the rising active stopper 2007 gt ββββ-decay gsi-frs...

20
Primary Beam Fragmentation 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 N (A-Z) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 Z r-process path rp-process path RI yield in ions/s >10 12 10 10 10 8 10 2 1 .01 10 -4 10 -6 10 6 10 4 Region of Known Nuclei Light target RISING ACTIVE STOPPER BEAM SETUP: DECAY SPECTROSCOPY OF SECONDARY BEAM AFTER IMPLANTATION on DSSSD ARRAY. IMPLANTATION – β β β-DECAY CORRELATION The Rising Active Stopper 2007 GT β β β-decay GSI-FRS campaign in A50-60 S4 A.Gadea IFIC-CSIC, Spain & INFN-LNL Italy For the S326 and S316 RISING collaborations GSI-FRS

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Primary Beam Fragmentation

    0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

    N (A-Z)

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    Z

    r-processpath

    rp-processpath

    RI yield in ions/s

    >1012

    1010

    108

    102

    1

    .01

    10-4

    10-6

    106

    104

    Region ofKnown Nuclei

    Light target

    RISING ACTIVE STOPPER BEAM SETUP: DECAY SPECTROSCOPY OF SECONDARY BEAM AFTER IMPLANTATION on DSSSD ARRAY. IMPLANTATION –ββββ-DECAY CORRELATION

    The Rising Active Stopper 2007 GT ββββ-decay GSI-FRS campaign in A≈50-60

    S4

    A.Gadea IFIC-CSIC, Spain & INFN-LNL Italy

    For the S326 and S316 RISING collaborations

    GSI-FRS

  • Investigation of T=0 proton-neutron pairing in the Gamow-Teller ββββ-decay of the TZ=-1

    62GeA.Gadea (INFN-LNL and IFIC-Valencia), A.Algora (IFIC- Valencia),

    E. Grodner (INFN-LNL and HIL-Warsaw)

    J=0 T=1

    J>0 T=0

    Pairing is a fundamental concept in

    nuclear physics. Since long 62Ga is contemplated as a candidate for high spin

    phenomena related with T=0 pairing.

    Through the 62Ge GT β-decay it is possible to explore also T=0 pairing properties of low-lying 62Ga states.

    Early hint of p-n pairing: the Wigner

    effect in mean-field

    mass formula

    mass deffect within mean-field

  • Superallowed GT ββββ-decay and proton-neutron condensate: the SU(4) supermultiplet

    In the case of some light nuclei, the considerable GT strength can be explained by the Wigner SU(4) symmetry. SU(4) symmetry is heavily broken by the spin-orbit splitting of the single particle states �fragmentation of strength .

    Tz=-1

    Tz=0

    Tz=+1

    T=1

    S=0

    T=0

    S=1

    62Ge

    62Ga62Zn

    F

    GT

    F

    γ

    Suggested the possibility that SU(4) symmetry is partially restored by p-n pairing forces. Thus large GT strength to low lying T=0 1+ states in odd-odd N=Z nuclei could be a fingerprint of T=0 p-n pairing

    F. Iachello, YCTP-N13-88 (1988); P. Van Isaker, J. Phys.: Conf. Ser. 20 (2005)

    N=ZN=Z

  • Boson space of correlated Boson space of correlated

    nucleon pairs in IBMnucleon pairs in IBM--44

    6262Ga N=3Ga N=3

    F. Iachello, Proc.Int. Conf. on Perspectives for the IBM, Padova p.1 (1994).F. Iachello, Yale University preprint YCTP-N13-88 (1988).

    F. IachelloP Van Isacker, J. Phys. Conf. Ser. 20 (2005) 131

    Pseudo-SU(4) (fp-shell ���� sd-shell)

    62Ge 83ms

    62Ga 116ms

    58Zn

  • 29

    30

    31

    32

    1.9 1.95 2.0 2.05 2.1

    62Ge

    Ga

    Zn

    FRS: 62Ge 2.5 x 104

    Total “correctly”implanted 62Ge:1.9 x 104

    Surviving Implantation:1.6 x 104

    A/q

    Z

    Sort by: E. Grodner INFN-LNL and HIL-WarsawJ. Grebosz IFJ-PAN Cracow, A.Gadea IFIC-Valencia

    Fragmentation

    of primary 78Kr

    750MeV . A

    ~ 4×108 ions/s 9Be 4g/cm2

    target

    Analysis with a

    customized

    version of Spy

    and Cracow by

    J.Grebosz

  • FRS - S4 + implantation in

    DSSSD Active Stopper: Survival

    probability for 62Ge = 84%

    Efficiency of the

    DSSSD Active

    Stopper for β-decay positrons. The first 40ms excluded:

    51%

  • Gate on 62Ge FRS+implantation Selected two sequential decays after implantation i.e. decay of 62Ga following the decay of 62Ge.

