the non-commutative schwartz spacemath.ecnu.edu.cn/rcoa/visitors/piszczek-krzysztof/proba1.pdf ·...

49

Upload: others

Post on 13-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The non-commutative Schwartz space

Krzysztof Piszczek

Adam Mickiewicz University

Pozna«, Poland

e-mail: [email protected]

Special Week on Operator Algebras,

Shanghai, China, 18-22 June, 2012.

Krzysztof Piszczek The non-commutative Schwartz space

Page 2: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

A Fréchet space X is a metrizable and complete lcs.

X =(X , (|| · ||n)n∈N

)or X = projk

(Xk , ι

k+1k

),

where

Xk =(XKer||·||k , || · ||k

), ιk+1

k : Xk+1 → Xk .

If ιn :∏

k Xk → Xn, ιn((xk)k) := xn, then∏k

Xk ⊃ X = (xk)k : ιn+1n xn+1 = xn ∀ n ∈ N

X Xn+1

Xn

ιn+1

ιnιn+1n

||x ||n = ||ιnx ||Xn, Un = x ∈ X : ||x ||n61.

Krzysztof Piszczek The non-commutative Schwartz space

Page 3: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

A Fréchet space X is a metrizable and complete lcs.

X =(X , (|| · ||n)n∈N

)

or X = projk(Xk , ι

k+1k

),

where

Xk =(XKer||·||k , || · ||k

), ιk+1

k : Xk+1 → Xk .

If ιn :∏

k Xk → Xn, ιn((xk)k) := xn, then∏k

Xk ⊃ X = (xk)k : ιn+1n xn+1 = xn ∀ n ∈ N

X Xn+1

Xn

ιn+1

ιnιn+1n

||x ||n = ||ιnx ||Xn, Un = x ∈ X : ||x ||n61.

Krzysztof Piszczek The non-commutative Schwartz space

Page 4: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

A Fréchet space X is a metrizable and complete lcs.

X =(X , (|| · ||n)n∈N

)or X = projk

(Xk , ι

k+1k

),

where

Xk =(XKer||·||k , || · ||k

), ιk+1

k : Xk+1 → Xk .

If ιn :∏

k Xk → Xn, ιn((xk)k) := xn, then∏k

Xk ⊃ X = (xk)k : ιn+1n xn+1 = xn ∀ n ∈ N

X Xn+1

Xn

ιn+1

ιnιn+1n

||x ||n = ||ιnx ||Xn, Un = x ∈ X : ||x ||n61.

Krzysztof Piszczek The non-commutative Schwartz space

Page 5: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

A Fréchet space X is a metrizable and complete lcs.

X =(X , (|| · ||n)n∈N

)or X = projk

(Xk , ι

k+1k

),

where

Xk =(XKer||·||k , || · ||k

), ιk+1

k : Xk+1 → Xk .

If ιn :∏

k Xk → Xn, ιn((xk)k) := xn, then∏k

Xk ⊃ X = (xk)k : ιn+1n xn+1 = xn ∀ n ∈ N

X Xn+1

Xn

ιn+1

ιnιn+1n

||x ||n = ||ιnx ||Xn, Un = x ∈ X : ||x ||n61.

Krzysztof Piszczek The non-commutative Schwartz space

Page 6: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

A Fréchet space X is a metrizable and complete lcs.

X =(X , (|| · ||n)n∈N

)or X = projk

(Xk , ι

k+1k

),

where

Xk =(XKer||·||k , || · ||k

), ιk+1

k : Xk+1 → Xk .

If ιn :∏

k Xk → Xn, ιn((xk)k) := xn, then∏k

Xk ⊃ X = (xk)k : ιn+1n xn+1 = xn ∀ n ∈ N

X Xn+1

Xn

ιn+1

ιnιn+1n

||x ||n = ||ιnx ||Xn, Un = x ∈ X : ||x ||n61.

Krzysztof Piszczek The non-commutative Schwartz space

Page 7: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

A Fréchet space X is a metrizable and complete lcs.

X =(X , (|| · ||n)n∈N

)or X = projk

(Xk , ι

k+1k

),

where

Xk =(XKer||·||k , || · ||k

), ιk+1

k : Xk+1 → Xk .

If ιn :∏

k Xk → Xn, ιn((xk)k) := xn, then∏k

Xk ⊃ X = (xk)k : ιn+1n xn+1 = xn ∀ n ∈ N

X Xn+1

Xn

ιn+1

ιnιn+1n

||x ||n = ||ιnx ||Xn, Un = x ∈ X : ||x ||n61.

