymmärtämiseksi. Näidenvuorovaikutustentunteminenonmyöstärkeäävirusinfektioitahoidettaessa.SFV (Semliki forest virus) on positiivisjuosteinen RNA-virus, joka toimii malliviruksenamonille taudeille, kuten tappavalle virusaivokuumeelle. Tässä pro gradu -tutkielmassatavoitteenani oli löytää uusia geenejä, jotka toimivat SFV-infektioissa. Akateemisenmielenkiinnon tyydyttämisen lisäksi uusien SFV-infektioihin liittyvien proteiinientunnistaminen voi auttaa uusien hoitomuotojen kehittämiseksi vakavampia virustautejavastaan.Aikaisempi genominlaajuinen siRNA-kartoitus paljasti joukon geenejä, jotka saattavatvaikuttaa SFV-infektioihin. Tässä tutkielmassa selvitin näiden vaikutusta SFV-infektioihinkäyttäen siRNA-teknologiaa sekäautomatisoituakuvantamista ja kuva-analyysiä.Vertailunvuoksi selvitin myös, kuinka nämä geenit vaikuttavat negatiivisjuosteisten RNA-virusteninfektioihin käyttäen VSV-virusta (Vesicular stomatitis virus). Tämän lisäksi selvitin,toimivatkoSFV-infektioonvaikuttavatproteiinitinfektionalku-vailoppuvaiheissa.Havaitsin,ettäγ-aminovoihappoa(GABA)kuljettavaproteiiniSLC6A13,saattaatoimiaSFV-viruksen reseptorina. Löysin myös muita SFV- ja VSV-infektioihin vaikuttavia geenejä.Huomasinmyös,ettäTNP01-,RPL18-,ETF1-,DMN2- jaGNDPA1-proteiinejatarvitaanSFV-infektion alkuvaiheissa. Tämän lisäksi selvitin, että DDX54-proteiini edistää ja EIF2B3-,EIF4G1-,PHB2-,EDF1-,DDX47jaDHX57-proteiinitestävätSFV-infektiotavaikuttamallasenmyöhäisiinvaiheisiin.Avainsanat–Nyckelord–KeywordsVirus-isäntäsoluvuorovaikutus,siRNA,Automatisoitumikroskopia,RNA-virus,SLC6A13,GAT-2,Semlikiforestvirus,VesicularstomatitisvirusOhjaajataiohjaajat–Handledare–SupervisororsupervisorsGiuseppeBalistreriSäilytyspaikka–Förvaringställe–WheredepositedViikintiedekirjasto/YleisenmikrobiologianosastonkäsikirjastoMuitatietoja–Övrigauppgifter–Additionalinformation

  • 3

    DeclarationofauthorshipThe work presented in this thesis is my own and performed as a part of my

    master’s thesis project, except for the following: I amplified and titered the

    SemlikiForestvirusexpressingZsGreen,andvalidatedthehostfactorsinvolved

    in Semliki Forest virus infection as a part of the course “Research Project in

    Virology1” (528041).Dr.GiuseppeBalistreri andDr.KirsiHellströmgrew the

    BHK-21 cells, and Dr. Giuseppe Balistreri amplified the recombinant vesicular

    stomatitisvirusexpressingthegreenfluorescentprotein.

  • 4

    Contents1. Listofabbreviations...........................................................................................................6

    2. Introduction

    2.1. Virus-hostinteractions.....................................................................................................7

    2.2. SemlikiForestvirusandvesicularstomatitisvirus.......................................................9

    2.3. TheroleofhostfactorsinSFVinfection.....................................................................................11

    3. Materialsandmethods

    3.1. Celllinesandviruses......................................................................................................13

    3.2. Virusproductionandtitration........................................................................................................13

    3.3. VirusinfectionsofsiRNA-transfectedcells...............................................................................14

    3.4. Endocyticbypassassay..................................................................................................15

    3.5. Automatedhigh-throughputimageanalysis...............................................................16

    4. Results

    4.1. KnockingdownpreviouslyimplicatedhostfactorsaffectsSFVandVSV

    infections.........................................................................................................................17

    4.2. LowpH-inducedPMfusioncanbeusedtobypassthenormalentryandpenetration

    stepsofSFVinfection.....................................................................................................25

    4.3. SLC6A13isneededintheearlystagesofSFVinfection.............................................27

    4.4. TNP01andHDAC6affecttheentryandpenetrationstepsofSFVinfection...........30

    4.5. Componentsofthetranslationmachineryaffectpenetrationandpost-penetration

    stepsofSFVinfection.....................................................................................................30

    4.6. SFVinfectionisaffectedbyotherhostfactorsinpenetrationandpost-penetration

    steps.................................................................................................................................33

    5. Discussion

    5.1. HostfactorsinSFVandVSVinfections........................................................................36

  • 5

    5.2. SLC6A13isacandidatereceptorforSFV.....................................................................37

    5.3. HostfactorsthataffectSFVinfection...........................................................................38

    5.4. Otherhostfactors...........................................................................................................42

    5.5. Methodologicalconsiderations.....................................................................................44

    5.6. Conclusions.....................................................................................................................45

    6. Acknowledgements..........................................................................................................45

    7. References............................................................................................................................46

    8. Supplementaryinformation.........................................................................................52

  • 6

    1.ListofabbreviationsAP2 Adaptorcomplex2 kb kilobase

    AP2M1 Adaptorrelatedproteincomplex2μ1 KIF11 Kinesinfamilymember11

    ATP Adenosinetriphosphate KPNB1 karyopherinsubunitβ1

    ATP6V1B2 ATPaseH+transportingV1subunitB2 KREMEN2 Kringlecontainingtransmembrane

    protein2

    ATP6V1G1 ATPaseH+transportingV1subunitG1 MEM MinimumEssentialMedium

    BSA Bovineserumalbumin miRNA Micro-RNA

    CLTC Clathrinheavychain mRNA MessengerRNA

    CSPG5 Chondroitinsulfateproteoglycan5 NRAMP2 Naturalresistanceassociated

    macrophageprotein2

    DDX DEAD-boxhelicase nsP Non-structuralprotein

    DHX DEAH-boxhelicase PBS Phosphate-bufferedsaline

    DMEM Dulbecco’sModifiedEagle’sMedium PFA Para-formaldehyde

    DMN2 Dynamin-2 PHB2 Prohibitin-2

    EDF1 EndothelialDifferentiationRelated

    Factor1

    PM Plasmamembrane

    EIF2B3 Eukaryotictranslationinitiationfactor

    2Bsubunitγ

    PPBI CyclophilinB(human)

    EIF4G1 Eukaryotictranslationinitiationfactor

    γ1

    Ppbi CyclophilinB(mouse)

    ESCRT Endosomalsortingcomplexes

    requiredfortransport

    PVR Poliovirusreceptor

    ETF1 Eukaryotictranslationtermination

    factor1

    +RNA Positive-strandRNA

    FBS Fetalbovineserum -RNA Negative-strandRNA

    GABA γ-aminobutyricacid RPL18 RibosomalproteinL18

    GAT-2 GABAtransporter2 RT Roomtemperature

    GDP Guanosinediphosphate SFV SemlikiForestvirus

    GFP Greenfluorescentprotein siRNA SmallinterferingRNA

    GNPDA1 Glucosamine-6-phosphatedeaminase

    1

    SLC6 Solutecarrierfamily6

    GTP Guanosinetriphosphate SLC6A13 Solutecarrierfamily6member13

    HCV HepatitisCvirus TNP01 Transportin-1

    HDAC Histonedeacetylase UPF1 Regulatorofnonsensetranscripts-1

    HDAC6 Histonedeacetylase6 UTR Untranslatedregion

    HIV-1 Humanimmunodeficiencyvirus1 vATPase VesicularATPase

    IAV InfluenzaAvirus VSV Vesicularstomatitisvirus

  • 7

    2.Introduction

    2.1Virus-hostinteractions

    Asobligateparasites,virusesrequirediversecellularfactorsforthecompletion

    oftheir lifecycles.Virusesusehost factorstobindandentercellsaswellasto

    replicatetheirgenomesandproducenewvirions.Ontheotherhand,anumber

    ofhostproteinsworktocounteractviralinfection.

    Toinitiatesuccessful infection,virusesneedtobindtothesurfaceoftheirhost

    cells. Inanimalcells, thisprocess ismediatedbyhost’sattachment factorsand

    virusreceptors,whicharecommonlycellssurfaceglycoproteinsandglycolipids

    (Smith & Helenius, 2004). Attachment factors bind the virus on the plasma

    membrane (PM) of the host, often via non-specific electrostatic interactions

    (Grove&Marsh,2011)(Figure1A).Thisinitialbindingallowstheboundvirion

    torecruitthereceptormoleculesthatinitiatetheentryprocess(Grove&Marsh,

    2011)(Figure1B).Virusentryisusuallymediatedbyendocytosis,aprocessby

    whichthecellisabletointernalizeportionsofthePMandextracellularsolutes,

    suchasnutrientsandhormones(Marsh&Helenius,2006).Multipleendocytosis

    mechanisms exist and they canbe roughlydivided to two categoriesbasedon

    the volume of the endocytic vesicle and the mechanism of vesicle formation

    (Doherty &McMahon, 2009). In “micropinocytosis”, such as clathrin-mediated

    endocytosis,thevesicleisformedbyinvaginationsofthePMandsmallvolumes

    of the extracellular medium are internalized (Doherty & McMahon, 2009).

    MacropinocyticvesiclesaretheresultofPMprotrusionsthat“grab”extracellular

    mediumor even other cells (phagocytosis) and then fuse back to thePMwith

    their cargo (Doherty&McMahon, 2009). Different viruses, such as hepatitis C

    virus (HCV) (clathrin-mediated endocytosis) or Kaposi’s sarcoma-associated

    herpesvirus (macropinocytosis) are able to exploit the full variety of these

    processes(Meertensetal,2006;Raghuetal,2009;Merceretal,2010).

    Recruiting the endocytic machinery gives viruses multiple advantages over

    penetrating the PM directly. Internalizing the entire virion prevents the

    accumulationofpotentiallyantigenicviralcomponentsonthehostsurface,gives

  • 8

    the virus a convenientway to infiltrate deep into the cell, and gives the virus

    access to intracellular compartmentswhere chemical cuesdestabilize theviral

    particle and initiate the disassembly process known as uncoating (Marsh &

    Helenius,2006).ThesecuesareeitherchangesinthepHoftheendosomeorthe

    action of endosomal enzymes (Grove & Marsh, 2011). The conditions of the

    endosome cause conformational changes in the viral fusion proteins, which

    allows the virus to penetrate the endosomal membrane into the cytoplasm

    (Grove&Marsh,2011).Thisresultsinthedeliveryoftheviralnucleocapsidinto

    thesiteofuncoatingand/orreplication(Grove&Marsh,2011)(Figure1D).

    Thenext step in theviral life cycle is the transcriptionand translationof viral

    messengerRNAs(mRNAs),orinthecaseofpositive-strand(+RNA)viruses,the

    direct translation of the viral genome. RNA viruses use their own RNA-

    dependentRNApolymerases for transcriptionbut theyusehostmachinery for

    translation, which leads to a translational competition between host and viral

    RNAs(Walsh&Mohr,2011)(Figure1E).Thisinteractionisfurthercomplicated

    by host antiviral defenses that aim to shut down translation (Walsh & Mohr,

    2011). Therefore it is understandable that viruses have evolved myriad

    mechanismstousurptheproteinsynthesismachineryofthehostandtokeepit

    operationaldespitehostantiviralresponse(Walsh&Mohr,2011).

    Once the cell is under viral control, the final stage of the infectionbegins. The

    viralgenomeisreplicatedandprogenyvirionsareassembledbyexploitinghost

    resourcesandstructures,suchasthePM,theendoplasmicreticulum,ortheGolgi

    apparatus(Kuismanenetal,1982;Gosertetal,2003;Spuuletal,2010)(Figure1

    E).Oncethenewgenerationofvirions isready, theyexit thecellusingvarious

    strategies. Virusesmay, for example, use the host’s ESCRT (endosomal sorting

    complexes required for transport) system and bud from the PM (Votteler &

    Sundquist,2014),useanexocytosis-likepathway (Johnson&Baines,2011),or

    causethelysisofthehostcell(Tollefsonetal,1996)(Figure1F).

