technology education in the 21st century - kth.se/menu/general/column... · 8 alexander wahlberg...

20
Technology Education in the 21 st Century Engineering Education Strand Abstracts Author/s Title 1 Dan Borglund Natural learning environment - a place where teaching and research are united English 2 Hamed Hamid Mohammed Computerized Examination with Multiple Choice and Essay Questions English 3 Magnus Andersson A possible way to use student peerreview to improve report writing skills English 4 Kristina Edström, Anette Komos Two approaches for engineering education development: PBL and CDIO English 5 Olle Bälter Challenge of technology enhanced Engineering education English 6 Lena Gumaelius, Cecilia Kozma How can peer teaching be used for inspiration and education in Science and technology at universities English 7 Hamed Hamid Mohammed Activation by collective learning English 8 Alexander Wahlberg Learning in students projetcts English 9 Tanja Nymark The effect of different teaching methods on students' understanding of central concepts in an introductory course in astrophysics English 10 Björn Marklund Retention Footprint: visualising and monitoring student retention in study programmes across Europe, report from field trial English 11 Urban Westerberg, AnnaKarin Högfeldt Just how equivalent are assessments of thesis works at KTH? English 12 Cecilia Kozma 'How can experiments in teaching, and informal learning environment be used as a resource for communicating science to schools?' English 13 Magnell, Finne Wistrand och Kann Studenter reflekterar på tre olika sätt Swedish 14 Ann Sofie Henriksson Assessment criteria – how to develop, implement and evaluate English 15 Hans Thunberg Novice mathematics students at the university: Experiences, orientations and expectations English 16 Martin Grimheden Agile methods in mechatronics education English

Upload: vonhan

Post on 02-Apr-2018

219 views

Category:

Documents


4 download

TRANSCRIPT

Technology Education in the 21st Century 

Engineering Education Strand 

Abstracts 

 

   Author/s  Title 

1  Dan Borglund Natural learning environment - a place where teaching and research are united  English 

2 Hamed Hamid Mohammed 

Computerized Examination with Multiple Choice and Essay Questions 

English 

3  Magnus Andersson A possible way to use student peer‐review to improve report writing skills 

English 

4 Kristina Edström, Anette Komos 

Two approaches for engineering education development: PBL and CDIO 

English 

5  Olle Bälter  Challenge of technology enhanced Engineering education  English 

6 Lena Gumaelius, Cecilia Kozma 

How can peer teaching be used for inspiration and education in Science and technology at universities 

English 

7 Hamed Hamid Mohammed 

Activation by collective learning  English 

8  Alexander Wahlberg  Learning in students projetcts  English 

9  Tanja Nymark The effect of different teaching methods on students' understanding of central concepts in an introductory course in astrophysics 

English 

10  Björn Marklund Retention Footprint: visualising and monitoring student retention in study programmes across Europe, report from field trial 

English 

11 Urban Westerberg, Anna‐Karin Högfeldt 

Just how equivalent are assessments of thesis works at KTH?  English 

12  Cecilia Kozma  'How can experiments in teaching, and informal learning environment be used as a resource for communicating science to schools?' 

English 

13 Magnell, Finne Wistrand och Kann 

Studenter reflekterar på tre olika sätt  Swedish 

14  Ann Sofie Henriksson Assessment criteria – how to develop, implement and evaluate 

English 

15  Hans Thunberg Novice mathematics students at the university: Experiences, orientations and expectations 

English 

16  Martin Grimheden   Agile methods in mechatronics education  English 

 

Naturlig lärandemiljö - där forskning ochundervisning möts

Dan BorglundKTH Farkost och flyg

[email protected]

25 maj 2012

Det här bidraget kommer först att diskutera begreppet naturlig lärandemiljö ochsedan sammanfatta de mest centrala principer för djuplärande som Bain (2004) menarligger till grund för en sådan miljö. Till exempel att vi tenderar att lära oss mer effektivtom vi 1) får arbeta med problem som känns viktiga och meningsfulla, och 2) får göradet tillsammans med andra i en utmanande miljö som samtidigt är trygg och tillåtande.Vidare kommer det argumenteras för att dessa principer också är utmärkande för detlärande som skapas i forskningsprocessen, och att begreppet naturlig lärandemiljö där-för förenar forskning och undervisning på ett naturligt sätt (Hult 2001). Detta har bl.a.en strategisk betydelse för det pedagogiska ledarskapet, vilket kommer att beröras ikorthet. Avslutningsvis ges ett exempel på hur några av principerna kan tillämpas iett konkret fall av kursdesign, och några övergripande slutsatser presenteras.

Referenser

Bain, Ken (2004). What the Best College Teachers Do. Harvard University Press.

