student-handbook second year - prmceam badnera

34
Vidarbha Youth Welfare Society Prof Ram Meghe College of Engineering & Management, Badnera Department of Computer Science & Engineering Vision To become a centre of excellence in computer science & engineering education, by providing the standard academics that connects knowledge, practice and research. Mission To foster computer science & engineering graduates by providing a continuously improving academic environment that promotes the advancement of computer science & engineering knowledge, both in creation and dissemination. Student-Handbook Second Year

Upload: others

Post on 16-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Student-Handbook Second Year - PRMCEAM Badnera

Vidarbha Youth Welfare Society

Prof Ram Meghe College of Engineering &

Management, Badnera

Department of Computer Science & Engineering

Vision

To become a centre of excellence in computer science & engineering education, by providing the

standard academics that connects knowledge, practice and research.

Mission

To foster computer science & engineering graduates by providing a continuously improving

academic environment that promotes the advancement of computer science & engineering

knowledge, both in creation and dissemination.

Student-Handbook Second Year

Page 2: Student-Handbook Second Year - PRMCEAM Badnera

A warm welcome to all the students..!!

Dear Students,

It’s my pleasure to welcome you all here as to be engineers of the society.

It is rightly said that the secret of getting ahead is getting started. And here comes the day wherein

you will be starting with the process of learning and gaining knowledge related to the technical

domain that you’ve selected. This year marks the beginning of your journey.

Once this journey is started students are expected to follow certain guidelines for achieving

excellence on their way. As doing the best at this moment will definitely put you in the best place

for the next moment, with this in souls you are expected to start by learning a very important lesson

of being responsible for oneself.

At this turning point of your career while entering the actual professional stream which is much

disjoint from the previous phase, so you are expected to be on your toes which will help get

through efficiently. One amongst the important things that you should concentrate on is the

communication skills that hamper your presentation skills which in turn is the heart of any

professional career you choose to enter in near future. The second in the list comes the core

subjects and the languages related to the branch most of which you will be coming across this

year. So it’s high time to keep your minds open and grab all of it as it comes.

It’s the job that is never started takes the longest to finish. So start early and reach in time.

Page 3: Student-Handbook Second Year - PRMCEAM Badnera

Faculties:

S.No Name Designation Total Experience

in Yrs.

1 Dr. P.A.Khodke Associate Professor & Head 23

2 Dr. D. G. Harkut Associate Professor 23

3 Dr. A. P. Bhagat Assistant Professor 13

4 Prof. R.P.Sonar Assistant Professor 12

5 Prof. L. S. Mutneja Assistant Professor 14

6 Prof. V.A.Rajgure Assistant Professor 11

7 Prof. S. A. Shah Assistant Professor 8

8 Prof. R.S.Lande Assistant Professor 9

9 Prof. P. D. Thakar Assistant Professor 7

10 Prof. S.A.Khan Assistant Professor 9

11 Prof. A. R. Verma Assistant Professor 8

12 Prof. S. G. Thorat Assistant Professor 10

13 Prof. S. N. Khan Assistant Professor 6

14 Prof. C.R.Ingole Assistant Professor 5

15 Prof. S. S. Deshmukh Assistant Professor 4

16 Prof. P. R. Patil Assistant Professor 4

17 Prof. P. S. Mohod Assistant Professor 4

18 Prof. V. V. Bais Assistant Professor 3

19 Prof. M. G. Tingane Assistant Professor 3

20 Prof. A.A.Ugwekar Lecturer(Pro-Term) 11

Page 4: Student-Handbook Second Year - PRMCEAM Badnera

Program Flow :

Page 5: Student-Handbook Second Year - PRMCEAM Badnera

Sant Gadge Baba Amravati University Scheme:

Page 6: Student-Handbook Second Year - PRMCEAM Badnera

3KS01 Engineering Mathematics-III

Teaching Scheme Examination Scheme

Lectures: 4+1Hrs/ week Theory: 100 Marks

Credits: 5

Pre-Requisite:

1. (1A1) Engineering Mathematics-I

2. (1B1) Engineering Mathematics-II

Objectives:

1. To teach the system of differential equations and difference equations.

2. To explain Laplace, Fourier and Z Transforms.

3. To teach mathematical operations, analysis and problems involving complex numbers.

4. To teach geometry of curves, two and three dimensional regions and calculus of vector

valued functions.

Outcomes:

After successfully completing the course, the students will be able to

1. Demonstrate the knowledge of differential equations for solving engineering problems.

2. Define and apply Z-transforms for solving difference equations.

3. Recognize and express Laplace Transforms and use it for solving differential equations.

4. Evaluate problems based on Fourier integral and Transforms.

5. Comprehend knowledge of complex analysis in terms of analytic functions, conformal

mappings and power series.