Krzysztof Piszczek The non-commutative Schwartz space

Page 8: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 9: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 10: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 11: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 12: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 13: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].

s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 14: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 15: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

DenitionExamples

1 C∞(K ), ||f ||n := max06j6n

||f (j)||∞,

2 C∞(Ω), ||f ||n := max06j6n

maxx∈Kn

|f (j)(x)|, Ω =⋃

n Kn,

3 H(Cn), H(Dn),

4 ω = (xj)j ∈ CN : ||x ||n := max16j6n

|xj |,

5 Schwartz space S(Rn),

6 s := (xj)j ∈ CN :∑+∞

j=1 |xj |2j2k < +∞ ∀ k ∈ N =

projk`2((jk)j).

s ' S(R) ' C∞[a, b].s is nuclear since id : `2((jk+2)j) → `2((jk)j) is nuclear.

Theorem (Komura, Komura)

A Fréchet space X is nuclear if and only if X ⊂ sN.

Krzysztof Piszczek The non-commutative Schwartz space

Page 16: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

If U is a 0-ngbd in s and B is bounded in s then

W (U,B) := T ∈ L(s) : T (B) ⊂ U is a typical 0-ngbd in L(s).

Caution: the above topology is not Fréchet.

Simplication: B(H) = B(H ′,H).Conclusion: investigate L(s ′, s).Take Un := x ∈ s : ||x ||n61, Un := ξ ∈ s ′ : |ξ(x)|61 ∀ x ∈ Unand dene

Wn := T ∈ L(s ′, s) : supξ∈Un

||T ξ||n61.

Then (Wn)n is a countable basis of 0-ngbds in L(s ′, s).

Krzysztof Piszczek The non-commutative Schwartz space

Page 17: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

If U is a 0-ngbd in s and B is bounded in s then

W (U,B) := T ∈ L(s) : T (B) ⊂ U is a typical 0-ngbd in L(s).Caution: the above topology is not Fréchet.

Simplication: B(H) = B(H ′,H).Conclusion: investigate L(s ′, s).Take Un := x ∈ s : ||x ||n61, Un := ξ ∈ s ′ : |ξ(x)|61 ∀ x ∈ Unand dene

Wn := T ∈ L(s ′, s) : supξ∈Un

||T ξ||n61.

Then (Wn)n is a countable basis of 0-ngbds in L(s ′, s).

Krzysztof Piszczek The non-commutative Schwartz space

Page 18: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

If U is a 0-ngbd in s and B is bounded in s then

W (U,B) := T ∈ L(s) : T (B) ⊂ U is a typical 0-ngbd in L(s).Caution: the above topology is not Fréchet.

Simplication: B(H) = B(H ′,H).

Conclusion: investigate L(s ′, s).Take Un := x ∈ s : ||x ||n61, Un := ξ ∈ s ′ : |ξ(x)|61 ∀ x ∈ Unand dene

Wn := T ∈ L(s ′, s) : supξ∈Un

||T ξ||n61.

Then (Wn)n is a countable basis of 0-ngbds in L(s ′, s).

Krzysztof Piszczek The non-commutative Schwartz space

Page 19: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

If U is a 0-ngbd in s and B is bounded in s then

W (U,B) := T ∈ L(s) : T (B) ⊂ U is a typical 0-ngbd in L(s).Caution: the above topology is not Fréchet.

Simplication: B(H) = B(H ′,H).Conclusion: investigate L(s ′, s).

Take Un := x ∈ s : ||x ||n61, Un := ξ ∈ s ′ : |ξ(x)|61 ∀ x ∈ Unand dene

Wn := T ∈ L(s ′, s) : supξ∈Un

||T ξ||n61.

Then (Wn)n is a countable basis of 0-ngbds in L(s ′, s).

Krzysztof Piszczek The non-commutative Schwartz space

Page 20: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

If U is a 0-ngbd in s and B is bounded in s then

W (U,B) := T ∈ L(s) : T (B) ⊂ U is a typical 0-ngbd in L(s).Caution: the above topology is not Fréchet.

Simplication: B(H) = B(H ′,H).Conclusion: investigate L(s ′, s).Take Un := x ∈ s : ||x ||n61, Un := ξ ∈ s ′ : |ξ(x)|61 ∀ x ∈ Unand dene

Wn := T ∈ L(s ′, s) : supξ∈Un

||T ξ||n61.

Then (Wn)n is a countable basis of 0-ngbds in L(s ′, s).