Hult, Håkan (2001). Forskningsprocessen som metafor för undervisning. Rapport Nr. 2,Centrum för undervisning och lärande (CUL), Linköpings universitet.

1

Computerized Examination (e‐exam) with Multiple Choice and Essay Questions 

Hamed Hamid Muhammed, KTH‐STH 

An innovative design of examination software (e‐exam) has been developed at the School of Technology and Health, KTH. The software tool was optimized to solve a number of problems, such as limited number of computers available for the e‐exam at our department, the risk that the students will answer the multiple choice questions quickly without deep thinking, the risk of cheating by looking at the others’ computer screens especially if all computers were used, the requirement from the students side that all of them should be tested with the same questions, and the risk that the students will be able to tell each other about the right answers during the short breaks that they may take. These problems were solved by designing the e‐exam as follows: 

• The e‐exam consists of four stages. Each of the first three stages is designed as multiple choice tests with 12 multiple choice questions MCQs, while in the fourth stage 12 essay questions should be answered. 

• It is allowed to take short breaks only after each completed stage (or before beginning the e‐exam).  

• The same three sets of MCQs and the same set of essay questions are given to all students and in the same order. The essay questions are always given in the fourth stage of the e‐exam. 

• The 12 questions within each e‐exam stage are presented randomly. 

• Each MCQ has five choices: four answers (where only of them is the right answer) in addition to a don’t know/no answer option. 

• The four answers or choices are presented randomly. 

• It is not possible to go back to a previous question (can be an MCQ or an essay question). It is only possible to proceed to the next question. However, the student can go through all 12 questions (which appear in a random order) as many times as needed, but only going forward. 

• One should wait at least 60 seconds at each question. 

• When choosing to finish the current e‐exam stage, a dialog window will appear telling the student that it is possible to take a short break now without showing the resulting credits gained from this e‐exam stage. The result will appear when the student returns from the break. 

By this way, the student will have enough time to think about the question and the answer that was chosen, and it will not be easy to cheat by looking at each others’ computer screens. It will not be easy to tell each other about the right answers. 

Other advantages of the proposed e‐exam design are as follows: 

• 75% of the e‐exam questions (36 out of 48) are corrected automatically by the software tool. By this way, the student will be able to know how he/she is performing, and the examiner manually check only 25% of the e‐exam questions (the 12 essay question only). 

• The problem of unclear handwritten answers (for the essay questions) is solved. In addition to unlimited space to write the answer and that it is easy to erase and modify/change the answer. 

• It is possible to also add possible bonus credits (from previous course work) automatically. This can easily done by adding the name list of all students to the software before the e‐exam, including possible bonus credits. The student logs in by typing her/his CIVIC number, then the full name, bonus credits and any other information can appear automatically. 

• It is easy to add an additional code to that name list to specify if the student should be offered to fill in the course‐evaluation questionnaire (which is anonymous) directly after the e‐exam. 

• A result list with coded CIVIC numbers (e.g. to be published on the course webpage, or sent by email to all course participants) can be automatically generated. 

• It is also easy to let students from different courses or from previous years (e.g. with slightly different course content) do the e‐exam simultaneously by adding a code which tells the software to pick and use a specific package of questions. 

• It is possible to complete the current software tool with another software tool for anonymous checking of the answers of the essay questions (already on my to‐do list). 

• It is possible to make and use a big database with both MCQs and essay questions of different levels of difficulty and different categories (i.e. all questions are well classified). The software tool will then randomly choose a certain number of questions from each class to form the set of questions for each e‐exam stage. 

• It is also easy design a more complicated exam scenarios, so that the student will not be able to proceed with the next stage of the e‐exam if he/she couldn’t pass the current one. Or by giving the student the possibility to limit the variation of question so that the next‐stage question will deal with a limited part of the course content – and the grade will be lower of course. 

As a conclusion, one can say that the advantages and possibilities of introducing and using the e‐exam approach proposed in this work are unlimited and benefit both the students and the examiner. 

 

A possible way to use student peer review to improve report writing skills

Abstract Writing reports is one of the skills that need to be trained during an engineering education. Here, I will describe my experiences from a student peer review process of laboratory reports, which I have used for the last three years in a second year course in wave physics and thermodynamics for electric engineering students at KTH. In this course, there are two laboratory exercises, which each should result in a short written report (max 4 pages). These reports are written individually under pseudonym (only known for the student and the laboratory assistant) and the handed-in reports are sent out to other students for peer review assessment. The students are asked to write a peer review report, which is graded by the laboratory assistant to give a few points (corresponding to 6% of the total) on the exam in the course. Finally, they should improve their own laboratory report based on the comments they receive in the peer review report in order to pass the laboratory part of the examination in the course. To introduce the students to the peer review process, a 45 minutes combined introductory lecture and group discussion based on an old laboratory report is given before the laboratory work begins. From the course evaluations, more than 80% of the students answer that they have gained more insight into assessments of reports than before and more than 60% answer that they have gained more insights into writing reports.