    62Ge Lifetime Determination

    T1/2=82.9 ± 1.4 msE. Grodner INFN-LNL and HIL-Warsaw

    Fit 40-1000 ms

    exclu

    ded

  • Identify transitions in 62Ga

    3.9

    %

    2.1

    %2.2

    %

    2.1

    %

    3.5

    %

    1.8

    %

  • 62Ga

    T=1 0+

    62Ge

    T1/2=82.9 (14) msQEC=9.76(14) MeV

    1017,4

    4.75 ± 0.15 0.070

    4.91 ± 0.15 0.050

    4.88 ± 0.15 0.054

    4.84 ± 0.13 0.059

    4.36 ± 0.17 0.17

    4.54 ± 0.17 0.12

    Log ft B(GT) gA2/4ππππ

    Apparent Log ft ���� B(GT) ≤ given value

    +0.017-0.017

    +0.015-0.017

    +0.013-0.019

    +0.016-0.022

    +0.05-0.05

    +0.03-0.05

    First 1+ known

    form LNLLNL--GASP GASP

    inin--beam study beam study

    D.Rudolph D.Rudolph

    PRC69(2004)PRC69(2004)

    034309034309

  • Shell model Calculations for the 62Ge GT ββββ-decay

    I.Petermann,G.Martínez-Pinedo,K.Langanke,E.Caurier Eur.Phys.J.A34,319–324(2007)

    KB3G interaction

    full fp-shell

    model space

  • P.Sarriguren private P.Sarriguren private

    communication and communication and

    P.Sarriguren et al. P.Sarriguren et al.

    PRC 64 (2001) 064306PRC 64 (2001) 064306

    Preliminary QRPA Preliminary QRPA

    B(GT) calculations B(GT) calculations

    with with Skyrme (SG2) Skyrme (SG2)

    interaction, interaction, ββ~0.2~0.2

    No GT hindrance No GT hindrance

    factor included.factor included.

  • 26

    54

    28 Ni 2854

    26 Fe

    27

    54

    27 Co

    0+

    Tz=-1

    T=1

    0+

    Tz=0

    T=1

    0+

    Tz=+1

    T=1

    β+ (p,n)(3He,t)

    If isospin symmetry works these

    two mirror processes should be

    identical

    The main idea of this work was to test if

    isospin symmetry is good enough

    to justify the combined analysis

    Study of Tz=±±±±1 Into Tz=0 GT transitions in the f shellB. Rubio (Valencia), Y. Fujita (Osaka) and W. Gelletly (Surrey)

    Analysis F. Molina (Valencia)

    ∑=

    +=GTi

    iFermittT

    111

    2/1

    From

    β-decay

    B(F)=

    N-Z

    From

    (3He,t

    )

    Y. Fujita… et al.

    PRL 95 (2005)

  • N=Z

    Z=28

    Z=20

    N=28

    N=20

    Luckly enough we have all

    Stable targets in the f shellβ+ and β- or CE reactions

    B. Rubio, Osaka 31 Jul 2009

    (3He,t) CE Reactions @ RCNP(Osaka)

    ββββ+ decay of Tz=-1 RISING + ACTIVE STOPPER @ GSI-FRS

  • Ex in daughter nuclei (MeV)

    Co

    un

    ts

    0 2 4 6 8 10 12

    Charge Exchange Reactions Results (RCNP-Osaka)

    HIGH RESOLUTION!!!

    0

    1000

    2000

    3000

    2000

    4000

    6000

    1000

    2000

    3000

    500

    1000

    1500

    42Ca(3He,t)42Sc

    46Ti(3He,t)46V

    50Cr(3He,t)50Mn

    54Fe(3He,t)54Co

    g.S

    (IA

    S)

    g.s

    .(IA

    S

    )

    g.s

    (IA

    S

    )g.s

    .(IA

    S)

    16F

    g.s

    .

    0.1

    93

    0.4

    24

    12N

    g.s

    .

    12N

    0.9

    60.