    Asvirusinfectionishighlydependentonhostfunctions,elucidatingtheinterplay

    between viral and cellular factors is crucial in understanding the biology of

  • 9

    viruses. Observing host-virus interactions also plays a key role in the

    development of new treatments and therapies. In addition, by following the

    different stages of virus infections, it is possible to assign novel functions to

    poorlycharacterizedcellularfactors.

    Figure1.The lifecycleofanendocytosis-utilizingenvelopedvirus.A:Thevirusinfectionbeginswithnon-specificbindingonhostattachment factorssuchasheparansulphate.B:Non-specificbinding leads toreceptorrecruitmentC:Receptorbindingisoftenmultivalentandtriggerstheendocytosisevent.D:Theendosomecarriesthevirusdeeperintothecellusing the tubularnetwork.Endosomalenzymesand/or theacidificationof theendosomebytheactionofhostvesicular ATPases (vATPases) leads to a conformational change in the viral spike proteins. This allows a membranefusioneventtooccur,whichreleasesthenucleocapsidintothecytosol.Theviralgenomeisuncoatedandtransportedtoits replicationsite.E:ViralRNAoutcompeteshostmRNAby limitinghost transcriptionorpreventinghost translation.Thisleadstotheproductionofviralproteinsandthereplicationoftheviralgenome.F:Theviralcomponentsassembleintonucleocapsids,whichexitfromthecellse.g.bybuddingfromthePM.

    2.2SemlikiForestvirusandvesicularstomatitisvirus

    Semliki Forest virus (SFV) is one of the best-studied members of the genus

    Alphavirus. Like other alphaviruses, it is a +RNA virus that infects both

    invertebrateandvertebratehosts(Griffin,2013).SFVvirionsareenvelopedand

    haveadiameterof70nm,withicosahedrallysymmetricnucleocapsids(Mancini

    etal,2000).SFVentershostcellsusingendocytosisandpenetratestheendocytic

    vesicle after a low pH-induced conformational change in the SFV spike

    glycoproteinsleadstothefusionofviralandendosomalmembranes(Heleniuset

    al, 1980; White et al, 1980; Fuller et al, 1995). Once in the cytosol, the

    nucleocapsid is immediately engaged by host ribosomes, which triggers the

  • 10

    uncoatingof thenucleocapsidand leads toviral translation (Singh&Helenius,

    1992).The lowpHof theendosomes (

  • 11

    2013).However,VSVfusionoccurslaterthanSFVfusionanditismediatedbya

    two-step fusion program (Le Blanc et al, 2005). First the VSV nucleocapsid is

    releasedtothelumenofanintra-endosomalvesicleanditentersthecytoplasm

    later, following a back-fusion of the intra-endosomal vesicle (Le Blanc et al,

    2005). The transcription and replication of VSV follows the general scheme of

    non-segmented -RNA viruses (Lyles et al, 2013). The genome is used as a

    templateforviralmRNAsanda+RNA-antigenome,whichisusedastemplatefor

    thenew-RNAgenomes.

    2.3TheroleofhostfactorsinSFVinfection

    Previously,agenome-widesiRNAscreenwasperformedtoidentifyhostfactors

    thataffectSFVinfection(Balistrerietal,2014).Thescreenimplicatedanumber

    ofgenes(“hits”) (Table1).Following thescreen, therolesofUPF1,ATP6V1B2,

    andATP6V1G1inSFVinfectionwerecharacterized(Balistrerietal,2014).

    Table1.GenesimplicatedinSFVinfectionbythegenome-widesiRNAscreen.

    Genesymbol Function GeneID* Genesymbol Function GeneID*PHB2 Intracellular

    signaling11331 DDX31 DEAD-box

    helicase64794

    EDF1 Transcriptionalcoactivation

    8721 DDX41 DEAD-boxhelicase

    51428

    SLC6A13 GABA&taurinetransport

    6540

    DDX43 DEAD-boxhelicase

    55510

    EIF2B3 Translationinitiation

    8891

    DDX47 DEAD-boxhelicase

    51202

    ETF1 Translationtermination

    2107 DDX54 DEAD-boxhelicase

    79039

    EIF4G1 Translationinitiation

    1981 DHX37 DEAH-boxhelicase

    57647

    DDX18 DEAD-boxhelicase 8886

    DHX57 DEAH-boxhelicase

    90957

    PVR Poliovirusreceptor 5817

    KREMEN2 Transmembranereceptor

    79412

    CSPG5 Chondroitinsulfateproteoglycan5

    10675

    HDAC6

    Deacetylationofvariousproteins

    10013

    GNPDA1 Glucosamine-6-phosphatedeaminase

    10007

    DNM2 Endocytosis 1785

    RPL18 Ribosomalprotein 6141

    AP2M1 VacuolarATPaseactivation

    1173

    UPF1 mRNAqualitycontrol,antiviral

    activity

    5976

    CLTC Endocytosis 1213

    ATP6V1B2 Vesicleacidification

    526

    KPNB1 Nuclearlocalization

    3837

    ATP6V1G1 Vesicleacidification

    9550 TNPO1 Intracellularlocalization

    3842

    *O’Learyetal,2016

  • 12

    The firstaimof this thesiswastoconfirmtherolesof thehits inSFV infection

    and investigate if their effectwas specific to SFV. Thiswas done using siRNA-

    mediated knockdown and high-throughput imaging to determine if the hits

    affectedSFVandVSVinfections.Thesecondaimwastoassignaroleintheearly

    (entry andpenetration), or later (post-penetration) stages of SFV infection for

    theconfirmedhostfactors.Thiswasperformedusingasimilarstrategyasabove

    combinedwithanassaytobypasstheendocytosisstepofSFVinfection(Whiteet

    al,1980)(Figure2).

    Figure 2. The aim of this thesis. Previously, a genome-wide image-based siRNA screen identifiednumerouscandidates(or“hits”)forSFVinfectionaffectinghostgenes.Inthisthesis,Ihaveanalyzedtheirrole invirus infectionsusingsmall-scale image-basedsiRNAknockdownstudies. I confirmed if thesehitshadaroleinSFVinfectionandtestediftheyaffectedVSVinfectionforcomparison.ForthegenesaffectingSFV infection, I further studied if their role was related to either the entry and penetration, or post-penetration stages of the infection. The genome-wide screen image was kindly provided by GiuseppeBalistreri.

    InthisthesisIdescribenovelgenesaffectingSFVinfection,aswellasnovelhost

    factorswitharoleinVSVinfection.Ialsopinpointtheeffectsofgenesinvolvedin

    SFV infectiontoentryandpenetration,orpost-penetrationsteps. Inaddition, I

    show that SLC6A13, a membrane-spanning γ-aminobutyric acid (GABA) and

    taurinetransporter(Kristensenetal,2011;Zhouetal,2012), isneededforthe

    earlyeventsofSFVinfection,buthasnoroleinVSVinfection,andisthereforea

    candidatereceptorforSFV.

  • 13

    3.Materialsandmethods3.1Celllinesandviruses

    HeLa cells (ATCC) were cultured using Dulbecco’s Modified Eagle’s Medium

    (DMEM) (Sigma-Aldrich, D7777) supplementedwith 10% fetal bovine serum

    (FBS) (Sigma-Aldrich, F9665), GlutaMAX (Gibco, 35050-061), Non-essential

    Amino Acids Solution (Sigma-Aldrich, M7145), and Antibiotics & Antimycotics

    Solution (Sigma-Aldrich, A5955) (HeLa growthmedium). BHK-21 cells (ATCC)

    were culture using Minimum Essential Medium (MEM) (Gibco, 61100-087)

    supplementedwith 10% FBS and GlutaMAX. The cellswere grown at +37 °C

    witha5%CO2atmosphere.

    SFVexpressingZsGreenproteinfusedwiththevirusnsP3(SFV-ZsGreen)(Spuul

    et al, 2010) and rVSV-GFP, a VSV strain expressing green fluorescent protein

    (GFP)(Pelkmansetal,2005)havebeenpreviouslydescribed.Theviruseswere

    originally produced at ETH Zurich (Switzerland) and were provided by Dr.

    BalistreriwithpermissionfromprofessorAriHelenius.

    3.2Virusproductionandtitration

    VirusinoculawerepreparedinMEMsupplementedwith20mMHEPES(pH7.2),

    GlutaMAX, and0.2%bovine serumalbumin (BSA)andconfluentBHK-21cells

    were washed twice with phosphate-buffered saline (PBS) and infected with

    eitherSFV-ZsGreenorrVSV-GFPusinganMOIof0.01byreplacingtheoldmedia

    withthevirusinocula.Theinfectedcellswereincubatedat+37°Cwitha5%CO2

    atmosphere.Themediawerecollectedafter22handcentrifugedat3900rpmfor

    20 min (SFV-ZsGreen) or 10 min (rVSV-GFP) at +4 °C (Eppendorf Centrifuge

    5810R)toeliminatecelldebris.Thesupernatantswerecollected,aliquotedand

    storedat-80°C.

    HeLacellswereseededontoblackclear-bottom96-wellplates(Corning,07-200-

    568)atadensityof10000cells/wellandgrownfor16–20hat+37°Cwitha

    5% CO2 atmosphere. The cells were washed with DMEM supplemented with

    GlutaMAXandAntibiotics&AntimycoticsSolution(SFV-ZsGreen)orRPMI-1640

  • 14

    medium(ICN,1060122)containing20mMHEPESpH7.0andGlutaMAX(rVSV-

    GFP) (100μl /well). The cellswhere then infectedwith1:2 (SFV-ZsGreen) or

    1:10 (rVSV-GFP) serial dilutions in duplicate using 100 μl of virus inocula in

    correspondingmediaTheinfectedcellsweregrownfor6h(SFV-ZsGreen)or7h

    (rVSV-GFP)at+37°Cwitha5%CO2atmosphere.

    After the incubation, themediawere aspirated and the cellswere fixed for20

    minatroomtemperature(RT)using4%para-formaldehyde(PFA)inPBS(100

    μl/well).Thefixedcellswerewashed3timeswithPBS(100μl/well).Thecells

    werepermeabilizedandthenucleistainedbyincubatingthecellsfor10minat

    RTin100μlofPBScontaining0.2%TritonX-100andHoechstDNAstain(1μg/

    ml)perwell.Thecellswerethenwashed3timeswithPBS(100μl/well)andthe

    plates covered with Black TopSeal-A plate seals (PerkinElmer, 6050173) and

    storedat+4°C.Theplateswere imagedwithahigh-contentCellinsight Imager

    microscope (Thermo Fisher) at the Light Microscopy Unit, Institute of

    Biotechnology.16 imageswere takenperwell, usingboth the386nmand the

    485nmfilterstovisualizethefluorescencesignaloftheHoechstandtheZsGreen

    orGFP.TheimageswereanalyzedusingtheopensourceCellprofiler2software

    (Carpenteretal,2006,www.cellprofiler.com)(seebelow).

    3.3VirusinfectionsofsiRNA-transfectedcells

    HeLa cells were reverse transfected using pooled siRNAs (Dharmacon

    SMARTpoolsiRNAs)onablackclear-bottom96-wellplateusingaseparatewell

    for each siRNA pool. The siRNA pools contained a mixture of 4 different

    oligonucleotides against non-overlapping regions of each target gene in

    equimolarconcentrations.ThesiRNApoolstargetedthegenesofinterestaswell

    ascontrolgenes(KIF11,PpbiandPPBI)(tableS1).ThesiRNApoolagainstKIF11

    wasusedasatransfectioncontrol.Sincetheproductofthisgeneisessentialfor

    cell survival, monitoring cell death was used as a means to make sure the

    transfectionwasefficient(>98%celldeathindicatedsuccessfultransfection).A

    mixof4differentnon-specific (or “scrambled”)siRNAswasusedasanegative

    controlinfourseparatewells.ThesiRNAsagainstPpbiandPPBIweresupplied

    bythemanufactureraseasilyquantifiabletransfectioncontrols.