khalid
Typewritten Text
Magnus Andersson
khalid
Typewritten Text

2  

 

Two approaches for engineering education development: PBL and CDIO

Kristina Edström1 and Anette Kolmos2

1) KTH Royal Institute of Technology, Sweden 2) Aalborg University, Denmark Presentation format: Paper and Oral presentation

ABSTRACT During the last decade there have been two dominating models for reforming engineering education: Problem/Project Based Learning (PBL) practiced at Aalborg University and the CDIO Initiative founded by KTH, Chalmers, Linköping University, Sweden and MIT, USA.

The aim of this work is to investigate and compare the PBL and CDIO approaches to engineering education reform, focusing on similarities and differences.

CDIO and PBL will each be defined and compared in terms of the need analysis, underlying educational philosophy and the essentials of the respective approaches to engineering education. In these respects we see many similarities. Other circumstances that explain differences in history and experiences will be described and discussed. The comparison gives an overview of guiding principles, history and experiences, organization of community, implementation principles, model of change, variation in implementation, body of research, extent of dissemination, and relation to certification and evaluation.

It is suggested that the two approaches have very much in common and can be combined, and especially that the practitioners have much to learn from each other’s experiences through a dialogue between the communities. This structured comparison will potentially indicate specifically what an institution experienced in one of the communities can learn from the other, as well as provide a chart for anyone who wishes to learn about any of these models.

As a conclusion, some observations on common lessons learned will be made, related to conditions for development of higher engineering education.

 

 

 

 

 

 

The  Challenge  of  Technology  Enhanced  Learning  in  Engineering  Education    Engineering  education  is  probably  one  of  the  best  examples  of  education  where  Technology  Enhanced  Learning  (TEL)  could  be  successfully  introduced.  Both  teachers  and  students  have  an  interest  in  technology  per  se,  and  many  have  knowledge  of  its  benefits  and  drawbacks.  However,  the  introduction  of  TEL  in  higher  education  has  been  slow.    One  of  the  challenges  that  I  have  identified  by  discussing  TEL  at  conferences,  with  colleagues  and  visitors  is  that  the  field  of  TEL  comprises  three  distinct  groups  of  people:    

1) Ph.Ds.  in  Pedagogy  (PPD)  2) Ph.Ds.  in  other  subjects  (OPD)  with  a  genuine  interest  in  teaching  3) Non-­‐Ph.Ds.  (NPD)  such  as  adjunct  teachers  and  support  staff  for  ICT  systems.  

 The  problem  is  that  these  three  groups  do  not  understand  nor  trust  each  other.  The  both  Ph.D.  groups  are  to  a  large  extent  driven  by  their  need  to  publish  papers.  The  PPDs  have  a  main  interest  in  developing,  testing  and  publishing  theories  on  learning.  The  OPDs  in  the  TEL  area  have  a  main  interest  in  developing,  testing  and  publishing  practical  applications  of  new  systems  to  enhance  learning.  The  NPDs  have  a  main  interest  to  improve  courses,  in  some  cases  through  the  use  of  well-­‐established  IT-­‐systems  that  already  had  been  proven  to  be  efficient.      All  these  interests  are  valid,  but  they  do  not  mix  well.  The  other  two  groups  are  suspicious  of  the  third  group.  

1) The  PPDs  are  accused  of  being  too  theoretical,  have  no  connection  with  real  teaching,  and  if  they  have  even  the  slightest  deficit  in  their  didactic  skills  they  are  eternally  condemned  as  pedagogues,  as  most  people  do  not  differ  between  pedagogy  and  didactics.  

2) The  OPDs  are  accused  of  being  too  experimental,  prefer  self-­‐developed  systems  (hacks)  to  off-­‐the-­‐shelf  solutions,  and  do  not  know  pedagogy  sufficiently.  

3) The  NPDs  are  trapped  in  an  academic  hierarchy  where  they  count  for  nothing  as  they  do  not  have  a  Ph.D.  Often  they  do  have  a  task  to  promote  pedagogical  and  didactical  knowledge  and  ICT  support  for  this  to  the  Ph.Ds.,  but  these  Ph.Ds.  are  Academics  and  do  not  appreciate  being  told  how  they  should  be  teaching.  