    0.6

    11 (

    1+

    )0.9

    94 (

    1+

    )

    1.4

    33 (

    1+

    )

    2.4

    61 (

    1+

    )

    2.6

    99 (

    1+

    )

    2.9

    78 (

    1+

    )

    3.8

    70 (

    1+

    )

    0.6

    52 (

    1+

    )

    2.4

    11 (

    1+

    )

    2.6

    94 (

    1+

    )

    3.3

    92 (

    1+

    )

    3.6

    54

    (1+

    )

    0.9

    37 (

    1+

    )

    4.5

    50 (

    1+

    )4.8

    28

    (1+

    )

    3.8

    95

    (1+

    )

    3.3

    77 (

    1+

    )

    5.9

    21 (

    1+

    )

    4.3

    32 (

    1+

    )

    5.7

    28 (

    1+

    )

    3.6

    89 (

    1+

    )

    T. Adachi et. al.,

    PRC 73, 024311 (2006)

    Y. Fujita et. al.,

    PRL 95 212501 (2005)

    T. Adachi et al., NPA 788, 70c (2007).

    Y. Fujita et. al.,

    PRL 95 212501 (2005)

  • 50Fe

    54Ni46Cr

    42Ti

    A/QA/Q

    A/QA/Q

    ZZZ

    Z

    ~1 million counts

    ~5.8 millions counts

    ~2 millions counts

    ~4.8 millions counts

    Tz=−1 Nuclei of Interest Identify at GSI-FRS

  • Beta Decay Results and comparison with CEA=54, T=1

    First 4th GT States till 4.5MeV were seen by beta decay

    937 (

    1+

    )

    937 (

    1+

    )

    3377 (

    1+

    )3377 (

    1+

    )

    3895 (

    1+

    )3895 (

    1+

    )

    4550 (

    1+

    )

    4828 (

    1+

    )

    5921 (

    1+

    )

    4550 (

    1+

    )

    B. Rubio, Osaka 31 Jul 2009

  • A=50, T=1

    First 4th GT States till 3.3 MeV were seen by beta decay

    652 (

    1+

    )

    2411 (

    1+

    )

    2694 (

    1+

    )

    3392 (

    1+

    )3392 (

    1+

    )

    2694 (

    1+

    )

    2411 (

    1+

    )

    652 (

    1+

    )

    3654 (

    1+

    )

    4332 (

    1+

    )

    5728 (

    1+

    )

    0+

    1

    +

  • A=46, T=1

    All the GT States were seen by beta decay

    994 (

    1+

    )

    1433 (

    1+

    )

    2461 (

    1+

    )

    2699 (

    1+

    )

    2978 (

    1+

    )

    3870 (

    1+

    )

    994 (

    1+

    )

    1432 (

    1+

    )

    2460 (

    1+

    )

    2697 (

    1+

    )

    2978 (

    1+

    )

    3870 (

    1+

    )

  • Results: preliminary BGT values from beta decay

    Francisco Molina

    Analysis in progress IFIC(Valencia)

    A=54 B(GT) decay B(GT) CE

    937 keV 0.471(55) 0.493(62)

    3378 keV 0.074(14) 0.079(11)

    3889 keV 0.064(17) 0.103(14)

    4544 keV 0.075(27) 0.147(20)

    A=50

    652 keV 0.547(90) 0.510(14)

    2404 keV 0.126(23) 0.151(40)

    2685 keV 0.090(19) 0.106(28)

    3380 keV 0.281(55) 0.350(93)

    A=46

    994 keV 0.330(329) 0.368(44)

    1433 keV 0.107(107) 0.122(15)

    2462 keV 0.146(146) 0.201(24)

    2698 keV 0.111(111) 0.205(25)

    2978 keV 0.479(478) 0.625(75)

    3870 keV 0.105(119) 0.117(14)

    Large B(GT) uncertainties are due to the errors in the beta decay half-life. A better value should come from the present experiment.

    Isospin symmetry works in general (full strength) but some differences appear at high excitation energy, which should be understood

    This is the first experimental testof BGT gs symmetry in the f shell. These cases are specially “clean” since they

    involve only

    ππππf7/2 to ννννf7/2and

    ππππf7/2 to ννννf5/2

    kind of transitionsand we compare only the two gs states

  • On behalf of the S326 and S316collaborators thanks to all the RISING, ACTIVE STOPPER, FRS and GSI -accelerator division Colleagues