a. friedman, j. j. barnard, r. h. cohen, d. p. grote, s. m. lund, w. m. sharp, llnl a. faltens, e....

25
A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A. Leitner, B. G. Logan, J.-L. Vay, W. L. Waldron, LBNL R. C. Davidson, M. Dorf, E. P. Gilson, I. Kaganovich, PPPL ICAP 2009, San Francisco Heavy Ion Fusion Science Virtual National Laboratory Developing the Physics Design for NDCX-II, a Unique Pulse- Compressing Ion Accelerator* *This work was performed under the auspices of the USDOE by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02- 05CH11231, and by PPPL under Contract DE-AC02-76CH03073.

Upload: ilene-clarke

Post on 17-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNLA. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A. Leitner,

B. G. Logan, J.-L. Vay, W. L. Waldron, LBNLR. C. Davidson, M. Dorf, E. P. Gilson, I. Kaganovich, PPPL

ICAP 2009, San Francisco

Heavy Ion Fusion Science Virtual National Laboratory

Developing the Physics Design for NDCX-II, a Unique Pulse-Compressing Ion Accelerator*

*This work was performed under the auspices of the USDOE by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.

Page 2: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory2

LITHIUM ION BEAM BUNCH (ultimate goals)

Final beam energy: > 3 MeVFinal spot diameter : ~ 1 mmFinal bunch length : ~ 1 cm or ~ 1 nsTotal charge delivered: ~ 30 nC

Exiting beam availablefor measurement

TARGET

m foil or foam

30 J/cm2 isochoric heating aluminum temperature ~ 1 eV

NDCX-II will enable studies of warm dense matter and key physics for ion direct drive

Page 3: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory3

“Neutralized Drift Compression” produces a short pulse of ions

• The process is analogous to “chirped pulse amplification” in lasers• A head-to-tail velocity gradient (“tilt”) is imparted to the beam by one or

more induction cells• This causes the beam to shorten as it moves down the beamline:

• Space charge would inhibit this compression, so the beam is directed through a plasma which affords neutralization

• Simulations and theory (Voss Scientific, PPPL) showed that the plasma density must exceed the beam density for this to work well

z (beam frame)

vz

z (beam frame)

vz

Page 4: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory4

NDCX-I

NDCX-I at LBNL routinely achieves current amplification > 50x

Page 5: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory5

ATA induction cells with pulsed 1-3T solenoidsLength ~ 15 mAvg. 0.25 MV/mPeak 0.75 MV/m

Li+ ion injector

final focus and target chamber

neutralized drift compression region with plasma sources

water-filled Blumlein voltage sources

oil-filled transmission lines

NDCX-II

Page 6: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory6

LLNL has given the HIFS-VNL 48 induction cells from the ATA

• They provide short, high-voltage accelerating pulses–Ferrite core: 1.4 x 10-3 Volt-seconds–Blumlein: 200-250 kV; 70 ns FWHM

• At front end, longer pulses need custom voltage sources; < 100 kV for cost

Test stand at LBNL

Advanced Test Accelerator (ATA)

Page 7: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory7

Outline

• Introduction to the project

• 1-D ASP code model and physics design

• Warp (R,Z) simulations

• 3-D effects: misalignments & corkscrew

• Status of the design

Page 8: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory8

1-D PIC code ASP (“Acceleration Schedule Program”)

• Follows (z,vz) phase space using a few hundred particles (“slices”)

• Space-charge field via Poisson equation with finite-radius correction term

2 d2/dz2 - k2 = - /0

k2

= 4 / (g0

rb

e

a

m2

) g0

= 2 log (rw

a

l

l

/ rb

e

a

m

)

• Acceleration gaps with longitudinally-extended fringing field– Idealized waveforms– Circuit models including passive elements in “comp boxes”– Measured waveforms

• Centroid tracking for studying misalignment effects, steering• Multiple optimization loops:

– Waveforms and timings– Dipole strengths (for steering)

• Interactive (Python language with Fortran for intensive parts)

Page 9: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory9

Principle 1: Shorten Beam First (“non-neutral drift compression”)

• Equalize beam energy after injection -- then --

• Compress longitudinally before main acceleration

• Want < 70 ns transit time through gap (with fringe field) as soon as possible

==> can then use 200-kV pulses from ATA Blumleins

• Compress carefully to minimize effects of space charge

• Seek to achieve large velocity “tilt” vz(z) ~ linear in z “right away”

Page 10: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory10

Principle 2: Let It Bounce

• Rapid inward motion in beam frame is required to get below 70 ns

• Space charge ultimately inhibits this compression

• However, so short a beam is not sustainable– Fields to control it can’t be “shaped” on that timescale– The beam “bounces” and starts to lengthen