 So  what  is  the  solution  to  this  conundrum?  Why  can’t  we  all  just  get  along?  The  first  thing  is  that  all  players  must  acknowledge  the  other  players’  importance  for  the  field  and  admit  they  do  have  important  knowledge  and  skills  as  well  as  our  own  shortcomings.  The  second  is  that  we  all  have  to  understand  the  others’  driving  forces.  The  third  is  that  we  must  all  strive  to  understand  and  learn  something  about  our  colleagues’  expert  fields  to  earn  their  trust.  We  must  either  learn  everything  about  a  small  niche  to  participate  actively  in  a  discussion  about  it,  or  learn  sufficiently  enough  about  the  area  in  general  to  be  able  to  follow  a  discussion.  Are  there  more  or  better  solutions?  I  would  be  happy  to  discuss  these  at  the  conference.  

khalid
Typewritten Text
Olle Bälter
khalid
Typewritten Text

Lena Gumaelius

Cecilia Kozma

How can peer teaching be used for inspiration and education in Science and technology at universities– a case study from Stockholm House of Science.

University students teaching younger students in peer teaching situations are becoming more and more common. This is used in many areas such as tutorials, introductory courses, homework help, Supplementary instruction, or at science centres and museums. Our purpose is to study the learning process and its strengths and weaknesses.

In this study we will present a survey performed at Stockholm House of Science (SHS), which is a university science laboratory facility for natural sciences, technology and mathematics entirely devoted to schools. The main purpose with the activities at House of Science is to increase the interest for science and technology among young people.

Pupils and teachers are invited to do experiments, listen to lectures, and/or discuss different subjects relating to natural sciences, mathematics and technology.

During a visit to SHS each group of pupils is led by a tutor. The tutors working at SHS are students from Stockholm University or KTH. They work extra, beside their ordinary studies, assisting school classes during their visits to SHS.

In this survey we have summarized the views and opinions about the role of a tutor given by pupils, visiting teachers, tutors and SHS staff. During the interviews and evaluations we have looked at the learning process from a sociocultural perspective. They have all been asked about the strengths and weaknesses in how pupils learn from tutors at SHS.

We also discuss about different ways of improving the learning procedure when tutors are involved in the learning process.

Activation by Collective Learning, Performing Coursework Activities by Team Work and Obtaining Individual Grades 

The main goal of the approach proposed in this work is to activate all course participants from the first day of the course and to keep them activated and busy during the whole course time period. The used strategy is based on offering a package of benefits to all course participants, consisting of the following main points: 

• They gain credits that help to achieve a significantly better grade if they perform well and do the required assignments – not only because of the gained credits but also because of the effect of the following points. 

• They follow a more efficient studying strategy. They start early and study the subject of the course in small pieces during the whole course time period. The whole course content will be covered gradually at the end of the course, and consequently the Intended Learning Outcomes (ILOs) will be also achieved smoothly. 

• They review, present and discuss each others’ works in a way, by using a language, and at a level which is more adapted to their situation, level and understanding. 

• Reviewing each others’ work affects all course participants positively. The weak students compare their work with the others’ work and try to reduce the quality gap by performing better. While the good students get a confirmation that they can achieve better results by working harder. 

• Team work but individual grades: The coursework and the related activities are performed within groups of 4‐5 members while the deliverables should be written and submitted individually. A number of deadlines are specified for different deliverables. Each course participant performs one small task and delivers an assignment at each deadline, to get the corresponding credits for that task. 

The new approach was implemented in two courses at the School of Technology and Health STH, KTH: The bachelor level course “Medical Imaging Systems, HL1002, 7.5 credits” and the master level course “3D Image Reconstruction in Medicine, HL2012, 6 credits” which was replaced by the master level course “3D Image Reconstruction and Analysis in Medicine, HL2027, 9 credits”. 

In the case of HL1002, the course content is divided into a number of topics (11 topics). While in the case of the course HL2012/HL2027, a number of extensive/large project works are suggested (8 projects). At the first day of this course, a number of groups (11 and 8, respectively for each of the two courses mentioned above) of 4‐5 members are formed, each of which begins working on one topic/project so that all topics/projects are covered. A project plan is required of each group to organize the work. Each group member works on his/her own little part of the chosen topic/project, and writes a sub‐report. Then, each student should review all other sub‐reports produced within his/her own group and give written feedback. After that, each student should revise and submit his/her sub‐report. A list of corrections, modifications and additions should be attached to the revised sub‐report. And group reports, each of which covering one of the topics, are formed directly afterward. In the next step, each student reads three other groups’ reports and gives written feedback for each of them. Each group should revise and produce the final version of their report where each report is divided by the authors into two parts. A list of corrections, modifications and additions should be attached to the revised group report. All these tasks form the first phase of the 

khalid
Typewritten Text
Hamed Mohammed 2

coursework. In the next phase which takes place at a number of obligatory seminars, each group should present two parts of two different reports and discuss two other reports’ parts. In addition to that, each group should give oral and written opposition report on one presentation (of one report’s part). Finally, each course participant writes a self reflection report of two pages. Each student obtains credits for all the deliverables mentioned above. These credits correspond to the grade obtained in the case of the course HL2012/HL2027. While in the case of the course HL1002, these credits are added to the credits obtained at the final examination to produce the final grade for the whole course. 

