synergistic combinations of dielectrics and metallization ... · synergistic combinations of...

25
Synergistic Combinations of Dielectrics and Metallization Process Technology to Achieve 22nm Interconnect Performance Targets Synergistic Combinations of Dielectrics and Synergistic Combinations of Dielectrics and Metallization Process Technology to Achieve Metallization Process Technology to Achieve 22nm Interconnect Performance Targets 22nm Interconnect Performance Targets G.A. G.A. Antonelli Antonelli a a , G. , G. Jiang Jiang a a , R. , R. Shaviv Shaviv a a , T. , T. Mountsier Mountsier a a , G. , G. Dixit Dixit a a , K.J. Park , K.J. Park a a , , I. I. Karim Karim a a , W. , W. Wu Wu a a , H. , H. Shobha Shobha b b , T. , T. Spooner Spooner b b , E. , E. Soda Soda c c , E. , E. Liniger Liniger d d , S. , S. Cohen Cohen d d , , J. J. Demarest Demarest b b , M. , M. Tagami Tagami c c , O. Vander , O. Vander Straten Straten b b and F. and F. Baumann Baumann e e a a Novellus Systems, 4000 N. First Street, San Jose, CA, 95134 Novellus Systems, 4000 N. First Street, San Jose, CA, 95134 b b IBM, 257 Fuller Road, Albany, NY, 12203 IBM, 257 Fuller Road, Albany, NY, 12203 c c Renesas Electronics, Renesas Electronics, 257 Fuller Road, Albany, NY 12203 257 Fuller Road, Albany, NY 12203 d d IBM T. J. Watson Research Center 1101 IBM T. J. Watson Research Center 1101 Kitchawan Kitchawan Road, Yorktown Heights, NY 10598 Road, Yorktown Heights, NY 10598 e e IBM Microelectronics, 2070 Route 52, Hopewell Junction, NY 12533 IBM Microelectronics, 2070 Route 52, Hopewell Junction, NY 12533

Upload: vuongnhan

Post on 10-May-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

Synergistic Combinations of Dielectrics and Metallization Process Technology to Achieve

22nm Interconnect Performance Targets

Synergistic Combinations of Dielectrics and Synergistic Combinations of Dielectrics and Metallization Process Technology to Achieve Metallization Process Technology to Achieve

22nm Interconnect Performance Targets22nm Interconnect Performance Targets

G.A. G.A. AntonelliAntonelliaa, G. , G. JiangJiangaa, R. , R. ShavivShavivaa, T. , T. MountsierMountsieraa, G. , G. DixitDixitaa, K.J. Park, K.J. Parkaa, , I. I. KarimKarimaa, W. , W. WuWuaa, H. , H. ShobhaShobhabb, T. , T. SpoonerSpoonerbb , E. , E. SodaSodacc, E. , E. LinigerLinigerdd, S. , S. CohenCohendd, ,

J. J. DemarestDemarestbb, M. , M. TagamiTagamicc, O. Vander , O. Vander StratenStratenbb and F. and F. BaumannBaumannee

a a Novellus Systems, 4000 N. First Street, San Jose, CA, 95134Novellus Systems, 4000 N. First Street, San Jose, CA, 95134b b IBM, 257 Fuller Road, Albany, NY, 12203IBM, 257 Fuller Road, Albany, NY, 12203

cc Renesas Electronics, Renesas Electronics, 257 Fuller Road, Albany, NY 12203257 Fuller Road, Albany, NY 12203d d IBM T. J. Watson Research Center 1101 IBM T. J. Watson Research Center 1101 KitchawanKitchawan Road, Yorktown Heights, NY 10598Road, Yorktown Heights, NY 10598

e e IBM Microelectronics, 2070 Route 52, Hopewell Junction, NY 12533IBM Microelectronics, 2070 Route 52, Hopewell Junction, NY 12533

P. P. 22

IntroductionIntroduction

� State of the Art • Leading edge at 32 nm and 28 nm technologies

– Intel released 32 nm technology in 2009

– IBM, GF, Alliance partners, TSMC, and others are poised to release 32 nm and 28 nm technologies in 2010