6. To recognize, interpret and differentiate vector valued functions.

SECTION-A

UNIT I: Ordinary differential equations:- Complete solution, Operator D, Rules for finding

complementary function, the inverse operator, Rules for finding the particular integral, Method of

variations of parameters, Cauchy’s and Legendre’s linear differential equations.

UNIT II: Laplace transforms:- definition, standard forms, properties of Laplace transform,

inverse Laplace transform, initial and final value theorem, convolution theorem, Laplace transform

of impulse function, Unit step function, Laplace transforms of periodic function Solution of Linear

differential equations, Simultaneous differential equation by Laplace transform method.

UNIT III: a) Difference equation: solution of difference equations of first order Solution of

difference equations of higher order with constant co-efficient b) Z-transform: Definition, standard

forms, Z-transform of impulse function, Unit step functions, Properties of Z transforms (linearity,

shifting, multiplication by k, change of scale), initial and final values, inverse Z transforms(by

direct division and partial fraction), Solution of difference equation by Z-transforms.

SECTION-B

UNIT IV: a) Fourier transforms: Definition, standard forms, inverse Fourier transforms, properties

of Fourier transforms, convolution theorem, Fourier sine and Fourier cosine transforms and

integrals. b) Partial differential equation of first order of following form:-(i) f (p,q)=0; (ii) f

Page 7: Student-Handbook Second Year - PRMCEAM Badnera

(p,q,z)=0; (iii) f (x,p)=g (y,q); (iv) Pp+Qq=R(Lagranges Form); (v) Z=px+qy+f(p,q) (Clairaut

form)

UNIT V: Complex Analysis: Functions of complex variables, Analytic function, Cauchy-Reimann

conditions, Harmonic function, Harmonic conjugate functions, Milne’s method conformal

mappings (translation, rotation, magnification and bilinear transformation), singular points,

expansion of function in Taylor’s and Laurent’s series.

UNIT VI: Vector calculus: Scalar and vector point functions, Differentiation of vectors, Curves in

space, Gradient of a scalar point function, Directional derivatives, Divergence and curl of a vector

point function and their physical meaning, expansion formulae (with out proof), line, surface,

volume integrals, irrational and solenoidal vector fields.

BOOKS RECOMMENDED:-

1. Elements of Applied Mathematics by P.N. Wartikar and J.N. Wartikar

2. A Text Book of Differential Calculus by Gorakh Prasad

3. Engineering Mathematics by Chandrika Prasad

4. Advancing Engineering Mathematics by E.K.Kreyzig

5. A Text Book of Applied Mathematics by P.N. Wartikar and J.N. Wartikar.

6. Higher Engineering Mathematics by B.S. Grewal

7. Integral Transforms by Goyal & Gupta

Page 8: Student-Handbook Second Year - PRMCEAM Badnera

3KS02Programming Methodology

Teaching Scheme Examination Scheme

Lectures: 4 Hrs/ week Theory: 100 Marks

Credits: 4

Pre-requisites

1. Basic concepts of Object Oriented Methodology.

2. Basic knowledge of Computer Science terminology.

Objectives

1. To make students aware about the basic concepts of Object oriented programming.

2. To give comprehensive and practical introduction to programming in a high-level

programming language.

3. To explain the program development process from the formulation of simple problems to

the implementation of a solution on a computer.

4. Preparing the students to learn advanced Java concepts like garbage collection, event

handling, file handling.

5. To make students aware of the programming standards.

Outcomes

After successful completion of the course, the student will be able to:

1. Understand basic concepts of Object Oriented Methodology.

2. Design the software solution using the OOP paradigm.

3. Describe and list the use of various system libraries.

4. Design and implement the programs based on basic concepts of Java such as operators,

classes, objects, inheritance, packages and exception handling.

5. Apply the Java programming concepts in project development in technologies like Android,

Java Script.

6. Create software projects to solve real world problems.

SECTIONA

Unit I: Introduction to Object Oriented Programming: Introduction, Need of OOP, Principles of

Object-Oriented Languages, Procedural Language Vs OOP, Application of OOP, Java Virtual

Machine, Java features, Program Structures. Java Programming Constructs: Variables, Primitive

data types,

Identifier, Literals, Operators, Expressions, Precedence Rules and Associativity, Primitive Type

Conversion and Casting, Flow of Control.

Unit II: Classes and Objects: Classes, Objects, Creating Objects, Methods, Constructors, Cleaning

up Unused Objects, Class Variable and Methods, this keyword, Arrays, Command Line

Arguments.

Page 9: Student-Handbook Second Year - PRMCEAM Badnera

Unit III: Inheritance: Inheritance vs. Aggregation, Method Overriding, super keyword, final

keyword, Abstract class. Interfaces, Packages and Enumeration: Interface, Packages, java.lang

package, Enum type.