Title: Learning in student projects

Lead author: Alexander Wahlberg, Civilingenjör & Lärare, student, KTH

Co-authors: Nickolay Ivchenko, Space and Plasma Physics, University Lecturer, KTH

Margareta Enghag, Physics Education, University Lecturer, SU

The lecture will be based on the research study that the authors have done in a master thesis at KTH.

The aim of the thesis was to create a better understanding of how students learn in larger projects.

How do the students go from being passive participants in the courses to actively start learning?

What attitudes and skills develop the students during the project? In terms of the purpose of the

conference, the presentation relates most to the "integration of engineering skills in education",

but can also aim to inspire participating teachers to restructure their courses so that students'

lessons have a better anchoring of industry standards.

By starting from the interviews that were collected in the thesis, the presentation will clarify how

learning processes have occurred during the projects. The interviews were conducted on three main

REXUS projects that have taken place at KTH since its inception in 2009, but also with high school

students who did their final projects in high school. This gave us the opportunities to compare and

gain new perspectives on learning. The final analysis of the lessons and experiences has been

compared to the requirements CDIO has developed.

The presentation is for participants to gain a better understanding of the valuable experience that

students learn during the project work, but also provide a guide for how to create valuable habitats

where engineering students can flourish and gain the skills, values, attitudes and skills that the

industry calls for.

Summary

The presentation will present how students learn during their project work, that can be used to

provide new perspectives in engineering education. Through qualitative interviews, the authors have

studied how the projects learning processes look like and examined how students develops from

passive recipients of knowledge to active knowledge collectors, that communicative interacts with

each others.

Jag kommer presentera resultatet av en studie av effekten av olika undervisningsmetoder på förståelsen av centrala astronomiska begrepp bland studenterna på en introduktionskurs i astrofysik, med särskilt fokus på förståelsen av himmelskoordinater och himlakroppers skenbara rörelse.

Kursen "Astrofysik" ingår som obligatoriskt moment i CL-utbildningens fysikintriktning, och är därför utformat för att passa för blivande gymnasielärare som kommer behöva undervisa i astronomi. Kursen är dock öppen även för andra studenter och är särskilt populär bland utbytesstudenter. Studenterna har därför mycket varierande bakgrund, och vitt skilda förväntningar på kursen. Utvärderingar av tidigare kursomgånger har visat att kursen är populär eftersom den ger en möjlighet att använda den fysik och matematik man lärt sig i andra kurser på ett brett spektrum av astrofysikaliska fenomen. Det har dock visat sig att många studenter uppfattar denna kurs som "lätta poäng" som man inte behöver lägga så mycket energi på, samtidigt som vissa begrepp är svårbegripliga eftersom de inte har någon direkt koppling till andra kurser.

Under årets kursomgång, som gick under januari-mars 2012, genomfördes ett antal ändringar i kursupplägget som syftade till dels att ta reda på var svårigheterna finns och vilka begrepp som behöver särskilt fokus, dels att öka djupinlärningen och förståelsen av de mest centrala begreppen. En analys av tentamensresultaten och inlämnade rapporter tyder på att studenterna uppnådde en djupare förståelse av centrala begrepp jämfört med tidigare år, men att det fortfarande finns rum för förbättringar. Reaktionerna bland studenterna var dock blandade, vilket tyder på att syftet med undervisningsmetoderna och kopplingen till lärandemålen inte framgick med tillräcklig tydlighet.

Jag kommer presentera de olika undervisningsmetoderna som använts, vad som är nytt jämfört med tidigare år samt hur ändringarna togs emot av studenterna. I de fall där de olika metodernas effekt på lärandet har kunnat utläsas kommer detta presenteras. Jag kommer också beskriva vilka ändringar som föreslås för nästa kursomgång, samt hur kursinnehållet bör ändras för att förbättra kopplingen till gymnasieskolans nya kursplaner.

khalid
Typewritten Text
Tanja Nymark "Olika undervisningsmetoders effekt på studenters förståelse av centrala begrepp på en introduktionskurs i astrofysik"
khalid
Typewritten Text