� State of scaling• Two to three year cycle per technology node continues• Three year development cycle and three years ramp-up continues

� State of interconnect integration• Dimension scaling continues as technology shrinks• Adaptation of porous Ultra Low-k (ULK) films lagging behind ITRS• ITRS “Difficult Challenges” remain:

– Managing RC delay and power– Filling small features– Reliability – both electrical and thermo-mechanical

P. P. 33

Technology Scaling RoadmapTechnology Scaling Roadmap

� Two year cycle per technology node continues

� Physical shrink entails• Patterning and RC scaling challenges• Reduced area of data storage element of memory requires new

materials and/or device architecture change

NonNon--planar CMOS and Variety of NVM Devices Forecasted to Enable Scalplanar CMOS and Variety of NVM Devices Forecasted to Enable Scaling ing

P. P. 44

≤45 nm Node Interconnect

� Porous bulk low-k dielectric� Lower k dielectric etch stop� Numerous integration issues due to

porosity of dielectric• Etch profile management

• Moisture absorption• Plasma & CMP damage• Low mechanical strength

� No significant gain in RC over

previous node + worse variance

RC Scaling ApproachesRC Scaling Approaches

Production Proven Materials Over Multiple GenerationsProduction Proven Materials Over Multiple Generations

P. P. 55

RC Scaling ApproachesRC Scaling Approaches

90 nm – 65 nm Node Interconnect� Dense bulk low-k dielectric� Stable dielectric etch stop

� Robust integration with small variance� 20-22% gain in RC over previous node

Production Proven Materials Over Multiple GenerationsProduction Proven Materials Over Multiple GenerationsMany Challenges in Integration of Porous ULKMany Challenges in Integration of Porous ULK

Only Incremental Gain in RCOnly Incremental Gain in RC

P. P. 66 Source: ITRS

Effect of Scattering on RC DelayEffect of Scattering on RC Delay

� Scattering of charge carriers causes > 3X increase in RC• Effective k is a secondary contributor to RC delay

0

5

10

15

20

25

45 32 22 16

Technology Node

RC

(N

orm

ali

ze

d t

o 4

5 n

m n

od

e)

RC with

Scattering

RC without Scattering

Node 65 45 32 22 16

Keff 3.3 2.9 2.8 2.5 2.3

Kbulk 3.1 2.7 2.5 2.2 2.0

Ideal Scaled

RC

Scaled RC delay is dominated by scatteringScaled RC delay is dominated by scattering

P. P. 77

Historical Trends for ITRS LowHistorical Trends for ITRS Low--k Adaptationk Adaptation

� Adaptation of ultra low-k (ULK) films proven harder than anticipated• Roadmap was unrealistic

� Very limited adaptation of ULK with k ≤ 2.5 with hardly any effect on keff

Source: ITRS

P. P. 88

The Case for High Aspect Ratio Metal LinesThe Case for High Aspect Ratio Metal Lines

� “Increasing metal aspect ratio improves RC delay”• M.T. Bohr, Proc. IEEE IEDM, pp. 241-244 (1995)

∆ ∆ ∆ ∆ Scaled (RC) decreases linearly with metal aspect ratioJ. H.-C. Chen, L. Jiang, A. Deutsch, M.A. Angyal and T.A. Spooner, AMC 2008, pp.83–90 (2009)

� Significant improvement in RC with high aspect ratio metal lines• Further enhanced in small dimensions as scattering affects Cu resistivity

• Higher aspect ratio allows higher volume to surface ratio and less scattering

P. P. 99

Meet RC Roadmap With the Same ULK MaterialMeet RC Roadmap With the Same ULK Material

ITRS, benchmark with k scalingVia AR 1.5:1, Metal AR 1.8:1

ITRS, constant keff 2.8

constant keff = 2.8

Metal Aspect Ratio = 3:1, Via Aspect Ratio = 2:1

ITRS, constant keff = 2.5

0

5

10

15

20

25

30

45 32 22 16

Technology Node

RC

(N

orm

alized

to

45 n

m n

od

e)

Approach leads to 30 % Lower RC at 16 nm without changing bulk kApproach leads to 30 % Lower RC at 16 nm without changing bulk k