Krzysztof Piszczek The non-commutative Schwartz space

Page 21: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

If U is a 0-ngbd in s and B is bounded in s then

W (U,B) := T ∈ L(s) : T (B) ⊂ U is a typical 0-ngbd in L(s).Caution: the above topology is not Fréchet.

Simplication: B(H) = B(H ′,H).Conclusion: investigate L(s ′, s).Take Un := x ∈ s : ||x ||n61, Un := ξ ∈ s ′ : |ξ(x)|61 ∀ x ∈ Unand dene

Wn := T ∈ L(s ′, s) : supξ∈Un

||T ξ||n61.

Then (Wn)n is a countable basis of 0-ngbds in L(s ′, s).

Krzysztof Piszczek The non-commutative Schwartz space

Page 22: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

x ∈ s ⇔ ∀ n ∈ N :+∞∑j=1

|xj |2j2n < +∞,

ξ ∈ s ′ ⇔ ∃ n ∈ N :+∞∑j=1

|ξj |2j−2n < +∞,

consequently,

`2→s ′, s→`2.

Finally,

L(s ′, s) ⊂ B(`2) (as linear spaces).

Krzysztof Piszczek The non-commutative Schwartz space

Page 23: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

x ∈ s ⇔ ∀ n ∈ N :+∞∑j=1

|xj |2j2n < +∞,

ξ ∈ s ′ ⇔ ∃ n ∈ N :+∞∑j=1

|ξj |2j−2n < +∞,

consequently,

`2→s ′, s→`2.

Finally,

L(s ′, s) ⊂ B(`2) (as linear spaces).

Krzysztof Piszczek The non-commutative Schwartz space

Page 24: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

x ∈ s ⇔ ∀ n ∈ N :+∞∑j=1

|xj |2j2n < +∞,

ξ ∈ s ′ ⇔ ∃ n ∈ N :+∞∑j=1

|ξj |2j−2n < +∞,

consequently,

`2→s ′, s→`2.

Finally,

L(s ′, s) ⊂ B(`2) (as linear spaces).

Krzysztof Piszczek The non-commutative Schwartz space

Page 25: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

x ∈ s ⇔ ∀ n ∈ N :+∞∑j=1

|xj |2j2n < +∞,

ξ ∈ s ′ ⇔ ∃ n ∈ N :+∞∑j=1

|ξj |2j−2n < +∞,

consequently,

`2→s ′, s→`2.

Finally,

L(s ′, s) ⊂ B(`2) (as linear spaces).

Krzysztof Piszczek The non-commutative Schwartz space

Page 26: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Let ι : s → s ′ be the inclusion map,

for x , y ∈ L(s ′, s) dene

xy := x ι y .

Duality of the pair 〈s, s ′〉:

〈u, ξ〉 :=+∞∑j=1

ujξj ∀ u ∈ s, ξ ∈ s ′.

Involution:

〈x∗ξ, η〉 := 〈ξ, xη〉 ∀ x ∈ L(s ′, s), ξ, η ∈ s ′.

L(s ′, s) ' s by (xi j)i ,j 7→ (x11, x12, x21, x13, x22, x31, . . .).

Conclusion: S := L(s ′, s) is an lmc Fréchet involutive algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 27: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Let ι : s → s ′ be the inclusion map,

for x , y ∈ L(s ′, s) dene

xy := x ι y .

Duality of the pair 〈s, s ′〉:

〈u, ξ〉 :=+∞∑j=1

ujξj ∀ u ∈ s, ξ ∈ s ′.

Involution:

〈x∗ξ, η〉 := 〈ξ, xη〉 ∀ x ∈ L(s ′, s), ξ, η ∈ s ′.

L(s ′, s) ' s by (xi j)i ,j 7→ (x11, x12, x21, x13, x22, x31, . . .).

Conclusion: S := L(s ′, s) is an lmc Fréchet involutive algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 28: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Let ι : s → s ′ be the inclusion map,

for x , y ∈ L(s ′, s) dene

xy := x ι y .

Duality of the pair 〈s, s ′〉:

〈u, ξ〉 :=+∞∑j=1

ujξj ∀ u ∈ s, ξ ∈ s ′.

Involution:

〈x∗ξ, η〉 := 〈ξ, xη〉 ∀ x ∈ L(s ′, s), ξ, η ∈ s ′.

L(s ′, s) ' s by (xi j)i ,j 7→ (x11, x12, x21, x13, x22, x31, . . .).

Conclusion: S := L(s ′, s) is an lmc Fréchet involutive algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 29: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Let ι : s → s ′ be the inclusion map,

for x , y ∈ L(s ′, s) dene

xy := x ι y .