Cecilia Kozma

How can experiments and informal learning environments be used as a resource for communicating science in schools? - a course in the Master of Science in Engineering and in Education programme. In the Master of Science in Engineering and in Education programme at KTH one of the courses is Science, Technology and Education I, 7,5 credits. The course has previously been given during the first year of the programme but in the revised programme the course will be moved to the third year. Science, Technology and Education I is a course offered jointly by the Stockholm House of Science at Albanova university centre and by Tom Tits Experiment in Södertälje. The course deals with the importance of experiments in science and teaching, and how informal learning environments can be used as a resource for communicating science to schools and the general public. The course includes laboratory work, lectures, group work, investigative work and discussions. Among other things the students develop their own experiments at the House of Science and a visiting programme at Tom Tits Experiment. At the end of the course the students invite groups of upper secondary school pupils to do their developed experiments and their visitor programmes. The revised course will be given during the third year and it will be somewhat more extensive, 11 credits. In the revised course the contact with upper secondary school is planned to be extended so that the students will have the opportunity to prepare the pupils before their visits and follow up the material with the pupils afterwards. One of the objectives with the new course is that the student to an even higher degree should be able to choose the experiments and contents of the visits from his or her own chosen specialisation. One of the major parts of the course is to develop an experiment at the House of Science. The students work in groups of 2-3 persons. The theme for the experiment is energy but otherwise the students are free to choose an experiment within any of the subjects: chemistry, physics, technology or computer science. The aim is for the students to acquire an understanding for experimental methods in science and how they can use experiments in their future teaching. The experiment is developed, tested and then improved after feedback from other students in the course. Finally they carry out the experiment with upper secondary school pupils in a real teaching situation. The work with developing an experiment is action-oriented. The students work in groups and their work is continuously improved through peer teaching by other students in the course. The learning outcome is clear to the students from the start and at the end of the course they directly apply their knowledge to a real situation.

4  

 

 

Retention Footprint: visualising and monitoring student retention in study programmes across Europe, report from field trial

 

B Marklund Senior Administrative Officer

KTH Royal Institute of Technology Stockholm, Sweden

E‐mail: [email protected] 

Conference Topic: Attractiveness of Engineering Education 

Keywords: Retention, Throughput, Drop out, Graduation rate 

1. ABSTRACT  

Most of the universities across Europe have their own way of measuring and monitoring student 

progression , retention, attrition, drop out, etc. The way of holding statistics and calculating 

indicators differs as well as the demands of different stakeholders within the universities and society.  

ATTRACT (Enhance the Attractiveness of Studies in Science and Technology) is a European 

Commission supported project aiming to increase knowledge and inform practice about student 

recruitment and retention in engineering and technology education. Within this project partners 

agreed to test and evaluate a method of visualising and monitoring student retention in a so‐called 

footprint in selected fields of programmes. The tool was originally developed in the Swedish project 

“Ung Ingenjör”.www.kth.se/unging  

The test had three sub aims: 

1. 1. The overall level was to test if the visualising method can be used to compare/benchmark engineering education in Europe concerning retention. 

1. 2. The next level was to test and evaluate how the method can be used in assessing engineering education. 3. The final level aimed to test if the method can be used to compare different student 

groups concerning study background coupled to retention. 

The exercise also gathered information on what kind of data is available in universities for 

international comparison.  

 

The footprint itself can only be an indicator as such and the reasons behind study progress , drop out, 

low graduation rate etc. can only be found through further quantitative and qualitative analysis and 

discussions. 

5  

 

Retention footprint for master of science in mechanical engineering 

 

The results from this exercise show the complexity of finding reasons and proper actions. The results 

also show that the way of monitoring facts and figures in a visual presentation trigs the viewer to dig 

deeper and do further analysis.   

 

0,000,200,400,600,801,00

ectscreditsyear 1median

ectscreditsyear 3(bach…

ectscreditsyear 5(master…

graduation rate

year 5 +1

standard loader

Univ 1

Univ 2

Univ 3

Univ 4

Just  how  equivalent  are  assessments  of  thesis  works  at  KTH?  Urban  Westergren  &  Anna-­‐Karin  Högfeldt  KTH      Quality  assurance,  thesis  work,  internationalization,  learning    