Source: ITRS & Novellus simulations

P. P. 1010

RC Scaling Approaches RC Scaling Approaches –– A Second LookA Second Look

AR1.8

AR3.0

Scaling Feature Size & Bulk k Alternate Approach

P. P. 1111

RC Scaling Approaches RC Scaling Approaches –– A Second LookA Second Look

High AR Trenches & High AR Trenches & ViasVias in a robust ULK to Enable Lower RCin a robust ULK to Enable Lower RC

≤45 nm Node RC Scaling Approach� A robust ULK material with k = 2.5

• Vertical etch profile

• No moisture absorption• Resistance to plasma damage

� Thin dielectric etch stop� Enable Cu electroplating of high AR

trenches and vias with continuous Cu seed� Improvement in RC

Alternate Approach

P. P. 1212

Porogen-based ULK Dense ULKEtch flaring

Voids with long queue time

65 nm Technology Node

A Dense ULKA Dense ULK

Porogen-basedDense

RC Delay

CureCure

Si

O

SiOSi

O

Si

O

CH3O

Si O CH3

OCH3

CH2

CH3

H3C

O

Si

O

SiOSi

O

Si

O

CH3O

Si O CH3

OCH3

CH2

CH3

H3C

O

Si

O

SiOSi

O

Si

O

CH3O

Si O CH3

OCH3

R

CH3

H3C

O

R

Si

O

SiOSi

O

Si

O

CH3O

Si O CH3

OCH3

R

CH3

H3C

O

R

Dense ULK

Single Precursor

CureCure

Si

O

SiO

SiOSi

O

Si

O

CH3O

Si OCH3

O

OCH3

O

CH3O

H3C

O

H3CSi

O

SiO

SiOSi

O

Si

O

CH3O

Si OCH3

O

OCH3

O

CH3O

H3C

O

H3CSi

O

SiO

SiOSi

O

Si

O

CH3O

Si OCH2

O

OO

O

CH3O

H3C

O

H3CSi

Si

Si

O

SiO

SiOSi

O

Si

O

CH3O

Si OCH2

O

OO

O

CH3O

H3C

O

H3CSi

Si

Porogen-based ULK

Precursor + Porogen

0

1000

1800

Dielectric constant (k)

Solvent Diffusion Coefficient

Porogen-based ULK

Dense ULK

2.5 2.6 2.7 2.8

Dif

f. C

oe

f. o

f IP

A (

um

2/m

in)

Source: Novellus Systems

PALS porosity data

0.5 1.5 2.5Spherical Pore Diameter (nm)

Arb

itra

ry u

nit

s

0 1.0 2.0

Porogen-based

Dense

0.5 1.5 2.5Spherical Pore Diameter (nm)

Arb

itra

ry u

nit

s

0 1.0 2.0

Porogen-based

Dense

Porogen-based

Dense

P. P. 1313

Chemical Structure of Dense ULKChemical Structure of Dense ULK

� D group decreases after UV curing

� Si-CH2-Si group appears after UV curing

� D group decreases after UV curing

� Si-CH2-Si group appears after UV curing

0

0.02

0.04

0.06

0.08

0.1

1225 1275 1325 1375 1425

Wavenumber (cm-1)

Ab

so

rban

ce (

a.u

.)

AS DEP

UV Cured

DD

Si-CH2-Si

TT

DD

TT

CH3

O

CH3

OSi

CH3

O

O

OSi

Composition from RBS & HFSSi:O:H:C = 0.14:0.21:0.32:0.33

A Ratio of peak area

Parameter Technique Units Dense ULKSi-CH3/Si-O A FTIR % 3.5 ± 0.2

CHx/Si-O A FTIR % 3.2 ± 0.2

P. P. 1414

Fundamental Studies of ULK Etch ProcessFundamental Studies of ULK Etch ProcessMeasurements of Etching YieldMeasurements of Etching Yield

0

200

400

600

800

1000

0 15 30 45 60 75 90Off-normal Angle( o)

Etc

hing

Yie

ld (

Å/1

017

ions

)