SECTION B

Unit IV: Exception: Introduction, Exception handling Techniques, User-defind exception,

Exception Encapsulation and Enrichment. Input/Output: The java.io.file Class, Reading and

Writing data, Randomly Accessing a file, Reading and Writing Files using I/O Package.

Unit V: Applets: Introduction, Applet Class, Applet structure, Applet Life cycle, Common

Methods used in displaying the output, paint (), update () and repaint (), More about applet tag, get

Document Base () and get Code Base () methods, Applet Context Interface, Audio clip, Graphic

Class, Color, Font, Font Metrics.

Unit VI: Event Handling: Introduction, Event delegation Model,java.awt.event Description,

Sources of events, Event Listeners, Adapter classes, Inner Classes. Abstract Window Toolkit:

Introduction, Components and Containers, Button, Label, Checkbox, Radio Buttons, List Boxes,

Choice Boxes, Text field and Text area, Container Class, Layouts, Menu, Scrollbar.

TEXTBOOK: Sachin Malhotra and Saurabh Choudhary: Programming in Java, Oxford University

Press 2010.

REFERENCE BOOKS:

1. Herbert Schildt: Java Complete References (McGraw Hill)

2. E. Balagurusamy: Programming with Java (McGraw Hill)

3. Khalid Mughal: A Programmer’s Guide to Java Certification, 3rdEdition (Pearson)

4. Liang: A text Book of Java Programming, (PHI)

5. Sharnam Shah and Vaishali Shah: Core Java for Beginners,(SPD),2010.

Page 10: Student-Handbook Second Year - PRMCEAM Badnera

3KS03 / 3KE03 Electronic Devices & Circuits

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week Theory : 100 Marks

Credits : 4

Pre-requisites

1. Basics Semiconductor Physics

2. Basic Electrical Engineering.

3. Basic Electronics.

Objectives

1. To provide an overview of the operations of the basic electronic device

2. To equip the students with knowledge on analysis of various electronics equipment and

circuits.

3. To equip the students with testing of various electronics equipment and circuits

Outcomes

After successful completion of the course, students will be able to:

1. Define the characteristics and parameters of Diode and its application.

2. Understand the basics of electronic circuits and how to test them.

3. Understand the parameter and characteristics of BJTs, JFET and MOSFET.

4. Apply the knowledge of transistors in application

5. Understand the types of Oscillators.

6. Understand the Optoelectronics devices and applications

SECTION-A

Unit I: pn-Junction Diode, Characteristics and Parameters, Diode Approximation, DC load line

analysis, Temperature effects, Diode AC models, Zener diodes, Half- Wave Rectifications, Full-

Wave Rectifications, Half-Wave Rectifier Power Supply, Full-Wave Rectifier Power Supply, RC

and AC Power Supply Filters.

Unit II: BJT operation, BJT Voltages and Currents, BJT Amplification: Current and Voltage, BJT

Switching, Common-Base Characteristics, Common-Emitter Characteristics, Common-Collector

Characteristics, Transistor testing.

Unit III: DC Load Line and Bias Point, Base Bias, Collector-to-Base Bias, Voltage-Divider Bias,

Comparison of Basic Bias Circuits, Troubleshooting BJT Bias Circuits, Bias Circuit Design.

SECTION-B

Unit IV: Junction Field Effect Transistors, n-Channel and p-Channel JFET, JFET Characteristics,

JFET Data Sheets and Parameters, FET Amplifications and Switching, MOSFETs: Enhancement

MOSFET, Depletion _Enhancement MOSFET, VMOSFET, Comparison of p-Channel and p-

Channel FETs.

Unit V: BJT Phase Shift Oscillators, BJT Colpitts Oscillator, BJTHartley Oscillator, BJT Wein

Bridge Oscillator, Oscillator Frequency stabilization: Frequency Stability, Piezoelectric Crystals,

Crystal Equivalent Circuit, Crystals Control of Oscillators.

Page 11: Student-Handbook Second Year - PRMCEAM Badnera

Unit VI: Optoelectronic Devices: Light Units, Light-Emitting Diodes, Seven-Segment Displays,

Photoconductive Cells, Photodiodes and Solar Cells, Phototransistors, Optocouplers, Photo-

multipler Tube, Laser Diode.

TEXT BOOK: David A. Bell: Electronic Devices and Circuits, Fifth Edition, Oxford University

Press.