Abstract      We  present  a  proven  method  for  quality  assurance  of  thesis  works  within  a  photonics  masters  program  at  KTH.  The  program  is  part  of  the  Erasmus  Mundus-­‐program.  We  discuss  how  the  presented  method  can  be  applied  with  respect  to  content  and  examination  also  for  thesis  works  that  are  not  part  of  international  cooperation  programs  for  quality  assurance  and  development.  The  issues  of  grading,  grade  distribution  and  equivalence  of  assessment  are  raised  in  the  broader  perspective  of  all  educational  programs  at  KTH.  We  present  statistics  from  KTH  on  grade  distributions  in  the  grade  scale  A-­‐F,  together  with  teachers’  experiences  of  using  the  scale  and  the  associated  assessment  manual.    The  Erasmus  Mundus  program  in  Photonics  started  in  2006.  It  is  a  two-­‐year  masters  program  offered  by  five  universities  in  three  countries.  Two  groups  provide  advice  on  program  quality  and  development:  the  Program  Advisory  Group  (PAG)  and  a  Quality  Assurance  Committee.  The  latter  group  works  to  ensure  the  equivalent  quality  of  the  educational  programs,  regardless  of  arranging  university,  thereby  promoting  mobility.  This  is  done  by  comparing  all  the  core  courses  of  the  programs,  down  to  the  level  of  examination  tasks,  and  offering  advice  on  the  industrial  relevance  of  the  programs.    The  PAG  takes  part  in  the  assessment  of  the  thesis  works  and  offers  advice  on  the  grading.  The  PAG  does  not  set  the  grades.  This  is  done  primarily  at  a  yearly  summer  school  where  some  20-­‐25  second  year  students  present  their  theses.  Their  written  theses  and  the  oral  presentations  are  discussed  and  assessed  by  the  PAG.  The  local  examiners  for  the  thesis  works  have  made  an  advance  grading  suggestion  for  the  thesis  works,  which  is  taken  into  account  at  the  discussions.  Large  differences  in  advance  grading  have  been  demonstrated  and  equivalence  in  grading  has  been  ensured  during  the  summer  schools.  We  also  present  a  proposed  simpler  procedure  for  quality  assurance  of  equivalent  grading,  where  tests  have  started  in  the  local  version  of  program  at  KTH.          

Abstract – Studenter reflekterar på tre olika sätt Marie Magnell ECE, Anna Finne Wistrand CHE, Viggo Kann CSC. Presentation på svenska.

Utöver rent tekniska kunskaper behöver ingenjörer även ett antal färdigheter för att fungera i arbetslivet. Dessa färdigheter behöver utvecklas under utbildningen för att studenterna ska vara förberedda för den framtida yrkesrollen, vilket framkommer i CDIO-metodiken. Men enbart det att färdigheterna tränas i utbildningen räcker inte för att studenterna ska vara förberedda för arbetslivet (Yorke, M. 2006). Knight & Yorke (2004) menar att tid för reflektion behöver ingå i utbildningen, vid flera återkommande tillfällen, för att studenterna ska få möjlighet att inventera sina erfarenheter, identifiera utvecklingsområden och för att de ska veta hur de ska presentera sina färdigheter för arbetsgivare.

Under presentationen kommer vi att visa tre sätt att arbeta med reflektioner. Två av metoderna utspelar sig inom ramen för kandidatexamensarbetet på civilingenjörsprogrammet i Kemivetenskap. Den tredje varianten arbetar man med bland annat i civilingenjörsprogrammen i Datateknik.

Inom kandidatexamensarbetet i Kemivetenskap har man valt att lägga ett fördjupat fokus på färdigheter i att arbeta i grupp. Studenterna får reflektera inför grupparbetsdelen i kandidatexamensarbetet och sedan återigen reflektera kring samma frågor efter genomfört grupparbete. De får till exempel välja ut några aspekter av arbete i grupp som de vill träna särskilt på och efter genomfört grupparbete reflektera kring hur det gick. Detta sätt kan göra studenterna medvetna om att det är just teamworkfärdigheter de utvecklar och hur de kan använda det de lär sig i framtiden. Denna medvetenhet är en förutsättning för utveckling av färdigheter (Knight & Yorke, 2004).

Inom kandidatexamensarbetet i Kemivetenskap har man även valt att integrera en kursmodul i karriärutveckling. Inom denna får studenterna bland annat göra en övergripande inventering kring färdigheter, egenskaper, intressen och drivkrafter. Denna görs individuellt och skriftligt med hjälp av ett antal reflektionsfrågor, men studenterna får även öva på att presentera sig själva för varandra.

Inom civilingenjörsprogrammet i Datateknik får studenterna inom ramen för något som kallas programintegrerande kurs återkommande reflektera kring olika teman så som studievanor, yrkesrollen, att studera och arbeta utomlands, färdigheter med mera. Utöver frågeställningar kring temat får studenterna reflektera kring vad de lärt i aktuella kurser. Studenterna träffas sedan i en årskursblandad grupp tillsammans med en lärare för att diskutera reflektionerna. I och med att kurserna löper över flera år kan vissa frågeställningar återkomma vid flera tillfällen och även ge studenterna möjlighet att se tillbaka på och reflektera kring sin egen utveckling.

Genom presentationen vill vi visa hur studenter kan utveckla sin förmåga i att reflektera kring sitt lärande och kring utvecklingen av färdigheter. Vi vill också visa hur studenterna får möjlighet att öka sin självinsikt, att beskriva färdigheter, intressen, styrkor och svagheter samt träna på att presentera sig själva och sina färdigheter. Genom att lära sig att inta ett reflekterande förhållningssätt kring såväl kunskaper som färdigheter ser vi att studenterna får en god grund att stå på inför den kommande yrkeskarriären och ett fortsatt livslångt lärande.