Dense ULK

SiO2Coral

Porogen-based ULK

� Process conditions:• RF 400 W, DC 350 V• 7% C4F8/Ar• Beam source pressure: 4mT

Sample in cryopumped

lower chamber

e-

Filament for Beam Space

Charge Neutralization

Gridded Orifice,

Grounded

Extracted Plasma Beam

Plasma 0 – 500 V

Ceramic Liner

θθθθ

Experimental Etch Studies ����(H.H. Sawin/W. Guo MIT)

Source: G. A. Antonelli, G. Jiang, M. Sriram, K. Chattopadhyay, W. Guo, and H.H. Sawin, Mat. Res. Soc. Symp. Proc. 1249, F04-15 (2010)

P. P. 1515

Fundamental Studies of ULK Etch ProcessFundamental Studies of ULK Etch ProcessPostPost--Etch Surface CompositionEtch Surface Composition

0

200

400

600

800

1000

0 15 30 45 60 75 90Off-normal Angle(o)

Etc

hing

Yie

ld (

Å/1

017

ions

)

Dense ULK

SiO2Coral

Porogen-based ULK

How do we explain this result?

High carbon and fluorine levels at the surface suggest polymer formation

0

0.2

0.4

0.6

0.8

Su

rfac

e C

om

po

sit

ion

Fra

cti

on

0 30 60 90Off-normal Angle(°)

Si O F C

0

0.2

0.4

0.6

0.8

Off-normal Angle(°)

0 30 60 90

Si O F C

Su

rfac

e C

om

po

sit

ion

Fra

cti

on

XPS Studies of Surface Composition

Porogen-Based ULK

Dense ULK

Source: G. A. Antonelli, G. Jiang, M. Sriram, K. Chattopadhyay, W. Guo, and H.H. Sawin, Mat. Res. Soc. Symp. Proc. 1249, F04-15 (2010)

P. P. 1616

Line Edge Roughness and the ULK Etch ProcessLine Edge Roughness and the ULK Etch Process

82o off-normal angle C4F8/Ar Plasma

75o off-normal angle C4F8/Ar Plasma

RMS = 1.1 nm RMS = 1.8 nm RMS = 2.8 nm

RMS = 1.4 nm RMS = 4.5 nm RMS = 12.5 nm

High Si-CH3Non-Optimized Si-CH3Optimized Si-CH3

Optimized cure conditions result in improved sidewall roughness

Source: G. A. Antonelli, G. Jiang, M. Sriram, K. Chattopadhyay, W. Guo, and H.H. Sawin, Mat. Res. Soc. Symp. Proc. 1249, F04-15 (2010)

P. P. 1717

Coral

154.5nm

83.2nm114.9 nm

Porogen-based ULK

108.8nm

158.5nm

84.6nm

Dense ULK

81.7nm

154.7nm

108.7nm

Novellus SystemsCustomer Integration Center

Fundamental Studies of ULK Etch ProcessFundamental Studies of ULK Etch ProcessComparison of 65 nm Node Features in LowComparison of 65 nm Node Features in Low--k & ULK Materialsk & ULK Materials

Source: G. A. Antonelli, G. Jiang, M. Sriram, K. Chattopadhyay, W. Guo, and H.H. Sawin, Mat. Res. Soc. Symp. Proc. 1249, F04-15 (2010)

Etched in Lam Research system with CF4/Ar/O2 gas mixture

Off-normal Angle( )

0

200

400

600

800

1000

0 15 30 45 60 75 90o

Etc

hing

Yie

ld (

Å/1

017

ions

)

Dense ULK

SiO2Coral

Porogen-based ULK

P. P. 1818

IBM 32 nm Node Features in Dense ULKIBM 32 nm Node Features in Dense ULKProcess Flow & CrossProcess Flow & Cross--SectionsSections

Process Flow STEM of Trench Features:

Source: IBM

Dep. dielectric barrier

Dep. dense ULK

Dep. HM stack

Spin on organic layer

Via litho & etch

Trench litho & etch

Dep. Barrier & Cu Seed

Electroplate Cu

Cu Anneal

Cu CMP

planarizing layer

P. P. 1919

150oC Comb-Serp I-V Plot: 8SJB6

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 10 20 30 40 50 60 70

Voltage (volts)

Cu

rren

t (a

mp

s)

Patterned wafer level stress breakdown results:

Stress Charge

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1 3 5 7 9 11 13 15 17 19 21 23

Site Number

Ch

arg

e

8SJB6

2 Stress Fails

Test conditions:3 MV/cm stress for 3 minutes prior to each I-V.