Reference Books:

1. Malvino: Principles of Electronics, TMH.

2. Millman & Halkies: Electronic Devices & Circuits, McGraw Hill.

3. Millman & Halkies: Integrated Electronics, McGraw Hill.

4. Millman: Microelectronic, McGraw Hill.

5. Roberts and Sedra: SPICE, Second Edition, Oxford University Press.

6. Sedra and Smith: Microelectronic Circuits, Oxford University Press.

Page 12: Student-Handbook Second Year - PRMCEAM Badnera

3KS04 Discrete Structures

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week Theory : 100 Marks

Credits : 4

Pre-requisites

Basic knowledge of discrete mathematics.

Objectives

1. To make the students aware of problem-solving by applying mathematical logic.

2. To demonstrate the use of inference theory for solving real world problem.

3. To explain discrete structure like tree, graph and lattice.

Outcomes

After the completion of course, students will be able to:

1. Instigate the logical reasoning capability.

2. Formulate the logical and mathematical solution.

3. Construct formal proofs in proposition and predicate logic.

4. Define mathematical concepts such as Set relation function, minimization of the Boolean

function and discrete structures like Lattice, Tree and Graphs.

5. Solve the real world problem with inference theory.

SECTIONA

UNIT I: Mathematical Logic: Statements & Notation, Connectives, Equivalence Formula,

Duality Law, Tautological Implication, Normal forms, Parenthesized Infix notation and Polish

Notations.

UNIT II: Theory of inference: The theory of inference for the statement calculus, Validity using

truth tables, Predicate calculus, Inference theory of the Predicate Calculus.

UNIT III: Set Theory: Basic concepts, Venn Diagrams, Representation of Discrete Structure,

Relation and ordering, Partial Ordering, Functions, Recursions, Sets and predicates.

SECTION B

UNIT IV: Algebraic Structures: Semi-groups and Monoids, Product& Quotients of semi-groups,

Polish expression & their compilation, Groups, Product and Quotients of Groups.

UNIT V: Lattice & Boolean Algebra: Lattices, partially ordered sets, Boolean algebra, Functions

on Boolean Algebra, Boolean Functions as Boolean Polynomials, Minimization of Boolean

Functions.

UNITVI: Graph Theory: Basic concepts, Paths, Reachability &connectedness, Matrix

representation of graphs, Trees: tree searching, Undirected trees, Minimal spanning trees.

Text Book:

Page 13: Student-Handbook Second Year - PRMCEAM Badnera

J.P.Trembley,R. Manohar:”Discrete Mathematical Structures with application to Computer

Science” 1988(MCG)

Reference Books:

1. C.L. Liu : “Combinational Mathematics” Mc Graw Hill, 1988

2 Stanant “Discrete Structure” Prentice Hall.

3. C.L.Liu “Element of Discrete Mathematics” Second Edition McGraw Hill, 1987

4. Norman L.Biggs “Discrete Mathematics” Second Edition, Oxford University Press, Indian

Edition.

5. N. Chandrasekaran & M. Umaparvathi, “Discrete Mathematics” PHI (EEE) 2010.

6. Purna Chandra Biswal, “Discrete Mathematics & Graph Theory” Second Edition, PHI

(EEE)2009.

7. Chakraborty and Sarkar,” Discrete Mathematics” Oxford University Press, Indian Edition,2011.

Page 14: Student-Handbook Second Year - PRMCEAM Badnera

5KS05 Computer Organization

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week Theory : 100 Marks

Credits : 4

Pre-requisites

1. Knowledge of basic digital electronics devices and Circuits.

Objectives

1. To provide the relationship between instruction set architecture, micro architecture, and

system architecture and their roles in the development of the computer.

2. To make the students aware of the various classes of instruction: data movement,

arithmetic, logical and flow control and its execution.

3. To explain how interrupts are used to implement I/O control and data transfers.

4. To explain the memory and various peripherals devices.

Course Outcomes:

After successful completion of the course, students will be able to:

1. Define and analyze the main functional units of a computer, the basic input/output operation and

various addressing modes.

2. Understand the execution of complete instruction and microinstruction. Also, able to write

and execute assembly language programs.

3. Design electrical circuitry to the processor I/O ports.

4. Understand memory organization and identify where, when and how enhancements of

computer performance can be accomplished.

5. Solve basic binary math operations using the computer.

6. Comprehend various input-output devices, online storage devices and communication

devices.

SECTION-A

Unit I: Basic Structure of Computer: Hardware & Software, Addressing Methods, Program

Sequencing, Concept of Memory Locations & Address, Main Memory Operation, Instructions &

Instruction Sequencing, Addressing Modes, Basic I/O Operations, Stacks, Queues & Subroutines.

Unit II: Processing Unit: Fundamental Concepts, Execution of a Complete Instruction, Hardwired

Control, Performance Consideration, Microprogrammed Control, Microinstructions, Microprogram

Sequencing, Microinstruction Pre-fetching, Emulation.