  • 15

    Foreachwell,10μlofasiRNAstock(100nM)wasmixedwith10μlofDMEM

    containing0.1μl ofLipofectamine2000 (Invitrogen,11668-019)and theplate

    was incubated at RT for 30–60 min. Then for each well, 2000 HeLa cells

    suspended in 80 μl ofDMEMweremixedwith the siRNA–Lipofectamine 2000

    mixyieldinga finalsiRNAconcentrationof10nMperwell.Theplatewasthen

    incubatedat+37°Cwitha5%CO2atmospherefor6h,afterwhich,themedium

    wasreplacedwithHeLagrowthmedium(200μl/well)andthecellsweregrown

    at+37°Cwitha5%CO2atmosphere.

    After72h theoldmediawereremovedand thecellswerewashedwitheither

    DMEM supplemented with GlutaMAX and Antibiotics & Antimycotics Solution

    (SFV-ZsGreen)orRPMI-1640medium(ICN,1060122)containing20mMHEPES

    pH7.0andGlutaMAX (rVSV-GFP) (100μl /well).Thecellswere then infected

    with100μl/wellofvirusinoculacontaining6*104pfuofeitherSFV-ZsGreenor

    rVSV-GFPincorrespondingmedia.Thecellswereincubatedat+37°Cwitha5%

    CO2atmospherefor5h(SFV-ZsGreen)or6.5h(rVSV-GFP)andtheplateswere

    fixed, stained, imaged, and analyzed as above. Three biological repetitions per

    viruswereperformed.

    3.4Endocyticbypassassay

    HeLacellswerereverse transfectedasabove.72hafter transfection, theplate

    wasplacedoniceandcellswashedwithice-coldRPMI-1640mediumcontaining

    20mMHEPES,pH7.0(100μl/well)andinfectedonicewith6*104pfuofSFV-

    ZsGreen diluted in the samemedium (ice-cold) (100 μl /well). The platewas

    incubatedonicefor1handthemediumwasremovedfromthewells.Toallow

    virus fusion with the PM, the cells were treated with RPMI-1640 medium

    containing 10 mM MES buffer, pH 5.5 for 90 s at +37 °C. The medium was

    aspirated and replaced with HeLa growth medium supplemented with 20mM

    NH4Cland20mMHEPES,pH7.2(200μl/well).Theplatewasincubatedat+37

    °Cwith5%CO2atmospherefor4handtheplatewasfixed,stained,imaged,and

    analyzedasabove.Controlsincludedwellsthatwerenotinfected,wellstreated

    withpH7.0mediuminsteadofthepH5.5medium,andwellstreatedwithpH7.0

  • 16

    medium and HeLa growth medium instead of the pH 5.5 medium and HeLa

    growth medium with NH4Cl, respectively. Three biological repetitions were

    performed.

    3.5Automatedhigh-throughputimageanalysis

    The Cellprofiler 2 software (Carpenter et al, 2006, www.cellprofiler.com) was

    usedtodeterminethepercentageof infectedcells ineachwell. Ineach image,

    thenumberofcellswasdeterminedbydetectingthe386nmfluorescencesignal

    ofthestainednuclei,designated“primaryobjects”(Figure3A&B).SFV-ZsGreen

    producesZsGreen-labelednsP3,thusZsGreen-expressingcellsareinfectedwith

    SFV. For the SFV experiments the perimeter of each detected nucleus was

    digitally expanded to include a portion of the cytoplasm around the nucleus,

    designated“secondaryobjects”(Figure3C,D,E&F).Thiswasdonetodetectthe

    ZsGreensignalfromthecytoplasm,wheretheSFVproteinsynthesisoccurs.The

    mean fluorescence signal on the 485nm channel (ZsGreen)wasmeasured for

    each secondary object. For the rVSV-GFP-infected cells themean fluorescence

    signalon the485nmchannel (GFP)wasmeasuredwithineachprimaryobject

    (nucleus), as the GFP protein encoded by the virus was synthesized in the

    cytoplasmand freelydiffused into thenucleusof thehost indicatingsuccessful

    viraltranslation.

    Usingathresholdvalueofmean485nmfluorescence,thecellswereclassifiedin

    two categories: infected (above threshold) andnon-infected (below threshold)

    (Figure4G).Non-infectedcellswerealwaysincludedtocalibratethethreshold

    settings for each imagedplate.Once all images in eachwell of a 96well plate

    wereanalyzed,thefinalresultswereexpressedastotalinfectedcellsperwell.To

    calculatevirustiters, theestimatedamountofcellsperwell(16,000)(Rafferty,

    1985) was multiplied with the percentage of infected cells to determine the

    amountofinfectiousvirionsperwell.InthesiRNAexperiments,cellstransfected

    with non-targeting (or “scrambled”) siRNAs were used as controls. Themean

    numberofinfectedcellsinthescrambledcontrolswassetas1andtheinfection

    percentages in the remaining transfected wells were normalized accordingly.

    The mean infection percentage per gene was calculated from three biological

  • 17

    repetitions. A difference of 2 or more standard deviations from controls was

    consideredtobesignificant.

    Figure3.AutomateddetectionofinfectedcellsusingCellprofiler2.A&B:Fluorescencesignaldetectedusing395nm(blue)and485nm(green)filtersfromSFV-infectedcellspre-treatedwithscrambledcontrolsiRNA. C: Automatically detected nuclei (pseudocoloured 'primary objects'). E–F: Pseudocolouredsecondaryobjectsobtainedbydigitallyexpandingtheprimaryobjects(D)andsubtractingtheareaoftheprimaryobjects.G:Thesecondaryobjectswereusedtoautomaticallyclassifyinfected(red)ornon-infected(blue)cells,usingthemeanfluorescenceintensityfromthe485nmchannel(G).

    4.Results

    The aim of this thesiswas to study the effects of knocking down host factors

    previously implicated in SFV infection, and compare those effects to VSV

    infection. The genes affecting SFV infection were further characterized by

    studying if theyaffectentryandpenetration,orpost-penetrationstagesofSFV

    infection.

    4.1KnockingdownpreviouslyimplicatedhostfactorsaffectsSFVandVSV

    infections

    To determine which of the previously implicated genes affect SFV and VSV

    infections, I used siRNA-mediated knockdown, high-throughput imaging and

    automated image analysis. I found that both SFV and VSV infection could be

    reducedsignificantlybyknockingdownATP6V1B2andATP6VG1,twosubunits

    ofavacuolarATPaseknowtoaffectSFVinfection(Balistrerietal,2014)aswell

  • 18

    as ribosomalproteinL18 (RPL18), apart of the60S ribosomal subunit (de la

    Cruzetal,2015)(Figures4&5).BothSFVandVSVinfectionswereaffectedby

    the knockdown of transportin-1 (TNP01), an intracellular transport molecule

    (Twyffels et al, 2014), prohibitin 2 (PHB2), an intracellular signaling protein

    (Bavellonietal,2015),andDEAH-boxhelicase(DHX)37,apoorlycharacterized

    RNA-helicase (Gene ID: 57647) (Figures 4 &5). However, the knockdown of

    these genes had the opposite effects on SFV and VSV infections, as TNP01

    depletiondecreasedSFVinfectionandincreasedVSVinfectionsignificantly,and

    in the case of PBH2 and DHX37 depletions SFV infection increased and VSV

    infectiondecreasedsignificantly(Figures4&5).

    Figure4.RelativeinfectionpercentagesincellsdepletedofhostfactorsthataffectbothSFVandVSVinfections. The relative infection percentages of siRNA-treated HeLa cells infected with SFV-ZsGreen(black)orVSV-GFP (white) are indicatedon they-axis.The siRNAsusedare indicatedon thex-axis.Theinfectionpercentageswerenormalizedbysettingthemeanofthescrambledcontrolsas1.Theerrorbarsrepresentstandarddeviationsof the treerepetitionsandanasterisksignifiesaresult that issignificantlydifferentfromthecontrol.

  • 19

    Figure 5. Representative images of cells depleted of host factors that affect both SFV and VSVinfections.A:HeLacellsinfectedwithSFV-ZsGreen.NucleiareshowninblueandnsP3-ZsGreen,indicatingSFV infection, is shown in green. The siRNAs used are indicated by the text in the images.B:HeLa cellsinfectedwithVSV-GFP.NucleiareshowninblueandGFP,indicatingVSVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.Bydepletingcellsofsolutecarrierfamily6member13(SLC6A13),aGABAand

    taurinetransporter(Kristensenetal,2011;Zhouetal,2012),GNPDA1,apoorly

    characterized glucosamine-6-phosphate deaminase (Wolosker et al, 1998),

    DEAD-boxhelicase(DDX)54,anRNA-helicasethathasatranscription-regulating

    roleincells(Rajendranetal,2003;Kannoetal,2012),anddynamin-2(DMN2),

    a protein involved in endocytosis (Kasai et al, 1999), SFV infection could be

    significantly reduced (Figures 6 & 7). On the other hand, the knockdown of

    eukaryotic translation initiation factor 2B subunit γ (EIF2B3) and eukaryotic

    translation initiation factor γ 1 (EIF4G1) (Walsh & Mohr, 2011), eukaryotic

    translation termination factor 1 (ETF1) (Taylor et al, 2012), UPF1, an RNA-

    helicasethatpreventsSFVinfection(Balistrerietal,2014),DDX47andDHX57,

  • 20

    predicted RNA helicases (Gene IDs: 51202 and 90957, respectively), histone

    deacetylase 6 (HDAC6), a multifunctional cellular deacetylase (Hubbert et al,

    2002),andendothelialdifferentiation-related factor1(EDF1),a transcriptional

    co-activator(Kabeetal,1999) increasedSFVinfectivitysignificantly(Figures6

    &7).ThedepletionoftheseSFV-affectinggeneshadnosignificanteffectonVSV

    infection(Figures6&7).

    Figure 6. Relative infection percentages in cells depleted of host factors that affect only SFVinfection.TherelativeinfectionpercentagesofsiRNA-treatedHeLacellsinfectedwithSFV-ZsGreen(black)orVSV-GFP(white)areindicatedonthey-axis.ThesiRNAsusedareindicatedonthex-axis.Theinfectionpercentageswerenormalizedbysettingthemeanofthescrambledcontrolsas1.Theerrorbarsrepresentstandarddeviations of the tree repetitions and an asterisk signifies a result that is significantly differentfromthecontrol.

  • 21

    Figure 7. Representative images of cells depleted of host factors that affect only SFV infection. A:HeLacellsinfectedwithSFV-ZsGreen.NucleiareshowninblueandnsP3-ZsGreen,indicatingSFVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.B:HeLacellsinfectedwithVSV-GFP.Nucleiareshown inblueandGFP, indicatingVSV infection, is shown ingreen.ThesiRNAsusedareindicatedbythetextintheimages.

    VSV infectivity was significantly increased by the depletion of the poliovirus

    receptor (PVR) (Mendelsohn et al, 1989), a Wnt/β-catenin-signaling receptor,

    kringlecontainingtransmembraneprotein2(KREMEN2)(Maoetal,2002),and

    adaptorrelatedproteincomplex2μ1(AP2M1),anadaptorofendocyticvesicles

    and vATPases, (Heinaman, 1995) (Figures 8 & 9). Knocking down DDX18, a

    poorly understood RNA-helicase (Dubaele & Chène, 2007) and karyopherin

  • 22

    subunitβ1(KPNB1),asubunitofanuclearimportprotein(Görlichetal,1995)

    decreasedVSVinfectivitysignificantly(Figures8&9).Curiously,siRNAsagainst

    bothmouseandhumancyclophilinB(PpibandPPBI,respectively)suppliedas

    transfectioncontrolsbythemanufacturerincreasedVSVinfectivitysignificantly

    (Figures 8 & 9). Cyclophilin B is a multifunctional signaling and anti-

    inflammatoryprotein(Hoffmann&Schiene-Fischer,2014).Noneofthesegenes

    hadasignificanteffectonSFVinfectivity(Figures8&9).

