the heavy ion fusion virtual national laboratory neutralized transport experiment (ntx) p. k. roy,...

29
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy , S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, W. L. Waldron, D. B. Shuman, D. L. Vanecek, B. G. Logan, LBNL D. R. Welch, D. V. Rose, C. Thoma, MRC R. C. Davidson, P. C. Efthimion, I. Kaganovich, E. P. Gilson, A. B. Sefkow , PPPL W. M. Sharp , LLNL 15 th International Symposium on Heavy Ion Inertial Fusion PPPL, Princeton University, New Jersey, USA June 7-11, 2004

Upload: thomasine-mcbride

Post on 21-Jan-2016

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Neutralized Transport Experiment (NTX)

P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, W. L. Waldron, D. B.

Shuman, D. L. Vanecek, B. G. Logan, LBNLD. R. Welch, D. V. Rose, C. Thoma, MRC

R. C. Davidson, P. C. Efthimion, I. Kaganovich, E. P. Gilson, A. B. Sefkow, PPPL

W. M. Sharp, LLNL

15th International Symposium on Heavy Ion Inertial FusionPPPL, Princeton University, New Jersey, USA

June 7-11, 2004

Page 2: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Overview

● Requirements of NTX for Driver

● NTX system and diagnostics

● Keys to a small spot

● Experimental results of neutralization.

● Sensitivity study

● Achievements/conclusion

Page 3: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

NTX and HIF Driver

Page 4: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

The HIF Driver Requires Beam Neutralization in Chamber Transport to Hit mm-sized Spot on Target

How and what Neutralized Chamber Transport can do:●Electrons from external source are entrained by the beam and neutralize the space charge sufficiently that the pulse focuses on the target in a nearly ballistic manner for a small spot.

●Present generation of drivers requires total of ~40 kA divided between perhaps hundred beams, each beam of 2 mm focal spot radius. Plasma Plug

(externally injected plasma)

Low pressure chamber (~ 10-3

Torr).

Final focus magnet

Target

Volumetric plasma

Convergingion beam

Chamber Wall

Driver needs:

Buncher Finalfocus

Chambertransport TargetIon source

& injector Accelerator

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 25 50 75 100

Distance (cm)R

MS

Rad

ius

(cm

)

Perfect Neutralization

Vacuum

MEVVA Source

Page 5: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Neutralized Transport Experiment (NTX) Addresses Driver-Relevant Issues

Final Focus Chamber Transport

Final focusmagnet

Magnetic-transport section Neutralization drift sectionBeam source

Cathode arcPlasma plug

RF plasma source

Diagnostic box

Quadrupoles

2.4 m 1 m

Source chamber

A schematic of the NTX beam line setup

●Perveance is the key parameter for final focus and neutralization

●NTX covers range of perveance relevant to the driver (K≤10-3).

Page 6: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

NTX System Setup and diagnostics Located at LBNL

GatedCamera

Page 7: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Keys to a Small Spot

●Low source emittance

●Optimal convergence angle

Source of emittance growth:●Geometric Aberration●Magnetic transport mismatch

●Efficient neutralization—plasma plug—volume plasma

r

Page 8: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Low emittance Source

Page 9: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Extraction of Uniform High Brightness Beam from NTX Injector

Increased SourceTemperature (~185W)Aperturing

Sm

oo

th s

ou

rce

surf

ace

Unapertured beam

Lower Temperature source(~160w)

Uneven source

Page 10: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Aperturing for High-brightness and High Perveance beam Designed by EGN code

EGN simulation of NTX diode &beam aperture

NTX beam scraper system

Page 11: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

NTX Provides low emittance beam (300kV, 25 mA, 2-cm aperture).

Slit-integrated density profile and (x, x’) phase space of a high-brightness apertured beam (300kV, 25 mA, 2-cm aperture).

Page 12: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Magnetic final focus

Page 13: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Magnetic Final Focus Transport

Final Focus Chamber Transport

Final focusmagnet

Magnetic-transport section Neutralization drift sectionBeam source

Cathode arcPlasma plug

RF plasma source

Diagnostic box

Quadrupoles

2.4 m 1 m

Source chamber

A schematic of the NTX beam line setup

●Perveance is the key parameter for final focus and neutralization

●NTX covers range of perveance relevant to the driver (K≤10-3).

Page 14: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Good agreement between Experimental and Theoretical Beam profile at Entrance of Final Drift Section

Simulation

Experiment191keV

401keV

265 keV

283 keV

(1.5 mA beam, 5 mm initial radius, Ne ~ 1.2x1011/cm3, 20mm-20mr)

Page 15: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Measured and Calculated Beam Profiles Agreed Well

265keV

283keV

Horizontal densityprofile

Vertical

Horizontal

Vertical

5mm diameter aperture, 265keV horizontal profile

0

10000

20000

30000

40000

50000

60000

-30 -20 -10 0 10 20 30 40mm

Sli

t-in

teg

rate

d i

nte

ns

ity

Experimental Optical 040206021

Theoretical

5mm diameter aperture, 265keV vertical profile

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

-30 -20 -10 0 10 20 30

mm

sli

t-in

teg

rate

d i

nte

ns

ity

Experimental Optical 040206021

Theoretical

5mm diameter aperture, 283keV horizontal profile

0

5000

10000

15000

20000

25000

30000

35000

-30 -20 -10 0 10 20 30mm

Sli

t-in

teg

rate

d i

nte

ns

ity

Experim ental Optical 040206022

Theoretical

5mm diameter aperture, 283keV vertical profile

0

5000

10000

15000

20000

25000

30000

35000

-30 -20 -10 0 10 20 30mm

Sli

t-in

teg

rate

d i

nte

ns

ity

Experimental Optical 040206022

Theoretical

Page 16: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Typical NTX Ion Beam is Focused to the Final Drift Section for Neutralization (24 mA Beam Current)