Unit III: I/O Organization: Accessing I/O Devices, Interrupts, Direct Memory Access, Bus

arbitration, I/O Hardware, Processor Bus and Interfacing Circuits, Standard I/O Interfaces, SCSI

Bus, Backplane Bus Standard.

Page 15: Student-Handbook Second Year - PRMCEAM Badnera

SECTION-B

Unit IV: Memory Unit: Basic Concepts, Semiconductor RAM Memories, Internal Organization,

Static & Dynamic RAMs, ROMs, Speed, Size& Cost Considerations. Cache Memories:

Performance considerations. Virtual Memories, Address Translation, Memory Management

Requirements.

Unit V: Arithmetic: Number representation, Design of Fast Adders, Signed Addition and

Subtraction. Multiplication of Positive numbers, Booth’s Algorithm, Integer Division, Floating-

Point Numbers and related operations.

Unit VI: Computer Peripherals: Input-Output Devices like Video displays, Video terminals,

Graphics input devices, Printers. Online storage devices: Magnetic disks, Magnetic tape Systems,

CD-ROM systems. Communication devices: Modems.

TEXTBOOK: V. Carl Hamacher& S. Zaky: Computer Organization, Fourth Edition, McGraw-

Hill (ISE).

REFERENCES:

1. Stallings. W: Computer Organization & Architecture, Fifth Edition, Pearson Education.

2. Tenanbaum A.S: Structured Computer Organization, Fifth Edition, Pearson Education.

3. Hayes J.P: Computer Architecture & Organization, Fourth Edition, McGraw- Hill.

4. M. Mano &Kime Logie: Computer Design Fundamentals, Second Edition, Pearson Education.

Page 16: Student-Handbook Second Year - PRMCEAM Badnera

3KS08 Computer Lab-I(Web Technology)

Teaching Scheme Examination Scheme

Lectures : 1Hrs/ week Practical : 50 Marks

Credits : 2

Course Pre-Requisites:

1. Basic programming concepts

Objectives:

1. To teach students about HTML Coding& Web Page Design.

2. To teach students image handling, table creation, frameset creation in web page.

3. To demonstrate form creation required for the web sites.

4. To make students aware of the use and importance of Cascading Style Sheet with HTML.

5. To teach the use of various multimedia handling tools.

Outcomes:

After successful completion of the course, the student will be able to:

1. Apply the knowledge for designing a web page using table, images, forms and framesets.

2. Design a web page using basic HTML tags along with its attributes.

3. Embed the multimedia in web pages.

4. Use various tools for handling multimedia.

5. Develop a website using HTML and CSS.

Unit I: HTML: HTML Coding, Basic Web Graphics, Web Page Design &Site Building, Adding

Multimedia to the Web.

Unit II: Paint Shop Pro/Photoshop: Photoshop components, working with Photoshop, Image

Basics, File Formats, color Palette, Layers, Creating New Images, Brushes, Grids & Gides,

Scaling& Positioning Images, Moving & Merging Layers, Tool Palette, Screen Capturing, Grey

styling, Animation.

Unit III: Image Handling: Scanning Images, Adding Text to the Images, Designing Icons, Creating

Background Images, Color Models, Color Calibration, Creating Gradients, Oil Paint Effect.

Unit IV: Multimedia: Creating Clippings, Animation with Sound Effects, Adding Audio or Video,

Windows Media Player Active x control, Agent Control, Embedding VRML in a web Page, Real

Player Active x Control.

Unit V: Applications: Flash, Working with Layers, Working with Movies, The Drawing Tools,

Color Selection, Symbols, Flash Buttons, Flash Menu Smart Clip, Interactivity with Action Script,

Frame Actions and the Timeline, Exporting Animation, Applications in Flash

Page 17: Student-Handbook Second Year - PRMCEAM Badnera

TEXT BOOK:

1. Meenakshi G. M., “Web Graphics”, Scitech Publications (India) Pvt. Ltd., 2007.

REFERENCE BOOKS:

1. 1. Joel Sklar, “Textbook of Web Design”, Cengage Learning.

2. 2. James L. Mohler & Jon M. Duff, “Designing Interctive Web Sites”, Cengage Learning.

3. 3. Dr. Raja Subramanian, “Creating Web Sites in Engineering”, University Science Press

(An Imprint of Laxmi Publication Pvt. Ltd.).

4. 4. Uttam K. Roy, “Web Technologies”, Oxford University Press. Minimum eight

experiments/programming assignments must be completed based on the above syllabus

covering each of the units.

Credits: 1 Practical: 50 Marks

3KS 06 / 3KE06 Programming Methodology Lab:

Minimum Eight experiments/programming assignments must be completed based on the respective

syllabus covering each of the units.