• Fortunately, the beam still takes < 70 ns because it is now moving faster

• We allow it to lengthen while applying:– additional acceleration via flat pulses– confinement via ramped (“triangular”) pulses

• The final few gaps apply the “exit tilt” needed for neutralized drift compression

Page 11: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory11

Pulse length vs z: the “bounce” is evident

puls

e le

ngth

(m

)

center of mass z position (m)

Page 12: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory12

Pulse duration vs z

- time for entire beam to cross a plane at fixed z

+ time for a single particle at mean energy to cross finite-length gap

* time for entire beam to cross finite-length gap

puls

e du

ratio

n (n

s)

center of mass z position (m)

Page 13: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory13

Voltage waveforms for all gaps

“ramp” (here from an ATA cell)

“flat-top” (here idealized)

“ear” (to confine beam ends)

“shaped” (to impose velocity tilt for initial compression)

gap

volta

ge (

kV)

time (µs)

Page 14: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory14

A series of snapshots from ASP shows the evolution of the longitudinal phase space (kinetic energy vs z) and current

Page 15: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory15

Outline

• Introduction to the project

• 1-D ASP code model and physics design

• Warp (R,Z) simulations

• 3-D effects: misalignments & corkscrew

• Status of the design

Page 16: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory16

Design of injector for 1 mA/cm2 Li+ emission uses Warp in (r,z)

extractor ~150 kV

emitter~165 kV

Z (m)

R (

m)

0

10 cm

Using Warp’s “gun” mode

Using time-dependent space-charge-limited emission and simple mesh refinement

Page 17: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory17

ASP & Warp results agree (when care is taken w/ initial beam )

Page 18: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory18

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Video: Warp (r,z) simulation of NDCX-II beam

For video see: http://hifweb.lbl.gov/public/movies/ICAP09

Page 19: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory19

Outline

• Introduction to the project

• 1-D ASP code model and physics design

• Warp (R,Z) simulations

• 3-D effects: misalignments & corkscrew

• Status of the design

Page 20: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory20

Video: Warp 3-D simulation of NDCX-II beam (no misalignments)

QuickTime™ and aCinepak decompressor

are needed to see this picture.

For video see: http://hifweb.lbl.gov/public/movies/ICAP09

Page 21: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory21

Video: Warp 3D simulation of NDCX-II, including random offsets of solenoid ends by up to 1 mm (0.5 mm is nominal)

QuickTime™ and aCinepak decompressor

are needed to see this picture.

For video see: http://hifweb.lbl.gov/public/movies/ICAP09

Page 22: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory22

ASP employs a tuning algorithm (as in ETA-II, DARHT)† to adjust “steering” dipoles so as to minimize a penalty function

Head - redMid - greenTail – blue

x - solidy - dashed

Dipoles optimized; penalizing corkscrew amplitude & beam offset, and limiting dipole strength

Trajectories of head, mid, tail particles, and corkscrew amplitude, for a typical ASP run.Random offsets of solenoid ends up to 1 mm were assumed; the effect is linear.

Dipoles off

Corkscrew amplitude - black

†Y-J. Chen, Nucl. Instr. and Meth. A 398, 139 (1997).

Page 23: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory23

Outline

• Introduction to the project

• 1-D ASP code model and physics design

• Warp (R,Z) simulations

• 3-D effects: misalignments & corkscrew

• Status of the design

Page 24: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory24

Key technical issues are being addressed

• Li+ ion source current density – We currently assume only 1 mA/cm2

• Solenoid misalignment effects– Steering reduces corkscrew but requires beam position measurement– If capacitive or magnetic BPM’s prove too noisy, we’ll use scintillators

or apertures

• Require “real” acceleration waveforms– A good “ramp” has been tested and folded into ASP runs – We’re developing shaping circuits for “flatter flat-tops”

• Pulsed solenoid effects– Volt-seconds of ferrite cores are reduced by return flux of solenoids– Eddy currents (mainly in end plates) dissipate energy, induce noise– We’ll use flux-channeling inserts and/or windings, & thinner end plates

Page 25: A. Friedman, J. J. Barnard, R. H. Cohen, D. P. Grote, S. M. Lund, W. M. Sharp, LLNL A. Faltens, E. Henestroza, J-Y. Jung, J. W. Kwan, E. P. Lee, M. A

The Heavy Ion Fusion Science Virtual National Laboratory25

We look forward to a novel and flexible research platform

• NDCX-II will be a unique ion-driven user facility for warm dense matter and IFE target physics studies.

• The machine will also allow beam dynamics experiments relevant to high-current fusion drivers.

• The baseline physics design makes efficient use of the ATA components through rapid beam compression and acceleration.