0

5

10

15

20

25

30

230 250 270 290 310 330

Beam energy (keV)

Beam

cur

rent

(mA)

Data on040513&14

Experimental results and simulations of NTX beam profile and phase-space distribution at exit of channel

Page 17: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Neutralized drift

Page 18: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

LSP predicted Neutralized Reduces Beam Spot

No neutralization 1.5 cm

Plasma Plug 1.4 mm Plasma Plug + Volume 1 mm

300 keV, 25 mA, 0.1 pi-mm-mrad, K+ beam

Page 19: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Unexpected Partial Beam Neutralization in the Final Drift Section was controlled by a Radial Bias Mesh

6 inch pipe 3 inch pipeUnwanted neutralization for “vacuum”

propagation in small pipe

Mesh

Drift tubeInner wall

Ion beam

-35

-30

-25

-20

-15

-10

-5

0

5

-800 -400 0 400 800 1200 1600

Mesh voltage (V)

Cu

rre

nt

(mA

)

Electron current collected in the radial mesh

Radial mesh suppresses beam-Generated secondary electron

Final focusmagnet

Magnetic-transport section Neutralization drift sectionBeam source

Cathode arcPlasma plug

RF plasma source

Diagnostic box

Quadrupoles

2.4 m 1 m

Source chamber

Phase IIIPhase IIPhase I

Page 20: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Electron Suppression provided beam for controlled Neutralization

Simulation

Experiment 6 inch pipe

Experiment 3 inch pipe

Mesh (+1kV)

260 – 300keV

Page 21: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

MEVVA Plasma Plug and RF Volume Plasma Source Neutralized Ion Beam for Small Spot Size

MEVVA plug

RFPlasma system

1 m

Cathode-arcPlasma sourceplasma plug

RF plasmasource

0.52 m

Diagnostic

a) b)

c)

Neutralization drift section

Page 22: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

High Density Plasma Obtained from MEVVA Plasma plug and RF Plasma (~1011 cm-3)

Argon Plasma3.7<t<4.0mSN>1011 cm-3

P<10-5 Torr

Neutral Pressure and RF Plasma DensityEach point on the IV characteristic for MEVVA plug.

The ion saturation current is used for plasma density.

Density~1011 cm-3

Page 23: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Reduction of Spot Size Using Plasma Plug & Volume Plasma (24 mA beam, 20 mm initial radius)

0

20

40

60

80

100

0 10 20 30 40

X(mm)

Mesh+250,31002060

0

20

40

60

80

100

0 10 20 30 40

X(mm)

MEVVA30813016

0

20

40

60

80

100

0 10 20 30 40

X(mm)

MEVVA & RF30813010

FWHM: 2.71 cm FWHM: 2.83 mm FWHM: 2.14 mm

Non-neutralized transport

Effect of plasma plugon spot size

Effect of plasma plug and volume plasma on spot size

Page 24: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

100% Current Transmission Through Neutralized Drift Section (24 mA Beam)

0

5

10

15

20

25

235 255 275 295

Beam energy (kV)

Be

am

cu

rre

nt

(mA

) At exit, no plasmaAt exit, with plasmaAt entrance

Page 25: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

*Image taken after pinhole sample has drifted 1 meter

Vertical Pinhole Scan

Full 2-D Pinhole Scan

7 mm

Pinhole scan at Entrance to Neutralization* and Neutralized beam (6 mA beam, Ne ~ 2x1011/cm3)

Neutralized beam

rms size ~ 1.0 mm

rms size ~ 1.4 mm

Plasma density ~ 2x1011/cm3

Movable Pinhole Measurements of 4-D Phase Space

Page 26: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

FLU

ENC

E (a

.u.)

R(mm)

Beam profile at focal plane for three neutralization methods(6 mA beam, 10mm initial radius)

MEASUREMENT

SIMULATIONS

With plasma plugWith plasma plugand RF Plasma 100% neutralization

MEVVA ONLY

100% neutralized

MEVVA and RF

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

FLU

ENC

E (a

.u.)

R(mm)

Fluence

MEVVA ONLY

100% neutralized

MEVVA and RF

Page 27: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Sensitivity Study: Beam Spot Size Dependency on Convergence Angle

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25

Convergence angle (mrad)S

pot r

adiu

s (m

m)

Non neutralized beam radius as a function of convergence angle calculated using WARP code

Measured neutralized beam radius as a function of convergence angle

at the end of final focus

Page 28: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Sensitivity Study of Neutralization

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

MEVVA discharge voltage (keV)

Be

am

ra

diu

s (

mm

)

0

0.5

1

1.5

2

0 5 10 15 20

Axial distance (cm)

Be

am

ra

diu

s (

mm

)

1

1.5

2

2.5

3

3.5

242 247 252 257 262Beam energy (keV)

Be

am

ra

diu

s (

mm

)

Head to tail variationVariation with beam energy

Beam envelope variation with axial position

Beam envelope variation with plasma discharge voltage

Page 29: The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M

The Heavy Ion Fusion Virtual National Laboratory

Summary

●We have completed a detailed study of neutralized final transport.

● The experimental results are in good agreement with simulations.

● The NTX experiments have significantly increased our confidence for a variable driver final focused scenario.