Credits: 1 Practical: 50 Marks

3KS 07 / 3KE07 Electronic Devices & Circuits Lab :

Minimum Eight experiments/programming assignments must be completed based on the respective

syllabus covering each of the units.

Page 18: Student-Handbook Second Year - PRMCEAM Badnera

SEMESTER : FOURTH

4KS01 Data Structures

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week Theory : 100 Marks

Credits : 4

Course Pre-requisites

1. Basic C programming

2. Knowledge of Algorithms

Objectives

1. To provide knowledge about various data structure.

2. To equip the student with ability to identify and analyze the usage of various data structures.

3. To make the students aware about searching and sorting methods.

Outcomes

After successful completion of the course, students will be able to:

1. Define basic terminologies related to Algorithmic.

2. Study and implement pattern matching algorithms.

3. Study and implement different data structures like Array, Linked list, Stack, Queue, Tree,

Graph.

4. Apply and evaluate different data structures according to need of data storage for different

application.

5. Implement searching and sorting methods.

SECTION A

Unit I: Data structures basics, Mathematical /algorithmic notations& functions, Complexity of

algorithms, Sub-algorithms. String processing: storing strings, character data type, string

operations, word processing, and pattern matching algorithms. 08Hrs

Unit II: Linear arrays and their representation in memory, traversing linear arrays, inserting &

deleting operations, Bubble sort, Linear search and Binary search algorithms. Multidimensional

arrays, Pointer arrays. Record structures and their memory representation. Matrices and sparse

matrices. 08Hrs

Unit III: Linked lists and their representation in memory, traversing a linked list, searching a

linked list. Memory allocation & garbage collection. Insertion deletion operations on linked lists.

Header linked lists, Two- way linked lists. 08Hrs

Page 19: Student-Handbook Second Year - PRMCEAM Badnera

SECTION B

Unit IV: Stacks and their array representation. Arithmetic expressions: Polish notation. Quick sort,

an application of stacks. Implementation of recursive procedures by stacks, Queues. Deques.

Priority queues. 08Hrs

Unit V: Trees, Binary trees & and their representation in memory,Traversing binary trees.

Traversal algorithms using stacks, Header nodes : threads. Heap and heapsort.Path length &

Huffman’s algorithm. General trees. 08Hrs

Unit VI : Graph theory, sequential representations of graphs, Warshalls’ algorithm, Linked

representation, operations &traversing the graphs. Po sets & Topological sorting. Insertion Sort,

Selection Sort. Radix sort. 08Hrs

TEXT BOOK:

Seymour Lipschutz: Data Structures with C, Schaum’s Outline Series, McGraw-Hill, International

Editions.

REFERENCES BOOKS:

1. Forouzan, Gilberg, Mahalle, Jogalekar: Data Structures and Algorithms, CENGAGE Learning.

2. Reema Thareja: Data Structures using C, Oxford University Press,2011.

3. Arpita Gopal: Magnifying Data structures, PHI(EEE), 2010.

4. Ellis Horowitz, SartajSahni: Fundamentals of Data Structures, CBS Publications.

5. Trembley, Sorenson: An Introduction to Data Structures with Applications, McGraw Hill.

6. Standish: Data Structures in Java, Pearson Education.

.

Page 20: Student-Handbook Second Year - PRMCEAM Badnera

4KS02 / 4KE02 Analog & Digital IC’s

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week Theory : 100 Marks

Credits : 4

Pre-requisites

1. Basics of Discrete Structure.

2. Basics of Electronic Devices & Circuits.

3. Basics of number system.

Objectives

1. To provide the knowledge about the characteristics and operation of 741 IC.

2. To provide the knowledge of IC 555 and LM 565 and its applications

3. To make students aware about various number systems and conversion

4. To make students aware about various digital minimization techniques, combinational and

sequential circuits.

Outcomes

After successful completion of the course, students will be able to:

1. Define the characteristics and application of operational amplifiers.

2. Understand the basics of timers and phase locked loops.

3. Formulate the number system conversion.

4. Apply various minimization techniques to reduce Boolean functions.

5. Understand and design various combinational circuits, sequential circuits.

6. Design the applications using analog and digital IC’s.

Section A

Unit I: OPERATIONAL AMPLIFIERS: Characteristics of ideal op-amp, Virtual Short, differential

amplifier, offset currents and voltages, Slew rate, 741 IC Specifications, inverting and non-

inverting amplifiers, adder/ subtractor, integrator, differentiator, Schmitt Trigger, analog multiplier.

Unit II: TIMERS & PHASE LOCKED LOOP: Timers Block schematic of timer IC 555,

Application of timer555 as astable, monostable, bistablemultivibrator, Delayed timer, Saw tooth

generators. Phase Locked Loops: Operation of phase lock loop system, transfer characteristics, lock

range, capture range, study of PLL IC-LM 565 and its application as AM detector, FM detector and

Frequency Translator.