    Figure 8. Relative infection percentages in cells depleted of host factors that affect only VSVinfection.TherelativeinfectionpercentagesofsiRNA-treatedHeLacellsinfectedwithSFV-ZsGreen(black)orVSV-GFP(white)areindicatedonthey-axis.ThesiRNAsusedareindicatedonthex-axis.Theinfectionpercentageswerenormalizedbysettingthemeanofthescrambledcontrolsas1.Theerrorbarsrepresentstandarddeviations of the tree repetitions and an asterisk signifies a result that is significantly differentfromthecontrol.

  • 23

    Figure 9. Representative images of cells depleted of host factors that affect only VSV infection. A:HeLacellsinfectedwithSFV-ZsGreen.NucleiareshowninblueandnsP3-ZsGreen,indicatingSFVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.B:HeLacellsinfectedwithVSV-GFP.Nucleiareshown inblueandGFP, indicatingVSV infection, is shown ingreen.ThesiRNAsusedareindicatedbythetextintheimages.

    Thedepletionofsomeofthegenesimplicatedbythegenome-widesiRNAscreen

    didnothaveasignificanteffectonSFVorVSVinfection(Figures10&11).These

    included chondroitin sulfate proteoglycan 5 (CSPG5), a cell surface protein

    expressed in the brain (Watanabe et al, 1995), DDX31, an RNA-helicase

    implicatedinrenalcancer(Fukawaetal,2012),DDX41,anRNAhelicasewitha

    role in cellular immunity (Jiang et al, 2017), DDX43, a RNA and DNA helicase

    (Tanuetal,2017),andclathrinheavychain(CLTC),awell-studiedendocytosis

    molecule(Doherty&McMahon,2009).

  • 24

    Figure10.Relative infectionpercentages in cellsdepletedofhost factors thatdonotaffectSFVofVSV infections.Therelative infectionpercentagesofsiRNA-treatedHeLacells infectedwithSFV-ZsGreen(black)orVSV-GFP (white) are indicatedon they-axis.The siRNAsusedare indicatedon thex-axis.Theinfectionpercentageswerenormalizedbysettingthemeanofthescrambledcontrolsas1.Theerrorbarsrepresentstandarddeviationsof the treerepetitionsandanasterisksignifiesaresult that issignificantlydifferentfromthecontrol.

  • 25

    Figure 11. Representative images of cells depleted of host factors that do not affect SFV of VSVinfections.A:HeLacellsinfectedwithSFV-ZsGreen.NucleiareshowninblueandnsP3-ZsGreen,indicatingSFV infection, is shown in green. The siRNAs used are indicated by the text in the images.B:HeLa cellsinfectedwithVSV-GFP.NucleiareshowninblueandGFP,indicatingVSVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages

    4.2LowpH-InducedPMfusioncanbeusedtobypassthenormalentryand

    penetrationstepsofSFVinfection

    To determine if depleted host factors play a part in the early stages (entry or

    penetration) of SFV infection, these steps were circumvented by artificially

    inducingviralenvelopefusionatthePM(Whiteetal,1980).Thiswasachieved

    by allowing the viruses to bind cells on ice and treating the cells quicklywith

    acidicmedium (pH5.5).This causes a conformational change in the SFV spike

  • 26

    proteins, which leads to membrane fusion, delivery of nucleocapsid into the

    cytoplasm,anduncoatingofthenucleocapsid.Sincewithinthe90secondoflow-

    pH treatment, someSFVvirions are internalizedby endocytosis, after the acid

    treatment cells were incubated in NH4Cl-containing medium at pH 7.2 which

    neutralized the acidic pH of endosomes preventing these viruses from fusing

    (Figure12).ComparedtothenormalrouteofSFVinfection,theendocyticbypass

    wasslightlylessefficient,restoringabout60%ofinfectedcells.Ifthecellswere

    nottreatedwithacidicmedium,butincubatedinNH4Cl-containingmedium,the

    infectionpercentagedroppedtothelevelofnon-infectedwells(Figure13).

    Figure 12. Endocytic bypass assay.A:NormallySFVbinds to theplasmamembraneand is internalizedusingreceptor-mediatedendocytosis.TheendosomeprogressivelyacidifiesandapHlowerthan6.0causesaconformationalchangeinSFVspikeproteins,whichtriggersmembranefusionbetweenSFVenvelopeandthe endosomal membrane, freeing the nucleocapsid into the cytosol. The endosomal pathway can bebypassedbyallowingSFVvirionstobindtothehostPMinthecold,andsubsequentlytreatingtheinfectedcells with acidic medium for a short time. This leads to membrane fusion, and the release of the SFVnucleocapsid intothecytoplasm.Topreventendocytosedvirusesfromcompletingtheir infectionthroughtheendosomalroute,theacidicmediumisreplacedwithamediumcontainingNH4Cl.SomeoftheNH4+ionsare converted into NH3, a gas that can freely diffuse into the endosome and neutralize its acidification(Whiteetal,1980).B:Intheendocyticbypassassay,SFVvirionsareallowedtobindhostcellsonicefor60minutesandthevirus-containingmediumisremoved.Cellsaretreatedbriefly(90s)withacidicmedium,whichitisthenreplacedwithgrowthmedium(pH7.2)withorwithoutNH4Cl.Cellsareincubatedfor4hat+37°Candthenfixedusing4%PFA.

  • 27

    Figure13.HeLacellscanbeinfectedbyusingendocyticbypass.A:TherelativeinfectionpercentagesofHeLa cells infectedwith SFV-ZsGreen from two repetitions are indicated on the y-axis. The indicated pHvaluesrefertoinfectionwithnofusiononthePMbutincubationwithNH4Cl-containingmedium(pH7.0)and infection with PM fusion and incubation with NH4Cl-containing medium (pH 5.5). The infectionpercentageswerenormalizedbysettingthemeanof thenormal infectionsas1.Theerrorbarsrepresentstandard deviations of the two repetitions. B: Representative images of HeLa cells infected with SFV-ZsGreen.NucleiareshowninblueandnsP3-ZsGreen,indicatingSFVinfection,isshowningreen.Thetextintheimagesindicatesdifferentinfectionconditions(seeA).

    4.3SLC6A13isneededintheearlystagesofSFVinfection

    SLC6A13,alsoknownasGAT-2,isaGABAandtaurinetransporterthatcontains

    12hydrophobicmembrane-spanningdomains,11loopregionsandcytoplasmic

    NandCtermini(Kristensenetal,2011;Zhouetal,2012).Onthe3–4loopthere

    arethreeN-glycosylatedresidues(Figure14)(Kristensenetal,2011).ThisPM

    protein belongs to the solute-carrier 6 (SLC6) gene family, which contains

    membrane proteins that transport neurotransmitters by utilizing Na+ and Cl-

    ions(Kristensenetal,2011).AsitseemstoberequiredforSFVinfection,Itested

    ifitisneededforentryandpenetrationstepsofinfection.ByinfectingHeLacells

    using endocytotic bypass, I could revert SFV infectivity back to the level

    observed in the scrambled controls (Figure 15). For further controls I used

    siRNAsagainstATP6V1B2,ATP6V1G1,andUPF1.ATP6V1B2andATP6V1G1are

    known to be critical for the penetration of SFV, and UPF1 works against SFV

  • 28

    infectioninthepost-penetrationstages(Balistrerietal,2014).Endocyticbypass

    assay counteracted the effect of the siRNAs against ATP6V1B2 andATP6V1G1

    (Figure15).Duetohighvariation,theSFVinfectivityonUPF1-depletedcellswas

    not statistically different from controls in the endocytic bypass. However, the

    meaninfectivitywassimilartothenormalinfectionassay(1.5-foldhigherthan

    in controls) (Figure 15). Additionally, I used endocytic bypass to pinpoint

    whether DDX54, an RNA helicase, affects the entry and penetration, or post-

    penetration stages of SFV infection. The SFV infection inDDX54-depleted cells

    didnotreverttothelevelofthecontrolswhenusingtheendocyticbypassassay

    (Figure15).TheATP6V1B2,ATP6V1G1,andUPF1bypassresults,combinedwith

    thefactthattheinfectivityinDDX54-depletedcellsremainedsignificantlylower

    thanincontrolsshowthatendocyticbypassdoesnotreverttheeffectsofgene

    knockdowninanunspecificmanner.Therefore,itcanbeusedtodistinguishthe

    hostfactorsthatareneededfortheentryandpenetrationfromtheonesneeded

    inthepost-penetrationstages.

    Figure14.AschematicviewofSLC6A13.SLC6A13isamembraneproteinthatformsatransportchannel

    forGABAandtaurineatthePM(adaptedfromKristensenetal,2011).

  • 29

    Figure 15. The roles of SLCA13 andDDX54 in SFV infection. A:The relative infectionpercentagesofsiRNA-treatedHeLacellsinfectedwithSFV-ZsGreennormally(black)orusingendocyticbypass(grey)areindicated on the y-axis. The siRNAs used are indicated on the x-axis. The infection percentages werenormalized by setting the mean of the scrambled controls as 1. The error bars represent standarddeviations of the tree repetitions and an asterisk signifies a result that is significantly different from thecontrol. B: HeLa cells infected with SFV-ZsGreen normally or using endocytic bypass (indicated on theright).NucleiareshowninblueandnsP3-ZsGreen,indicatingSFVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.

  • 30

    4.4 TNP01 and HDAC6 affect the entry and penetration steps of SFVinfection.TNP01 is a cellular transportmolecule implicated innuclear transport,mitotic

    spindleassembly,nuclearenvelopeassembly,ciliary import,andthe formation

    ofPbodiesandstressgranules(Twyffelsetal,2014).HDAC6ismemberofthe

    histone deacetylase (HDAC) family, but unlike other HDACs, it has also non-

    histonictargetsandhasaubiquitin-bindingzinc-fingerdomain(Lietal,2013).

    BothTNP01andHDAC6haverolesincellularstressresponses(Kawaguchietal,

    2003;Twyffelsetal,2014)andseemtohaveroleinSFVinfection,eventhough

    theeffectofHDAC6isminuscule. Intheendocyticbypassassay,SFVinfectivity

    was not significantly different from the controls in both TNP01 and HDAC6-

    depletedcells(Figure16).Thisindicatesthattheirrolesarerelatedtotheearly

    stagesofSFVinfection.

    4.5Componentsofthetranslationmachineryaffectpenetrationandpost-

    penetrationstepsofSFVinfection

    EIF2B3, EIF4G1, and RPL18 are components of the translational machinery

    (Walsh&Mohr,2011;delaCruzetal,2015)(Figure17),andtheyappeartoplay

    apartinSFVinfection.Astheircanonicalrolesarerelatedtohosttranslation,I

    assumed that they would work similarly in SFV infection and affect the post-

    penetrationstages.Itestedthisusingtheendocyticbypassassay.Thisapproach

    revealed that EIF2B3 is not needed in SFV entry or penetration, as the

    percentage of infected cells was three times that of controls in the endocytic

    bypass assay (Figure 18). For the EIF4G1-depleted cells, the mean infection

    percentageintheendocyticbypassassaywassimilartothatofnormalinfection

    assay(1.5-foldhigher than incontrols),but thisdifferencewasnotstatistically

    significant(Figure18).Surprisingly,bycircumventingendocytosis,Icouldfully

    revert the infection-diminishing effect of the RPL18 knockdown (Figure 18),

    indicating that this ribosomal subunit plays a part in the early stages of SFV

    infection.

  • 31

    Figure 16. The roles of TNP01 and HDAC6 in SFV infection. A: The relative infectionpercentages ofsiRNA-treatedHeLacellsinfectedwithSFV-ZsGreennormally(black)orusingendocyticbypass(grey)areindicated on the y-axis. The siRNAs used are indicated on the x-axis. The infection percentages werenormalized by setting the mean of the scrambled controls as 1. The error bars represent standarddeviations of the tree repetitions and an asterisk signifies a result that is significantly different from thecontrol. B: HeLa cells infected with SFV-ZsGreen normally or using endocytic bypass (indicated on theright).NucleiareshowninblueandnsP3-ZsGreen,indicatingSFVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.