Current measured and integrated into a charge during stress.

Stress Fails

Source: IBM

IBM 32 nm Node Features in Dense ULKIBM 32 nm Node Features in Dense ULKPreliminary Reliability ResultsPreliminary Reliability Results

Module level TDDB results:

TD

DB

Failu

re P

rob

ab

ilit

y (

%)

Failure Time (h)

1E-3 0.01 0.1 1 10 100 10001

10

40

70

95

no fails 14.5V(3.5Mv/cm)

477h

M2 areatddb_1A 1cmps1 pads 18,20space 41nm

16.5V (4.0 MV/cm)18.5V (4.5 MV/cm)20.5V (5.0 MV/cm)

TD

DB

Failu

re P

rob

ab

ilit

y (

%)

Failure Time (h)

1E-3 0.01 0.1 1 10 100 10001

10

40

70

95

no fails 14.5V(3.5Mv/cm)

477h

M2 area tddb_1A 1cmps1 pads 18,20space 41nm

16.5V (4.0 MV/cm)18.5V (4.5 MV/cm)20.5V (5.0 MV/cm)

P. P. 2020 Source: IBM

EDX Analysis of ALD Compatibility of Dense ULKEDX Analysis of ALD Compatibility of Dense ULK

No Ta diffusion into the dense ULK was observed

EDX:STEM:

(Red color indicates presence of Ta)

P. P. 2121

Position (nm)

C/O

C/O

C/O

Position (nm)

EELS Analysis of Process Damage in Dense ULKEELS Analysis of Process Damage in Dense ULK

Source: IBM

EELS:

P. P. 2222

IBM 22 nm Node Features in Dense ULKIBM 22 nm Node Features in Dense ULKPerformance of Interconnects with Higher Aspect Ratio TrenchPerformance of Interconnects with Higher Aspect Ratio Trench

A reduction in resistance is observed at higher trench aspect raA reduction in resistance is observed at higher trench aspect ratio tio

Source: IBM

Trench

Aspect Ratio

Resistance Shift

(40 nm line width)

Resistance Shift

(80 nm line width)

2.15:1 -14% -14%

2.33:1 -14% -23%

P. P. 2323

Challenges for PVD Cu Extendibility to <22nmChallenges for PVD Cu Extendibility to <22nm

� Seed overhang• Critical due to small top opening

� Sidewall coverage• Limited due to overhang growth

� Edge asymmetry• Critical with thinner sidewall coverage

� Pre-plate aspect ratio• Becomes higher after B/S relative to larger feature

M1 & M2 Copper

Barrier/Seed

Small geometries test PVD Cu extendibilitySmall geometries test PVD Cu extendibility

P. P. 2424

Hollow Cathode Magnetron Advanced Cu SeedHollow Cathode Magnetron Advanced Cu Seed

1. Cu deposited at a high density plasma

2. Cu migrates to lower surface energy state

Cu Neutral

Cu+ Ion

PVD Cu seed only

PVD Cu seed & Electroplated Cu

Source: Novellus Systems

PVD Cu seed only

P. P. 2525

ConclusionsConclusions

� How can we resolve the ITRS “Difficult Challenge” of RC, filling small features, and reliability with robust integrated suite of processes?

� This data indicates that one possible solution could be shifting scaling to trench and via aspect ratio

� That transition is predicated on having a robust ULK material capable of being patterned at such aspect ratios and the ability to fill these features with copper

� Dense ULK materials designed to have a low pore interconnectivity and a high carbon content can meet these patterning requirements, have a low susceptibility to process induced damage, and are compatible with future metal barrier deposition technologies

� When necessary, alternate methods of copper seed deposition exist and could be used to further extend electrochemical fill methods