Unit III: NUMBER SYSTEMS: Binary, Octal, Hexadecimal, Conversions between Number

Systems, BCD, Gray and Excess 3 Representations, r s and (r-1)s Complements, Subtraction using

1s and 2s. Complements, Binary to Gray, Gray to Binary Conversions, Alpha numeric codes.

Section B

Unit IV: BOOLEAN FUNCTIONS USING GATES :Boolean theorems, Minterm and maxterm

representation, SOP and POS forms, Karnaugh maps, Tabulation methods, Logic gates – Truth

tables, Realization of Boolean functions using Gates, Universal Gates.

Page 21: Student-Handbook Second Year - PRMCEAM Badnera

Unit V: COMBINATIONAL CIRCUITS: Half and Full adders, Parallel binary adder, BCD adder,

Half and Full subtractor, magnitude comparator, Decoder, Encoder, Multiplier, ROM, PLA,

Boolean Expression Implementation using these ICs.

Unit VI: SEQUENTIAL CIRCUITS: Flip Flops – SR, JK, T, D, Characteristic equations,

Excitation Tables, Design of counters using Excitation tables, Synchronous and Asynchronous

Counters, 7490, 74161Counter IC specifications, Ring and Johnson Counters, Shift Registers,

74194 Shift Register IC Specifications.

TEXTBOOKS:

1. Ramakant A. Gayakwad, „OP-AMP and Linear ICs, Prentice Hall, 1994.

2. M.Morris Mano “Digital Design” (2/e) (PHI).

REFERENCE BOOKS :

1. R F. Coughlin: F.F. Driscoll: Operational Amplifiers & Linear IntegratedCircuits, Pearson

2. Sedra & Smith : Microelectronics Circuits, 5e, Oxford UniversityPress

3. Jain R.P. “Modern Digital Electronics” (TMH).

4. Mano M. & Kime “Logic & Computer Design Fundamentals” (2/e)(Pearson Education).

Page 22: Student-Handbook Second Year - PRMCEAM Badnera

4KS03 Object Oriented Programming

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week, Tutorial: 1 Hrs/ week Theory : 100 Marks

Credits : 4

Pre-requisites

1. Knowledge of basic computer terminology.

2. Knowledge of C programming.

Objectives

1. To demonstrate the differences between traditional imperative design and object-oriented

design.

2. To explain class structures as fundamental, modular building blocks.

3. To demonstrate the role of inheritance, polymorphism, dynamic binding and generic

structures in building reusable code.

Outcomes

After completing this course, the student will be able to:

1. Define and memorize the principles of object-oriented programming.

2. Understand and apply the concepts of data encapsulation, inheritance, and polymorphism.

3. Design and develop object-oriented programs.

4. Implement Standard Template Library functions.

5. Debug programs using exception handling mechanism.

SECTIONA

Unit I: Objects & Classes in C++: Declaring & using classes, Constructors, Objects as function

arguments, Copy Constructors, Static class data, Arrays of Objects, C++ Stringclass.

Unit II: Operator Overloading: Overloading Unary & Binary Operators, Data Conversion, Pitfalls

of Operator Overloading, Pointers & Arrays, Pointers & Functions, New & Delete Operators,

Pointers for Objects.

Unit III: Inheritance in C++: Derived Class & Base Class, Derived class Constructors, Function

overloading, Class hierarchies, Public & Private Inheritance, Multiple Inheritance, Containership:

Classes within Classes.

SECTION B

Unit IV: Virtual Function Concepts: Abstract Classes & Pure Virtual Functions, Virtual Base

classes, Friend functions, Static Functions, Assignment & copy initialization, the this pointer,

Dynamic type information.

Unit V: Streams & Files in C++: Stream Classes, stream errors, disk file I/O with streams, File

Pointers, Error handling in file I/O, File I/O with member functions, Overloading the extractions&

Insertions operator, Memory as a Stream Object, Command Line Arguments, Multi file Programs.

Unit VI: Function Template, Class template, Exception Syntax, Multiple exceptions, Exception

with Arguments, Introduction to Standard Template Library, Algorithms, Sequential Containers,

Iterates, Specialized iterates, associative containers, Function objects.

Page 23: Student-Handbook Second Year - PRMCEAM Badnera

TEXT BOOK: Robert Lafore: Object Oriented Programming in C++, GalgotiaPublication.