  • 32

    Figure17.TherolesofeIF2B,eIF4,andRPL18ontheinitiationoftranslation.Duringtheinitiationofeukaryotic translation, a 43 S pre-initiation complex is formed by GTP-bound eIF2, the 40 S ribosomalsubunitandothertranslationfactors(Walsh&Mohr,2011).ThiscomplexbindseIF4andothertranslationfactors, formingthe48Spre-initiationcomplex(Walsh&Mohr,2011).FollowingGTPhydrolysisandthebinding of the 60 S subunit, GDP-bound eIF2 dissociates and translationmoves to the elongation phase(Walsh&Mohr, 2011).GDP-eIF2 is converted to activeGTP-eIF2by eIF2Band it can initiate translationagain(Walsh&Mohr,2011).RPL18isapartoftheribosomal largesubunit(delaCruzetal,2015).MosttranslationfactorsandmRNAareomittedforclarity.

  • 33

    Figure18.TherolesofdifferenttranslationalmachinerycomponentsinSFVinfection.A:Therelativeinfection percentages of siRNA-treated HeLa cells infected with SFV-ZsGreen normally (black) or usingendocytic bypass (grey) are indicated on the y-axis. The siRNAs used are indicated on the x-axis. Theinfectionpercentageswerenormalizedbysettingthemeanofthescrambledcontrolsas1.Theerrorbarsrepresentstandarddeviationsof the treerepetitionsandanasterisksignifiesaresult that issignificantlydifferent from the control.B: HeLa cells infected with SFV-ZsGreen normally or using endocytic bypass(indicatedontheright).NucleiareshowninblueandnsP3-ZsGreen, indicatingSFVinfection, isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.

    4.6SFVinfectionisaffectedbyotherhostfactorsinpenetrationandpost-

    penetrationsteps

    SFV infectivity could be increased by using siRNAs against PHB2, EDF1, ETF1,

    DDX47, DHX37, and DHX57. DDX47 and DHX57 are probable RNA helicases

    (Gene IDs: 51202 and 90957, respectively), DDX54 is a RNA helicase that

    functionsintranscriptionregulation(Rajendranetal,2003;Kannoetal,2012),

    PHB2 and EDF1 are implicated in transcriptional processes (Kabe etal, 1999;

    Bavelloni etal, 2015), andETF1 is known to interactwith nonsense-mediated

    decay (Czaplinski et al, 1998), which is a part of the host antiviral defense

  • 34

    (Balistreri et al, 2014). Therefore my hypothesis was that all of these factors

    wouldhavepost-penetrationaleffects.TheeffectsofPHB2andEDF1depletion

    were similar in the endocytic bypass and normal infection (Figure 19) so I

    concludedthattheireffectsarenotrelatedtoSFVentryorpenetration.InETF1,

    DDX47andDHX37-depletedcellstheinfectivitywasnotstatisticallysignificantly

    different from the controls, but for DDX47 and DHX37 it was still high and

    comparable to the infectivity in thenormal infectionassay (2-foldand1.5-fold

    higherthancontrols,respectively)(Figure19).Curiously,intheDHX57-depleted

    cells,theeffectoftheendocyticbypasswastheoppositeofthenormalinfection,

    astheinfectivitywassignificantlylowerthanincontrols(opposedtohigherthan

    incontrolsinthenormalinfection).

    ThedepletionofGNPDA1andDMN2decreasedSFVinfectivity.AsDMN2hasa

    crucialroleinendocytosis(Kasaietal,1999),Iassumedthateffectofknockingit

    downwouldbelimitedtotheearlystagesofSFVinfection.GNPDA1,ontheother

    hand, isapoorly-characterizedglucosamine-6-phosphatedeaminase(Wolosker

    et al, 1998) so it was difficult to hypothesize how it affects SFV infection. By

    usingendocyticbypassassay,theeffectofthesiRNAtreatmentsagainstGNPDA1

    and DMN2 were reversed, so it seems that they both have roles in the early

    stagesofSFVinfection(Figure19).

  • 35

    Figure 19. The roles of PHB2, EDF1, ETF1, DDX47, DHX37, DHX57, GNPDA1, and DMN2 in SFVinfection. A: The relative infection percentages of siRNA-treated HeLa cells infected with SFV-ZsGreennormally(black)orusingendocyticbypass(grey)areindicatedonthey-axis.ThesiRNAsusedareindicatedonthex-axis.Theinfectionpercentageswerenormalizedbysettingthemeanofthescrambledcontrolsas1.Theerrorbarsrepresentstandarddeviationsofthetreerepetitionsandanasterisksignifiesaresultthatis significantly different from the control. B: HeLa cells infected with SFV-ZsGreen normally or usingendocytic bypass (indicated on the right). Nuclei are shown in blue and nsP3-ZsGreen, indicating SFVinfection,isshowningreen.ThesiRNAsusedareindicatedbythetextintheimages.

  • 36

    5.Discussion

    5.1.HostfactorsinSFVandVSVinfections

    Using siRNA knockdown, high-throughput imaging, and automated image

    analysis,IstudiedtheeffectsofthedepletionofvarioushostfactorsonSFVand

    VSVinfection(Table2).

    Table2.TheeffectsofsiRNAtreatmentagainstvariousgenesonSFVandVSVinfection

    Gene EffectonSFV

    infection*

    EffectonVSV

    infection*

    Gene EffectonSFV

    infection*

    EffectonVSV

    infection*

    PHB2 + - DDX41 0 0

    EDF1 + 0 DDX43 0 0

    SLC6A13 - DDX47 + 0

    EIF2B3 + 0 DDX54 - 0

    ETF1 + 0 DHX37 + -

    EIF4G1 + 0 DHX57 + 0

    DDX18 0 - KREMEN2 0 +

    PVR 0

    + HDAC6

    + 0

    CSPG5 0

    0 DNM2 - 0

    GNPDA1 -

    0 AP2M1 0 +

    RPL18 - - CLTC 0 0

    UPF1 + 0 KPNB1 0 -

    ATP6V1B2 - - TNPO1 - +

    ATP6V1G1 - - Ppbi 0 +

    DDX31 0 0 PPBI 0 +

    *+=siRNAtreatmentincreasesinfection,-=siRNAtreatmentdecreasesinfection,0=siRNAtreatmenthasnoeffectoninfection

    Byusingtheendocyticbypassassay,IpinpointedtherolesofSLC6A13,TNP01,

    HDAC6, RPL18, ETF1, and GNDPA1 to the early events in SFV infection. I also

    employedthesamemethodtoassignpost-penetrationrolesforDDX54,EIF2B3,

    PHB2, and EDF1. My results also confirmed the previously reported roles of

    ATP6V1B2andATP6V1G1 in the early stages of SFV infection (Balistrerietal,

    2014). In the case of EIF4G1, DDX47, and DHX37 the mean infectivity in the

    endocyticbypasswassimilartonormalinfection,eventhoughthedifferencewas

    not statistically significant. In all cases this was caused by a single outlying

  • 37

    repetition(datanotshown),soIaminclinedtobelievethatthesefactorsaffect

    the later stages of SFV infection. Similarly, in the endocytic bypass assay the

    mean infectivity inUPF1-depletedcellswasnotsignificantlydifferent formthe

    control because of a single outlier (data not shown). Still, themean infectivity

    was similar to thenormal infection, andalmost two times thatof the controls.

    Furthermore, UPF1 has been reported to prevent the translational and

    transcriptional stagesof SFV infection (Balistrerietal, 2014). Curiously, in the

    normal infection, DHX57 depletion increased SFV infection significantly but in

    theendocyticbypass,virusinfectivitywassignificantlylowerthanincontrols.

    5.2.SLC6A13isacandidatereceptorforSFV

    SLC6A13 is structurally similar to the iron transporter NRAMP2 (natural

    resistanceassociatedmacrophageprotein2)(Nevo&Nelson,2006;Kristensen

    etal,2011).Theybothbelongto thesamefamilyofsolute-carryingmembrane

    proteins that have 12 membrane-spanning domains and cytosolic N- and C-

    termini (Nevo & Nelson, 2006; Kristensen et al, 2011). NRAMP2 is used as a

    receptorinbothinsectandmammaliancellsbySindbisvirus,analphavirusthat

    is closely related to SFV (Rose et al, 2012). Therefore SLC6A13 might be the

    receptor for SFV.This is further supportedby the fact that SLC6A13depletion

    does not affect VSV infectivity, as receptors are often virus-specific (Grove &

    Marsh,2011).Additionally,SLC6A13mRNAistranscribedheavilyinthekidneys

    (The Human Protein Atlas, http://www.proteinatlas.org/ENSG00000010379-

    SLC6A13/tissue, Fagerberg et al, 2014). The currently used SFV strains have

    been passaged multiple times in hamster kidney (BHK-21) cells (Atkins et al,

    1999) and the reason thatBHK-21 cells supporthigh titers of SFVmaybe the

    presence of the hamster analogue of SLC6A13. Passaging has affected SFV

    bindingbyselectingforsingleaminoacidmutationsintheenvelopeproteinsof

    the virus which allows SFV to bind to host heparan sulphate via simple

    electrostaticinteractions(Smitetal,2002).Howeverbindingtohostreceptorsis

    more complicated than binding on the surface, as it involvesmultiple specific

    interactions between viral and host proteins (Marsh&Helenius, 2006). These

    events need to be complex enough signal the host to initiate the endocytic

    program(Marsh&Helenius,2006). It is thereforeconceivable thatadapting to

  • 38

    completelynewreceptors is anunlikelyeventeven in cell culture, andviruses

    may retain specificity for suitable receptors on the surface of the cells from

    whichtheyareproduced.

    ToconfirmtheroleofSLC6A13inSFVinfection,furtherexperimentsareneeded.

    WewilltestifSLC6A13-depletionblocksSFVentry(asopposedtopenetration)

    using single-virus tracking in living cells and (Hoornweg et al, 2016).Wewill

    also use fluorescent immunolabeling and confocalmicroscopy to compare the

    rateofSFVendocytosisinSLC6A13-depletedandwildtypecells(Rizopouloset

    al, 2015). Furthermore, will determine, if the transfection of a SLC6A13-

    producing plasmidwill rescue SFV infection in conditional SLC6A13-knockout

    cells. To further characterize the potential interaction between SLC6A13 and

    SFV,astructuralapproachisneeded.Thismay,forexample,beintheformofX-

    ray crystallography of the SFV spike proteins complexed with a SLC6A13

    extracellular domain or domains (Peng et al, 2011), or a cryo-electron

    microscopy single-particle reconstruction of SFV bound to SLC6A13 (He et al,

    2002).

    5.3.HostfactorsthataffectSFVinfection

    ThefactthatTNP01RPL18,andETF1areneededforSFVentryandpenetration

    stages issurprisingasTNP01 is involved in intracellular traffickingandRPL18

    andETF1havecanonicalroles intranslation(Tayloretal,2012;Twyffelsetal,

    2014; de la Cruz et al, 2015). TNP01 is used by adenoviruses (Hindley et al,

    2007), human immunodeficiency virus 1 (HIV-1) (Arnold et al, 2006), and

    humanpapillomavirus(Darshanetal,2004)forthenucleartransportofvarious

    virus components. As the effect of TNP01 depletions are reversed by the

    endocytic bypass assay, this cellular proteinmust be needed in the very early

    stagesofSFVinfection.Therefore,aroleinthelaterstepsoftheviruslifecycle,

    suchas interferencewithstressgranule formationorTNP01-mediatednuclear

    import of viral replicase protein nsP2 (Twyffels et al, 2014; Fros & Pijlman,

    2016),areunlikely tobe related to theobservedphenotypes. Itmightalsobe

    thattheeffectofTNP01depletionisindirectanditaffectsthefunctionofsome

    otherproteinsthathaverolesinSFVinfection.