Duality of the pair 〈s, s ′〉:

〈u, ξ〉 :=+∞∑j=1

ujξj ∀ u ∈ s, ξ ∈ s ′.

Involution:

〈x∗ξ, η〉 := 〈ξ, xη〉 ∀ x ∈ L(s ′, s), ξ, η ∈ s ′.

L(s ′, s) ' s by (xi j)i ,j 7→ (x11, x12, x21, x13, x22, x31, . . .).

Conclusion: S := L(s ′, s) is an lmc Fréchet involutive algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 30: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Let ι : s → s ′ be the inclusion map,

for x , y ∈ L(s ′, s) dene

xy := x ι y .

Duality of the pair 〈s, s ′〉:

〈u, ξ〉 :=+∞∑j=1

ujξj ∀ u ∈ s, ξ ∈ s ′.

Involution:

〈x∗ξ, η〉 := 〈ξ, xη〉 ∀ x ∈ L(s ′, s), ξ, η ∈ s ′.

L(s ′, s) ' s by (xi j)i ,j 7→ (x11, x12, x21, x13, x22, x31, . . .).

Conclusion: S := L(s ′, s) is an lmc Fréchet involutive algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 31: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Let ι : s → s ′ be the inclusion map,

for x , y ∈ L(s ′, s) dene

xy := x ι y .

Duality of the pair 〈s, s ′〉:

〈u, ξ〉 :=+∞∑j=1

ujξj ∀ u ∈ s, ξ ∈ s ′.

Involution:

〈x∗ξ, η〉 := 〈ξ, xη〉 ∀ x ∈ L(s ′, s), ξ, η ∈ s ′.

L(s ′, s) ' s by (xi j)i ,j 7→ (x11, x12, x21, x13, x22, x31, . . .).

Conclusion: S := L(s ′, s) is an lmc Fréchet involutive algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 32: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Notation: S := S ⊕ C · id`2 .

Proposition (Doma«ski, 2012)

S is a Q-algebra.

Corollary (Fragoulopoulou-Mallios, Phillips, 1984)

S is not a C ∗-convex algebra.

Corollary (Inoue)

S is not a C ∗-convex algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 33: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Notation: S := S ⊕ C · id`2 .

Proposition (Doma«ski, 2012)

S is a Q-algebra.

Corollary (Fragoulopoulou-Mallios, Phillips, 1984)

S is not a C ∗-convex algebra.

Corollary (Inoue)

S is not a C ∗-convex algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 34: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Notation: S := S ⊕ C · id`2 .

Proposition (Doma«ski, 2012)

S is a Q-algebra.

Corollary (Fragoulopoulou-Mallios, Phillips, 1984)

S is not a C ∗-convex algebra.

Corollary (Inoue)

S is not a C ∗-convex algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 35: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Notation: S := S ⊕ C · id`2 .

Proposition (Doma«ski, 2012)

S is a Q-algebra.

Corollary (Fragoulopoulou-Mallios, Phillips, 1984)

S is not a C ∗-convex algebra.

Corollary (Inoue)

S is not a C ∗-convex algebra.

Krzysztof Piszczek The non-commutative Schwartz space

Page 36: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Theorem (Cia±, 2012)

S and S admit a functional calculus for normal operators.

Crucial is (DN) property, which gives

Lemma

If αn ∈ C, en ∈ s and (αnen)n bounded in s then (αθnen)n

bounded in s for all θ ∈ (0, 1].

Corollary

If x>0 in S then xθ ∈ S ∀ θ ∈ (0, 1].

Krzysztof Piszczek The non-commutative Schwartz space

Page 37: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Theorem (Cia±, 2012)

S and S admit a functional calculus for normal operators.

Crucial is (DN) property, which gives

Lemma

If αn ∈ C, en ∈ s and (αnen)n bounded in s then (αθnen)n

bounded in s for all θ ∈ (0, 1].

Corollary

If x>0 in S then xθ ∈ S ∀ θ ∈ (0, 1].

Krzysztof Piszczek The non-commutative Schwartz space

Page 38: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Theorem (Cia±, 2012)

S and S admit a functional calculus for normal operators.

Crucial is (DN) property, which gives

Lemma

If αn ∈ C, en ∈ s and (αnen)n bounded in s then (αθnen)n

bounded in s for all θ ∈ (0, 1].

Corollary

If x>0 in S then xθ ∈ S ∀ θ ∈ (0, 1].

Krzysztof Piszczek The non-commutative Schwartz space

Page 39: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Recall that

||x ||n = sup(+∞∑

i=1

∣∣∣ +∞∑j=1

xi jξj

∣∣∣2i2n) 1

2

:+∞∑j=1

|ξj |2j−2n61.