Preliminära referenser www.cdio.org Knight, P. and Yorke, M. (2004). Learning, Curriculum and Employability in Higher Education. London: RoutledgeFalmer. Yorke, M. (2006). Employability in higher education: what it is – what it is not. Higher Education Academy, ESECT Series One.

Assessmentcriteria–howtodevelop,implementandevaluateAnn‐Sofie Henriksson, enheten Högskolepedagogik inom avd. för Lärande 

 

AbstractIt has been argued student learning could be promoted through by developing their understanding of 

assessment criteria and assessment processes (Rust et al, 2003). For that to happen, good 

communication ‐ that is a dialogue with the students concerning tacit knowledge ‐ is required. This is 

a necessary complement to explicit knowledge provided through the verbal explication of 

assessment criteria by the teacher and could be achieved through the use of exemplars, discussions 

regarding marking practice and providing opportunities for dialogue between staff and students. 

Studies show that students who are not involved tend to overestimate their performance. (Rust et al, 

2003) The use of assessment criteria also gives teachers a good support when they provide feedback 

on assessments to the students. When developing criteria one needs to think about different ways of 

looking at the relationship between learning objectives and assessment criteria (Ekecrantz, 2007). 

One also needs to have in mind that development of criteria affects the whole constructive 

alignment process (Elmgren & Henriksson, 2010). 

The session will go into a concrete example of criteria development, implementation and evaluation 

within a course at the Faculty of Pharmacy at Uppsala University (Lundqvist & Swartling, 2011). 

 

References:Ekecrantz, S., (2007) Målrelaterade betyg. Att arbeta med betygskriterier och bedömning i sju grader. 

2007‐01‐31. UPC, Stockholms universitet. 

Elmgren, M. & Henriksson, A‐S., (2010) Universitetspedagogik. Norstedts. Stockholm. 

Lundqvist, E. & Swartling, M. (2011) Införande av betygskriterier i undervisning och examination. 

Högre utbildning, Vol. 1, Nr 2.  

Rust, C., Price, M. & O’Donovan, B. (2003). Improving Students’ Learning by Developing their 

Understanding of Assessment Criteria and Processes.  Assessment & Evaluation in Higher Education, 

Vol. 28, No. 2, p. 147‐164  

 

Hans Thunberg   Titel:  Novice mathematics students at the university: Experiences, orientations and expectations   Abstract: We report on an ongoing quantitative study of secondary – tertiary transition in mathematics. The aim of study is to investigate how students are transformed as learners of mathematics during the first year of tertiary education, and to describe the features of this transformation for different groups of students depending on their previous experiences, pre‐knowledge and orientations. The results were summarized with descriptive statistics, and Principal Component Analysis (PCA) was used to look for correlations. The results show that the teacher and the textbook play a crucial role in their learning of mathematics at both levels. When moving to tertiary level, the teacher’s role as individual helper deceases in importance, and instead peers and internet resources gain in importance. Furthermore, the students can be characterized as either individual or interactive learners, which correlates with the choice of university.  

AgilemethodsinmechatronicseducationMartin Edin Grimheden, 2012‐06‐24 

 

Beginning in 2011, agile methods for product development have been introduced at KTH within the 

context of a mechatronics capstone course. Mechatronics is here defined as “synergistic integration” 

of electronics, mechanical engineering, control and software engineering. Mechatronics product 

development, in this context, therefore deals with the development of complex and intelligent 

products, which implies multi‐disciplinary work and the use of models etc. from several domains and 

areas.  

With the integration of Scrum into the mechatronics capstone course, an educational favorable 

alternative is identified, to previously used design methodologies such as more traditional stage‐gate 

methods as the Waterfall or method or the V‐model. This is due to the emphasis on early 

prototyping, quick feedback and incremental development. It still might not be the favorable method 

for use in large scale industrial development projects where formal procedures might still be 

preferred, but the pedagogical advantages in mechatronics education are valuable. Incremental 

development and rapid prototyping for example gives many opportunities to reflect and improve. 

The Scrum focus on self‐organizing teams provides a platform to practice project organization, by 

empowering students to take responsibility for the organization and product development process. 

In this study, it is shown that it is possible and favorable to integrate Scrum in a mechatronics 

capstone course and that this can enhance student preparation for a future career as mechatronics 

product developers. It is also shown that this prepares the students with a larger flexibility to handle 

the increased complexity in mechatronics product development and thereby enabling the project 

teams to deliver results faster, more reliable and with higher quality.