  • 39

    In the case of VSV, the known role of TNP01 in stress granule formation, a

    processthatisconsideredasamechanismofintrinsicantiviralimmunitymaybe

    the reasonwhy TNP01 depletion increases VSV infection (Beckham& Parker,

    2008;Twyffelsetal,2014).Ithaspreviouslybeenreportedthattheknockoutof

    TIA-1, a stress granule-associated protein, increases the infectivity of VSV in

    mouse embryonic fibroblasts (Li et al, 2002), which further supports this

    hypothesis.

    BasedontheinteractionofRPL18andotherviruses,onewouldexpectRPL18to

    affect the late stages of SFV infection. This ribosomal proteinhas a role in the

    translation or replication of Dengue virus (Cervantes-Salazar et al, 2015),

    cauliflowermosaicvirus(Lehetal,2000)andHCV(Dharetal,2006).However,

    inSFVinfection,RPL18functionsintheearlystagesofthevirallifecycle,which

    indicates a mechanism different from the other known viruses. It has been

    shownthatribosomesareneededintheuncoatingofSFVnucleocapsids(Singh

    &Helenius,1992).Thus,RPL18mighthavearole inthisprocess,whichwould

    beafunctionunlikeanydescribedforaribosomalproteinsofar.However,this

    wouldalsomeanthatduringtheendocyticbypassassay,whenthenucleocapsids

    aredelivereddirectlytothecytoplasmthroughthePM,SFVvirionsareuncoated

    inadifferentwaythanduringthenormalentry.Thisunexpectedresultmayalso

    be caused by an indirect interaction of RPL18 and some other cellular factor,

    whichisperturbedbythedepletionofRPL18.AsIdidnotinvestigateatwhich

    stageofVSVinfectionRPL18affects,myworkinghypothesis isthat itprobably

    affectsthereplicationortranslation,ashasbeenreportedforotherviruses(Leh

    etal,2000;Dharetal,2006;Cervantes-Salazaretal,2015).

    ETF1isanotherproteinthatseemedtoberelatedtothepost-entrystagesofSFV

    infection. ETF1 is a eukaryotic translation termination factor, with a role in

    nonsense-mediated decay (Czaplinski etal, 1998), a pathway that is known to

    counteract SFV infection during translation and replication (Balistreri et al,

    2014). Thus, I initially assumed that ETF1 would have a role in the post-

    penetrationstagesofSFVinfection.Myresultsruleoutthispossibility,because

    the effect of ETF1 depletion was reversed by the endocytic bypass assay.

  • 40

    Therefore, itmight be that the effect I have observed is indirect, or ETF1 has

    previouslyuncharacterizedfunctions.Additionally,thesefunctionsdonotseem

    tobebroadlyantiviral,asETF1-depletionhadnoeffectonVSVinfection.

    HDAC6isusedby influenzaAvirus(IAV)touncoat itsgenome(Banerjeeetal,

    2014). It is also reported to inhibit oncolytic herpes simplex virus infection in

    gliomacells,apparentlybyinterferingwithendocytictrafficking(Nakashimaet

    al, 2015). As our initial result showed small but reproducible increase in SFV

    infectionfollowedbyHDAC6knockdown,Iassumedthatitplaysaminorrolein

    SFVentryandpenetrationprocessesasHDAC6hasarole in thepositioningof

    endosomes (Li et al, 2013). This was confirmed by endocytic bypass.

    SurprisinglyHDAC6depletiondidnotaffectVSV infection,eventhoughHDAC6

    hasbeenreportedtoprotectmicefromVSV(Choietal,2016).Thismayindicate

    that cell culturediffers significantly from invivoconditionsor thatHDAC6has

    differentrolesinmouseandhumancells.ItisalsopossiblethatHDAC6functions

    in the very late stages of VSV infection, such as egress, as our assay only

    quantifiesviralreplicationandnotthelaterstagesofinfection.

    DMN2isanotherproteinwithafunctioninendocytosis(Kasaietal,1999),and

    therefore it was expected that its depletion would reduce SFV infectivity by

    affecting theearlystepsof the infection.TheroleofDMN2 invirus infection is

    well characterized, and it is needed for example by bovine ephemeral virus,

    hepatitisEvirus,andPichindévirus(Velaetal,2008;Chengetal,2012;Hollaet

    al,2015).SurprisinglyitwasnotrequiredbyVSV,eventhoughitisreportedto

    becrucialforVSVentry(Curetonetal,2009;Johannsdottiretal,2009).

    Incells,EIF2B3andEIF4G1function intranscription initiation(Walsh&Mohr,

    2011).EIF2B3isacomponentofeIF2B,whichrecycleseIF2,akeyfactorinthe

    formation of the 43 S pre-initiation complex and EIF4G1 has a function in

    bringing the mRNA cap and poly-A tail together in the 48 S pre-initiation

    complex(Walsh&Mohr,2011).Asapartofthehost’sbroadantiviralresponse

    thataimstoshutdowntranslation,eIF2canbe inactivatedbyphosphorylation

    (Walsh&Mohr,2011).SFVcancounteractthisresponse,andisknowntobeable

  • 41

    totranslateitsstructuralgeneseveninthepresenceofphosphorylatedeIF2.As

    thedepletionofEIF2B3increasesSFVinfectioninthepost-penetrationstages,it

    seems that SFV can translate even its early genes without a canonical set of

    translationinitiationfactors.KnockingdownEIF4G1similarlyaffectslaterstages

    of SFV infection and increases SFV infectivity. This shows that though cap-

    dependent,thetranslationofSFVearlygenesdoesnotoccurinexactlythesame

    way as the translation of hostmRNAs. Since SFV RNA is not as susceptible to

    changesinthecompositionofthetranslationinitiationcomplexashostmRNAs

    are,itgainsanadvantageinthetranslationalcompetition.Astheknockdownof

    EIF4G1orEIF2B3doesnotaffectVSVinfection,theirfunctionismostlikelynot

    broadlyantiviral.ThisindicatesthatSFVhasevolvedsomemechanismtobenefit

    from the depletion of these host factorswhile VSV has not.Most likely this is

    difference is mediated by the differences in SFV (sub)genomic RNA and VSV

    mRNAs.

    PHB2 knockdown increased SFV infectivity during the post-penetration steps

    and it also increasedVSV infectivity.PHB2hasbeenreported tobeapro-viral

    agent for HIV-1 (Emerson et al, 2010) and to associate with severe acute

    respiratory syndrome coronavirus nsPs (Cornillez-Ty et al, 2009). Curiously,

    PHB2-depletion has been previously shown to reduce VSV infection inmouse

    cells (Kreit et al, 2015). The different result reported here might be due to

    different roles of PHB2 in murine and human cells, or differences in VSV

    infection between these two organisms. Additionally, Kreit et al (2015) used

    small hairpin RNA technology, opposed to siRNAs used in this study. Even

    though thesemethods are highly similar, thismay have a role in the differing

    results. As PHB2 interacts with a myriad of host processes and proteins

    (Bavellonietal,2015),itispossiblethattheeffectsofitsdepletionareindirect

    and the actual effects are mediated by other host factors. PHB2 is also a

    transcriptional regulator (Bavelloni et al, 2015) so its knockdown may just

    reducehost translation, thusgiving theviralRNAsanedge in the translational

    competition. This may also be the mechanism by which EDF1-depletion

    promotesbothSFVandVSVinfectivity,asitisatranscriptionalactivator(Kabe

  • 42

    et al, 1999). This is further supported by the fact that the effect of EDF1

    knockdownaffectsthelaterstagesofSFVinfection.

    GNDPA1, DDX54, DDX47, DHX37, and DHX57 are all poorly characterized

    cellular factors that have not been previously implicated in viral infections.

    DDX47, DHX37, and DHX57 are predicted RNA helicases (Gene IDs: 51202,

    57647, and 90957, respectively). DDX54 is an RNA-helicase that has been

    reportedtobeatranscriptionalco-repressor(Rajendranetal,2003;Kannoetal,

    2012). The knockdown of DDX53, and DDX47 increased SFV infection by

    affecting the post-penetration stages, but had no effect on VSV infection. This

    mayindicatethatbothofthesehelicasescantargetRNAstructuresfoundinSFV

    but not in VSV. Or possibly SFV but not VSV requires these helicases for

    translation or transcription. DHX37 depletion affected both SFV and VSV

    infections.ItdecreasedSFVinfection,byaffectingthelatestages,andincreased

    VSVinfection.Thismaybeduetoasimilarsituationasabove,butwithDHX37

    depletion affecting host RNAs in a way, that allows VSV to succeed in the

    translationalcompetitionagainstthehost.Itisdifficulttohypothesizethereason

    why DHX57 depletion was beneficial to SFV in the normal infection, but

    detrimentalintheendocyticbypass.ThismaybeduetoacomplexroleofDHX57

    ormerely experimental anomalies. GNDPA1 is a highly conservedprotein that

    plays a crucial role in metabolism (Wolosker et al, 1998). It is, therefore,

    surprising that it would have a role in the early stages of SFV infection. This

    effect would imply that GNDPA1 has previously uncharacterized functions, or

    thatitsdepletionaffectsotherhostfactorsthat,inturn,affectSFVinfection.

    5.4.Otherhostfactors

    Apparently, VSV infection is counteracted by PVR, KREMEN2, AP2M1 and

    cyclophilin B. On the other hand VSV seems to need ATP6V1B2, ATP6V1G1,

    DDX18, and KPNB1 for successful infection. The requirement of the vATPase

    subunits ATP6V1B2 and ATP6V1G1 by VSV is not surprising, as it penetrates

    hostmembranesviapH-dependentfusion(Regan&Whittaker,2013).PVRand

    KREMEN2arecellsurfacemolecules(Mendelsohnetal,1989;Maoetal,2002)

    and AP2M1 is a part of AP2, and therefore has a role in clathrin-mediated

  • 43

    endocytosis (Heinaman,1995;Boucrotetal, 2010).Therefore it is conceivable

    thatthesemoleculeswouldaffectVSVentryorpenetration.

    DDX18isapoorly-studiedputativeRNAhelicaseforwhichhelicaseactivityhas

    notbeendemonstratedyet(Dubaele&Chène,2007).IfDDX18doesaffectRNA,

    the effect of its depletion on VSV but not SFV infection may be due to VSV

    containing some RNAmotif that SFV lacks, or vice versa. KPNB1 is a protein

    required for nuclear import (Görlich et al, 1995) and its depletion greatly

    reducesVSVinfection.IthasbeenpreviouslyshownthattheMproteinofVSVis

    transported into the nucleus, which allows it to reduce nucleocytoplasmic

    transport(Petersenetal,2000;Glodowskietal,2002).Perhapsthetransportof

    theMproteinismediatedbyKPNB1,whichreducesthetransportofhostmRNAs

    into the nucleus, therefore giving VSV the upper hand in the translational

    competition.

    Cyclophilins affect the infections ofmultiple viruses (Frausto et al, 2013) and

    cyclophilinAhasbeen reported tobe requiredbyVSV for successful infection

    (Boseetal,2003).ThesiRNAsagainstPPBIincreasedinfectivitymorethanthe

    siRNAsagainstPpbi.Mostlikelythiseffectisexplainedbysequencedissimilarity

    between human andmouse cyclophilin B as the use of Ppbi-targeting siRNAs

    wouldresultinonlypartialknockdownofPPBI(Petersenetal,2000;Glodowski

    etal,2002).