By nuclearity, for arbitrary 16p, q6 +∞ the original topology of Sis given by the norms:

1 ||x ||n := sup||xξ||`p((in)i ) : ||ξ||`q((j−n)j )61,

2 ||x ||n :=(+∞∑i ,j=1

|xi j |p(i j)pn) 1

p.

Fact

If un =

(In 0

0 0

)then (un)n is an approximate identity in S.

Krzysztof Piszczek The non-commutative Schwartz space

Page 40: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Recall that

||x ||n = sup(+∞∑

i=1

∣∣∣ +∞∑j=1

xi jξj

∣∣∣2i2n) 1

2

:+∞∑j=1

|ξj |2j−2n61.

By nuclearity, for arbitrary 16p, q6 +∞ the original topology of Sis given by the norms:

1 ||x ||n := sup||xξ||`p((in)i ) : ||ξ||`q((j−n)j )61,

2 ||x ||n :=(+∞∑i ,j=1

|xi j |p(i j)pn) 1

p.

Fact

If un =

(In 0

0 0

)then (un)n is an approximate identity in S.

Krzysztof Piszczek The non-commutative Schwartz space

Page 41: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Recall that

||x ||n = sup(+∞∑

i=1

∣∣∣ +∞∑j=1

xi jξj

∣∣∣2i2n) 1

2

:+∞∑j=1

|ξj |2j−2n61.

By nuclearity, for arbitrary 16p, q6 +∞ the original topology of Sis given by the norms:

1 ||x ||n := sup||xξ||`p((in)i ) : ||ξ||`q((j−n)j )61,

2 ||x ||n :=(+∞∑i ,j=1

|xi j |p(i j)pn) 1

p.

Fact

If un =

(In 0

0 0

)then (un)n is an approximate identity in S.

Krzysztof Piszczek The non-commutative Schwartz space

Page 42: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Recall that

||x ||n = sup(+∞∑

i=1

∣∣∣ +∞∑j=1

xi jξj

∣∣∣2i2n) 1

2

:+∞∑j=1

|ξj |2j−2n61.

By nuclearity, for arbitrary 16p, q6 +∞ the original topology of Sis given by the norms:

1 ||x ||n := sup||xξ||`p((in)i ) : ||ξ||`q((j−n)j )61,

2 ||x ||n :=(+∞∑i ,j=1

|xi j |p(i j)pn) 1

p.

Fact

If un =

(In 0

0 0

)then (un)n is an approximate identity in S.

Krzysztof Piszczek The non-commutative Schwartz space

Page 43: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i. By nuclearity there exists

u = σ(S,S ′)− limα uα. Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy). This gives φ(xu) = φ(x). By Hahn-Banach

xu = x ,S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space

Page 44: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i.

By nuclearity there exists

u = σ(S,S ′)− limα uα. Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy). This gives φ(xu) = φ(x). By Hahn-Banach

xu = x ,S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space

Page 45: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i. By nuclearity there exists

u = σ(S,S ′)− limα uα.

Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy). This gives φ(xu) = φ(x). By Hahn-Banach

xu = x ,S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space

Page 46: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i. By nuclearity there exists

u = σ(S,S ′)− limα uα. Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy).

This gives φ(xu) = φ(x). By Hahn-Banach

xu = x ,S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space

Page 47: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i. By nuclearity there exists

u = σ(S,S ′)− limα uα. Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy). This gives φ(xu) = φ(x).

By Hahn-Banach

xu = x ,S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space

Page 48: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i. By nuclearity there exists

u = σ(S,S ′)− limα uα. Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy). This gives φ(xu) = φ(x). By Hahn-Banach

xu = x ,

S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space

Page 49: The non-commutative Schwartz spacemath.ecnu.edu.cn/RCOA/visitors/Piszczek-Krzysztof/proba1.pdf · 2014-01-27 · réchetF space setting Non-commutative setting The non-commutative

Fréchet space settingNon-commutative setting

The space L(s′, s)Useful observationsMultiplication in L(s′, s)Properties of S

Proposition

S does not have b.a.i.

Proof.

Suppose (uα)α is any b.a.i. By nuclearity there exists

u = σ(S,S ′)− limα uα. Take any x ∈ S, φ ∈ S ′ and dene

x .φ(y) := φ(xy). This gives φ(xu) = φ(x). By Hahn-Banach

xu = x ,S has a unit contradiction.

Krzysztof Piszczek The non-commutative Schwartz space