    CSPG6, a chondroitin sulfate proteoglycan (Watanabe et al, 1995), DDX31, an

    RNA-helicasewithapossiblerole inrenalcarcinogenesis(Fukawaetal,2012),

    DDX41aRNAhelicasewith functions in immuneprocesses (Jiangetal, 2017),

    DDX43, an RNA and DNA helicase (Tanu et al, 2017), and CLTC, a well-

    characterizedendocyticprotein(Doherty&McMahon,2009)didnothaveroles

    inSFVofVSVinfections.Chondroitinsulfateproteoglycanshavebeenimplicated

    inthebindingofvirusestohostcells(Banfieldetal,1995;Hsiaoetal,1999),but

    SFVandVSVapparentlydonotutilize it,at leastexclusively.This isconsistent

    withthereportthatSFVbindstoheparansulfateonthehostsurface(Smitetal,

    2002). An siRNA screen showed a reduction in the infection of IAV (a double-

  • 44

    strandedDNAvirus) followedby the silencingofDDX31, but the investigators

    didnotpursuethisresultanyfurther(Diotetal,2016)andDDX41seemstohave

    aroleininnateimmunityinthedetectionofdouble-strandedDNAviruses(Jiang

    etal,2017).AsSFVandVSVareRNAviruses,itseemsthatvirus-affectingroles

    ofDDX31andDDX41might be exclusive toDNAviruses.DDX43hasnot been

    previously implicated in viral infection so it is not surprising that it does not

    affectSFVorVSVinfections.Clathrinhasbeenthoughttobecrucialfortheentry

    ofbothSFVandVSV(Heleniusetal,1980;Sunetal,2005),butaccordingtomy

    resultstheentryprocessmightbemorecomplicated,andCLTCisnotrequired

    byeithervirus.

    5.5.Methodologicalconsiderations

    AssiRNA-basedscreeninghasbecomecheaperandsiRNAdesignhasimproved,

    anumberoflarge-scalestudiesonhost-virusinteractionshavebeenpublishedin

    recent years (Perreira et al, 2016). Even though siRNA-based screening is

    definitelyapowerfultool, ithasitsdrawbacks.Traditionally,siRNAshavebeen

    consideredveryspecificbutFranceschinietal(2014)showedthatsiRNAsused

    inscreeningcanactasmicro-RNAs(miRNAs)andhavestrongoff-targeteffects.

    This kind of indirect effects may explain the surprising results of siRNA

    treatmentsagainstTNP01,RPL18,andETF1onSFVinfectionaswellasthoseof

    siRNAsagainstPHB2andHDAC6onVSVinfection.Theapparentnonessentiality

    of CLTC in both SFV and VSV infectionsmay also be explainedwith off-target

    effects.Itmayalsobe,thatsomeofthesurprisingresultsareduetoincomplete

    knockdown of the studied host factors. Due to possibility of off-targets or

    incomplete knockdown, the results of siRNA screens need to be extensively

    validated. The knockdown efficiency of the siRNAs should be tested using

    immunoblotting.Preferably, therolesof thegenesof interestwouldbestudied

    using knockout cells. As an ultimate test, a rescue assay needs performed, in

    whichknockdownor(preferably)knockoutcellsaretransfectedwithaplasmid

    thatproduces theprotein inquestion.This should lead to the reversionof the

    effect on virus infection. Due to the lack of further validation, the genes

    implicatedbymyexperimentsaretobeunderstoodascandidatefactors.

  • 45

    Theendocyticbypassassayusedinmyexperimentsisveryrobustandseparates

    the function of the host factors to two rather broad categories. Therefore,

    additional experiments are needed to perfectly understand the role of host

    factors.Usingconfocalmicroscopy,itispossibletodetectifvirusesboundoncell

    surface are endocytosed or not (Rizopoulos et al, 2015). To determine if the

    depletion of the host factor affects SFV penetration or uncoating, specific

    antibodies against the acidified spike proteins and SFV capsid proteins are

    available (Liao & Kielian, 2006) Spike acidification is a sign of membrane

    penetration,andthe localizationof thesignal fromanti-capsidantibodycanbe

    used to detect the uncoating events (Singh&Helenius, 1992). Topinpoint the

    effects of host factors to later stages of SFV infection, immunoblotting can be

    used todetect theproductionofearlyand lateviralproteins. Similarly toSFV,

    the endocytic part of VSV infection can be bypassed (Blumenthal etal, 1987).

    Therefore,performinganendocyticbypassassaywouldbethenextstep inthe

    elucidationoftherolesofthehostfactorsthataffectVSVinfection,followedwith

    e.g.directmeasuringofVSVendocytosis(Rizopoulosetal,2015).

    5.6.Conclusions

    Themajor result of this study is that SLC6A13 is a candidate receptor for SFV

    and if validated, it implies that alphaviruses in generaluse structurally similar

    solutecarriersastheirreceptors.Thismayleadtothediscoveryofthereceptors,

    of other,more clinically relevant alphaviruses,which in turnmay lead to new

    therapeutic applications. Overall, it is clear that multiple previously

    uncharacterized host factors affect both SFV and VSV infections and many of

    thesefactorsarespecifictoSFVorVSV.Thisthesisalsoshowsthathostfactors

    play important parts in both the early and late stages of SFV infection. Taken

    together,theresultsofthisthesisfurtherconfirmthatvirus-hostinteractionsare

    crucialinvirusinfections.Myfindingsserveasastartingpointtocontinuetoin-

    depthstudiesintohowthesefactorsaffectSFVandVSVinfections.

    6.AcknowledgementsI thank Dr. Giuseppe Balistreri for excellent supervision, Dr. Aušra Domanska,

    ProfessorSarahButcher,Dr.JustinFlatt,andDr.CarlottaGlackinforthecritical

  • 46

    readingofmythesis,aswellasalltheothermembersoftheButchergroupfor

    theirhelp and support. Iwould also like to acknowledge theLightMicroscopy

    UnitoftheInstituteofBiotechnologyfortheuseoftheirequipmentandDr.Kirsi

    Hellström,forthehelpprovidedintheamplificationofSFV-ZsGreen.

    7.ReferencesArnoldM,NathA,HauberJ&KehlenbachRH(2006)MultipleImportinsFunctionas

    NuclearTransportReceptorsfortheRevProteinofHumanImmunodeficiencyVirusType1.J.Biol.Chem.281:20883–20890

    AtkinsGJ,SheahanBJ&LiljeströmP(1999)TheMolecularPathogenesisofSemlikiForestVirus:aModelVirusMadeUseful?J.Gen.Virol.80:2287–2297

    BalistreriG,HorvathP,SchweingruberC,ZündD,McInerneyG,MeritsA,MühlemannO,AzzalinC&HeleniusA(2014)TheHostNonsense-MediatedmRNADecayPathwayRestrictsMammalianRNAVirusReplication.CellHostMicrobe16:403–411

    BanerjeeI,MiyakeY,NobsSP,SchneiderC,HorvathP,KopfM,MatthiasP,HeleniusA&YamauchiY(2014)InfluenzaAVirusUsestheAggresomeProcessingMachineryforHostCellEntry.Science346:473–7

    BanfieldB,LeducY,EsfordL,VisalliRJ,BrandtC&TufaroF(1995)EvidenceforanInteractionofHerpesSimplexViruswithChondroitinSulfateProteoglycansDuringInfection.Virology208:531–539

    BavelloniA,PiazziM,RaffiniM,FaenzaI&BlalockWL(2015)Prohibitin2:AtaCommunicationsCrossroads.IUBMBLife67:239–254

    BeckhamCJ&ParkerR(2008)P-bodies,StressGranulesandViralLifeCycles.CellHostMicrobe3:206–212

    LeBlancI,LuyetP-P,PonsV,FergusonC,EmansN,PetiotA,MayranN,DemaurexN,FauréJ,SadoulR,PartonRG&GruenbergJ(2005)Endosome-to-CytosolTransportofViralNucleocapsids.Nat.CellBiol.7:653–664

    BlumenthalR,Bali-PuriA,WalterA,CovellD&EidelmanO(1987)pH-DependentFusionofVesicularStomatitisViruswithVeroCells.MeasurementbyDequenchingofOctadecylRhodamineFluorescence.J.Biol.Chem.262:13614–13619

    BoseS,MathurM,BatesP,JoshiN&BanerjeeAK(2003)RequirementforCyclophilinAfortheReplicationofVesicularStomatitisVirusNewJerseySerotype.J.Gen.Virol.84:1687–1699

    BoucrotE,SaffarianS,ZhangR&KirchhausenT(2010)RolesofAP-2inClathrin-MediatedEndocytosis.PLoSOne5:e10597

    CarpenterAE,JonesTR,LamprechtMR,ClarkeC,KangIH,FrimanO,GuertinDa,ChangJH,LindquistRa,MoffatJ,GollandP&SabatiniDM(2006)CellProfiler:ImageAnalysisSoftwareforIdentifyingandQuantifyingCellPhenotypes.GenomeBiol.7:R100

    Cervantes-SalazarM,Angel-AmbrocioAH,Soto-AcostaR,Bautista-CarbajalP,Hurtado-MonzonAM,Alcaraz-EstradaSL,LudertJE&DelAngelRM(2015)DengueVirusNS1ProteinInteractsWiththeRibosomalProteinRPL18:ThisInteractionIsRequiredforViralTranslationandReplicationinHuh-7Cells.Virology484:113–126

    ChengCY,ShihWL,HuangWR,ChiPI,WuMH&LiuHJ(2012)BovineEphemeralFeverVirusUsesaClathrin-MediatedandDynamin2-DependentEndocytosisPathwayThatRequiresRab5andRab7asWellasMicrotubules.J.Virol.86:13653–13661

    ChoiSJ,LeeH,KimJ,ParkSY,KimT,LeeW,JangD,YoonJ,ChoiY,KimS,MaJ,KimC,YaoT,JungJU,LeeJ&LeeJ(2016)HDAC6RegulatesCellularViralRNASensingbyDeacetylationofRIG-I.35:429–442

  • 47

    CoordinatorsNR(2017)DatabaseResourcesoftheNationalCenterforBiotechnologyInformation.NucleicAcidsRes.45:D12–D17

    Cornillez-TyCT,LiaoL,YatesJR,KuhnP&BuchmeierMJ(2009)SevereAcuteRespiratorySyndromeCoronavirusNonstructuralProtein2InteractswithaHostProteinComplexInvolvedinMitochondrialBiogenesisandIntracellularSignaling.J.Virol.83:10314–10318

    CuretonDK,MassolRH,SaffarianS,KirchhausenTL&WhelanSPJ(2009)VesicularStomatitisVirusEntersCellsthroughVesiclesIncompletelyCoatedwithClathrinThatDependuponActinforInternalization.PLoSPathog.5:

    CzaplinskiK,Ruiz-EchevarriaMJ,PaushkinSV.,HanX,WengY,PerlickHA,DietzHC,Ter-AvanesyanMD&PeltzSW(1998)TheSurveillanceComplexInteractswiththeTranslationReleaseFactorstoEnhanceTerminationandDegradeAberrantmRNAs.GenesDev.12:1665–1677

    DarshanMS,LucchiJ,HardingE&MoroianuJ(2004)TheL2MinorCapsidProteinofHumanPapillomavirusType16InteractswithaNetworkofNuclearImportReceptorsTheL2MinorCapsidProteinofHumanPapillomavirusType16InteractswithaNetworkofNuclearImportReceptors.J.Virol.78:12179–12188

    DharD,MapaK,PudiR,SrinivasanP,BodhinathanK&DasS(2006)HumanRibosomalProteinL18aInteractsWithHepatitisCVirusInternalRibosomeEntrySite.Arch.Virol.151:509–524

    DiotC,FournierG,DosSantosM,MagnusJ,KomarovaA,vanderWerfS,MunierS&NaffakhN(2016)InfluenzaAVirusPolymeraseRecruitstheRNAHelicaseDDX19toPromotetheNuclearExportofViralmRNAs.Sci.Rep.6:33763

    DohertyGJ&McMahonHT(2009)MechanismsofEndocytosis.Annu.Rev.Biochem.78:857–902

    DubaeleS&ChèneP(2007)CellularStudiesofMrDb(DDX18).Oncol.Res.16:549–556EmersonV,HoltkotteD,PfeifferT,WangI-H,SchnolzerM,KempfT&BoschV(2010)

    IdentificationoftheCellularProhibitin1/Prohibitin2HeterodimerasanInteractionPartneroftheC-TerminalCytoplasmicDomainoftheHIV-1Glycoprotein.J.Virol.84:1355–1365

    FagerbergL,HallstromBM,OksvoldP,KampfC,DjureinovicD,OdebergJ,HabukaM,TahmasebpoorS,DanielssonA,EdlundK,AsplundA,SjostedtE,LundbergE,SzigyartoCA-K,SkogsM,TakanenJO,BerlingH,TegelH,MulderJ,NilssonP,etal(2014)AnalysisoftheHumanTissue-specificExpressionbyGenome-wideIntegrationofTranscriptomicsandAntibody-basedProteomics.Mol.Cell.Proteomics13:397–406

    FranceschiniA,MeierR,CasanovaA,KreibichS,DagaN,AndritschkeD,DillingS,RamoP,EmmenlauerM,KaufmannA,Conde-AlvarezR,LowSH,PelkmansL,HeleniusA,HardtW-D,DehioC&vonMeringC(2014)SpecificInhibitionofDiversePathogensinHumanCellsbySyntheticMicroRNA-likeOligonucleotidesInferredfromRNAiScreens.Proc.Natl.Acad.Sci.111:4548–4553

    FraustoSD,LeeE&TangH(2013)CyclophilinsasModulatorsofViralReplication.Viruses5:1684–1701

    FrosJJ&PijlmanGP(2016)AlphavirusInfection:HostCellShut-OffandInhibitionofAntiviralResponses.Viruses8:166

    FukawaT,OnoM,MatsuoT,UeharaH,MikiT,NakamuraY,KanayamaHO&KatagiriT(2012)DDX31Regulatesthep53-HDM2PathwayandrRNAGeneTranscriptionThroughItsInteractionwithNPM1inRenalCellCarcinomas.CancerRes.72:5867–5877

    FullerSD,BerrimanJA,ButcherSJ&GowenBE(1995)LowpHInducesSwivelingoftheGlycoproteinHeterodimersintheSemlikiForestVirusSpikeComplex.Cell81:715–725

    GeP,TsaoJ,ScheinS,GreenTJ,LuoM&ZhouZH(2010)Cryo-EMModeloftheBullet-ShapedVesicularStomatitisVirus.Science(80-.).327:689–693

  • 48

    GlodowskiDR,PetersenJM&DahlbergJE(2002)ComplexNuclearLocalizationSignalsintheMatrixProteinofVesicularStomatitisVirus.J.Biol.Chem.277:46864–46870

    GörlichD,KostkaS,KraftR,DingwallC,LaskeyRA,HartmannE&PrehnS(1995)TwoDifferentSubunitsofImportinCooperatetoRecognizeNuclearLocalizationSignalsandBindThemtotheNuclearEnvelope.Curr.Biol.5:383–392

    GosertR,EggerD,LohmannV,BartenschlagerR,BlumHE,BienzK&MoradpourD(2003)IdentificationoftheHepatitisCVirusRNAReplicationComplexinHuh-7CellsHarboringSubgenomicReplicons.J.Virol.77:5487–5492

    GriffinDE(2013)Alphaviruses.InFieldsVirology,KnipeD&HowleyP(eds)pp651–686.Philadelphia:LippincottWilliams&Wilkins

    GroveJ&MarshM(2011)TheCellBiologyofReceptor-mediatedVirusEntry.J.CellBiol.195:1071–1082

    HeY,LinF,ChipmanPR,BatorCM,BakerTS,ShohamM,KuhnRJ,MedofME&RossmannMG(2002)StructureofDecay-acceleratingFactorBoundtoEchovirus7:aVirus-receptorComplex.Proc.Natl.Acad.Sci.U.S.A.99:10325–10329

    HeinamanR(1995)ActivityandinVitroReassemblyoftheCoatedVesicle(H+)-ATPaseRequiresthe50-kDaSubunitoftheClathrinAssemblyComplexAP-2*.J.Biol.Chem.269:81–95

    HeleniusA,KartenbeckJ,SimonsK&FriesE(1980)OntheEntryofSemlikiForestVirusIntoBHK-21Cells.J.CellBiol.84:404–420

    HindleyCE,LawrenceFJ&MatthewsDA(2007)ARoleforTransportinintheNuclearImportofAdenovirusCoreProteinsandDNA.Traffic8:1313–1322

    HoffmannH&Schiene-FischerC(2014)FunctionalAspectsofExtracellularCyclophilins.Biol.Chem.395:721–735

    HollaP,AhmadI,AhmedZ&JameelS(2015)HepatitisEVirusEntersLiverCellsthroughaDynamin-2,ClathrinandMembraneCholesterol-dependentPathway.Traffic16:398–416

    HoornwegTE,vanDuijl-RichterMKS,AyalaNuñezNV,AlbulescuIC,vanHemertMJ&SmitJM(2016)DynamicsofChikungunyaVirusCellEntryUnraveledbySingle-VirusTrackinginLivingCells.J.Virol.90:4745–56

    HsiaoJC,ChungCS&ChangW(1999)VacciniaVirusEnvelopeD8LProteinBindstoCellSurfaceChondroitinSulfateandMediatestheAdsorptionofIntracellularMatureVirionstoCells.J.Virol.73:8750–8761

    HubbertC,GuardiolaA,ShaoR,KawaguchiY,ItoA,NixonA,YoshidaM,WangX-F&YaoT-P(2002)HDAC6isaMicrotubule-associatedDeacetylase.Nature417:455–458

    JiangY,ZhuY,LiuZJ&OuyangS(2017)TheEmergingrolesoftheDDX41ProteininImmunityandDiseases.ProteinCell8:83–89

    JohannsdottirHK,ManciniR,KartenbeckJ,AmatoL&HeleniusA(2009)HostCellFactorsandFunctionsInvolvedinVesicularStomatitisVirusEntry.J.Virol.83:440–453

    JohnsonDC&BainesJD(2011)Herpesvirusesremodelhostmembranesforvirusegress.Nat.Rev.Microbiol.9:382–394

    KabeY,GotoM,ImaiT,WadaT,MorohashiK,ShirakawaM,HiroseS&HandaH(1999)TheRoleofHumanMBF1asaTranscriptionalCoactivatorTheRoleofHumanMBF1asaTranscriptionalCoactivator*.J.Biol.Chem.274:34196–34202

    KannoY,SerikawaT,InajimaJ&InouyeY(2012)DP97,aDEADBoxDNA/RNAHelicase,IsaTargetGene-selectiveCo-regulatoroftheConstitutiveAndrostaneReceptor.Biochem.Biophys.Res.Commun.426:38–42

    KasaiK,ShinHW,ShinotsukaC,MurakamiK&NakayamaK(1999)DynaminIIIsInvolvedinEndocytosisbutNotintheFormationofTransportVesiclesfromtheTrans-GolgiNetwork.JBiochem125:780–789

    KawaguchiY,KovacsJJ,McLaurinA,VanceJM,ItoA&YaoTP(2003)TheDeacetylaseHDAC6RegulatesAggresomeFormationandCellViabilityinResponsetoMisfoldedProteinStress.Cell115:727–738

  • 49

    KreitM,VertommenD,GilletL&MichielsT(2015)TheInterferon-InducibleMouseApolipoproteinL9andProhibitinsCooperatetoRestrictTheiler’sVirusReplication.:1–22

    KristensenAS,AndersenJ,JørgensenTN,SørensenL,EriksenJ,LolandCJ&StrømgaardK(2011)SLC6NeurotransmitterTransporters :Structure,Function,andRegulation.Pharma.Rev.63:585–640

    KuhnRJ(2013)Togaviridae.InFieldsVirology,KnipeD&HowleyP(eds)pp629–650.Philadelphia:LippincottWilliams&Wilkins

    KuismanenE,HedmanK,SarasteJ&PetterssonRF(1982)UukuniemiVirusMaturation:AccumulationofVirusParticlesandViralAntigensintheGolgiComplex.Mol.Cell.Biol.2:1444–58

    delaCruzJ,KarbsteinK&WoolfordJL(2015)FunctionsofRibosomalProteinsinAssemblyofEukaryoticRibosomesInVivo.Annu.Rev.Biochem.84:93–129

    LehV,YotP&KellerM(2000)TheCauliflowerMosaicVirusTranslationalTransactivatorInteractswiththe60SRibosomalSubunitProteinL18ofArabidopsisthaliana.Virology266:1–7

    LeinonenR,AkhtarR,BirneyE,BowerL,Cerdeno-TarragaA,ChengY,ClelandI,FaruqueN,GoodgameN,GibsonR,HoadG,JangM,PaksereshtN,PlaisterS,RadhakrishnanR,ReddyK,SobhanyS,HoopenPTen,VaughanR,ZaluninV,etal(2011)TheEuropeanNucleotideArchive.NucleicAcidsRes.39:44–47

    LiW,LiY,KedershaN,AndersonP,EmaraM,SwiderekKM,MorenoGT,BrintonMA&IrolJV(2002)CellProteinsTIA-1andTIARInteractwiththe3ЈStem-LoopoftheWestNileVirusComplementaryMinus-StrandRNAandFacilitateVirusReplication.76:11989–12000

    LiY,ShinD&KwonSH(2013)HistoneDeacetylase6PlaysaRoleasaDistinctRegulatorofDiverseCellularProcesses.FEBSJ.280:775–793

    LiaoM&KielianM(2006)Site-DirectedAntibodiesagainsttheStemRegionRevealLowpH-InducedConformationalChangesoftheSemlikiForestVirusFusionProtein.J.Virol.80:9599–9607

    LylesD,KuzminI&RupprechtC(2013)Rhabdoviridae.InFieldsVirology,KnipeD&HowleyP(eds)pp885–922.Philadelphia:LippincottWilliams&Wilkins

    ManciniEJ,ClarkeM,GowenBE,RuttenT&FullerSD(2000)Cryo-ElectronMicroscopyRevealstheFunctionalOrganizationofanEnvelopedVirus,SemlikiForestVirus.Mol.Cell5:255–266

    MaoB,WuW,DavidsonG,MarholdJ,LiM,MechlerBM,DeliusH,HoppeD,StannekP,WalterC,GlinkaA&NiehrsC(2002)KremenProteinsAreDickkopfReceptorsthatRegulateWnt/β-cateninSignalling.Nature417:664–667

    MarshM&HeleniusA(2006)VirusEntry:OpenSesame.Cell124:729–740MeadDG,RambergFB,BesselsenDG&MaréCJ(2000)TransmissionofVesicular

    StomatitisVirusfromInfectedtoNoninfectedBlackFliesCo-feedingonNonviremicDeerMice.Science287:485–487

    MeertensL,BertauxC&DragicT(2006)HepatitisCVirusEntryRequiresaCriticalPostinternalizationStepandDeliverytoEarlyEndosomesviaClathrin-CoatedVesicles.J.Virol.80:11571–11578

    MendelsohnCL,WimmerE&RacanielloVR(1989)CellularReceptorforPoliovirus:MolecularCloning,NucleotideSequence,andExpressionofaNewMemberoftheImmunoglobulinSuperfamily.Cell56:855–865

    MercerJ,SchelhaasM&HeleniusA(2010)VirusEntrybyEndocytosis.Annu.Rev.Biochem.79:803–833

    NakashimaH,KaufmannJK,WangPY,NguyenT,SperanzaMC,KasaiK,OkemotoK,OtsukiA,NakanoI,FernandezS,GoinsWF,GrandiP,GloriosoJC,LawlerS,CripeTP&ChioccaEA(2015)HistoneDeacetylase6InhibitionEnhancesOncolyticViralReplicationinGlioma.J.Clin.Invest.125:4269–4280

    NevoY&NelsonN(2006)TheNRAMPFamilyofMetal-ionTransporters.Biochim.

  • 50

    Biophys.Acta1763:609–620O’LearyNA,WrightMW,BristerJR,CiufoS,HaddadD,McVeighR,RajputB,RobbertseB,

    Smith-WhiteB,Ako-AdjeiD,AstashynA,BadretdinA,BaoY,BlinkovaO,BroverV,ChetverninV,ChoiJ,CoxE,ErmolaevaO,FarrellCM,etal(2016)ReferenceSequence(RefSeq)DatabaseatNCBI:CurrentStatus,TaxonomicExpansion,andFunctionalAnnotation.NucleicAcidsRes.44:D733–D74