REFERENCE BOOKS:

1. Herbert Schildt: C++: Complete Refernce, TMH.

2. Bjarne Stroustrupe: C++ Programming Language, Addision Wesley.

3. Venugopal: Mastering C++, TMH.

4. Lipmann: C++ Primer, Addision Wesley.

5. SouravSahay: Object Oriented Programming with C++, Oxford University Press.

Page 24: Student-Handbook Second Year - PRMCEAM Badnera

4KS04 / 4KE04 Assembly Language and Programming

Teaching Scheme Examination Scheme

Lectures : 4 Hrs/ week Theory : 100 Marks

Credits : 4

Pre-requisites

1. Basics understanding of Computer Programming Technologies.

2. Basics of Number Systems

3. Basics of Circuits, IC’s.

4. Basics of Stacks working

Objectives

1. To develop understanding of basic computer organization

2. To develop understanding of the relationship between computer hardware and machine

code/assembly code.

3. To develop skills in modular design and the implementation of software at the assembly

level.

4. To provide knowledge of Memory, Segmentation, and Stacks.

5. To provide knowledge of various IC’s and their architecture.

6. To equip students with knowledge of microprocessor programming.

Outcomes

After successful completion of the course, students will be able to:

1. Understand major components of micro-porocessor, execution steps of instruction and

hardware components used in each step.

2. Write pseudo assembly code on different architectures.

3. Understand data representation, instruction set, addressing modes and register organization.

4. Apply subroutines to improve program's modularity, readability and reliability.

5. Understand usage of stack in register optimization.

SECTION A

Unit I: 8086 architecture and pin configuration, Software model of8086 microprocessor. Memory

addresses space and data organization. Data types. Segment registers, memory segmentation. IP&

Data registers, Pointer, Index registers. Memory addresses generation.

-08Hrs

Unit II: 8086 Instruction set overview, addressing modes. 8086instruction formats. 8086

programming : Integer instructions and computations: Data transfer instructions, Arithmetic

instructions and their use in 8086 programming -08Hrs

Unit III: 8086 programming: logical instructions. Shift and rotate instructions and their use in 8086

programming. 8086 flag register and Flag control instructions, compare instruction, control flow

and jump instructions, Loops & loop handling instructions. 8086 programming using these

instructions -08Hrs

SECTION B

Unit IV: The 8086 stack segment and stack related instructions. 8086I/O Address space.

Subroutines and related instructions, Parameter passing, Concept of Macros, Status saving on stack.

Concept of recursion at assembly program level.8086Programming using subroutines, recursion

and macros-08Hrs

Page 25: Student-Handbook Second Year - PRMCEAM Badnera

Unit V: 8086 I/O: Types of input output, isolated I/O interface, input output data transfers, I/O

instructions and bus cycles. Programmable Peripheral Interface 8255 PPI: pin diagram, internal

organization, modes of operation. 8086 I/O programming using 8255 -08Hrs

Unit VI: 8086 Interrupts types, priority and instructions. Interrupt vector table, External hardware-

interrupt interface signals &interrupts sequence. Software interrupts. Non-maskablei nterrupts.

Programmable Interrupt Controller 8259: pin diagram, internal organization, modes of

operation.8086 Interrupt-driven programming using 8259 -08Hrs.

Text Book:

1. 1. W. A. Triebel & Avatar Singh: The 8088/8086 Microprocessors (4e) (PHI /Pearson

Education)

2. 2. Liu & Gibson: The 8088/8086 Microprocessor (2/e) (PHI)

Reference Books:

1. Barry B. Brey : The Intel Microprocessor Architecture,Programming & Interfacing

(6/e)(PHI)

2. Ray & Bhurchandi: Advanced Microprocessors & Peripherals (TMH).

3. John P Uffenbeck, “8086/8088 Families: Designing, Programming and Interfacing”.

Prentice Hall .

Page 26: Student-Handbook Second Year - PRMCEAM Badnera

4KS05Theory of Computation

Teaching Scheme Examination Scheme

Lectures: 4 Hrs/ week Theory: 100 Marks

Credits: 4

Pre-requisites

1. Discrete Structure

2. Mathematical Concepts

Objectives

1. To introduce students to the mathematical foundations of computation including automata

theory; the theory of formal languages and grammars; the notions of algorithm, decidability,

complexity, and computability.

2. To enhance and develop students ability to understand and conduct mathematical proofs for

computation and algorithms.

3. To make students aware about the different design finite automata, pushdown automata,

linear bounded automata, Turing machines, formal languages, and grammars.

4. To demonstrate the key notions, such as algorithm, computability, decidability, and

complexity through problem solving.

Outcomes

On successful completion of this course students will be able to:

1. Understand and identify differentiation among non-deterministic finite automata (NDFA or

NFA) and deterministic finite automata (DFA)

2. Analyze finite state machines with output, Moore and Mealy Machines.

3. Identify regular sets, regular expressions, regular languages from given FA.

4. Identify Regular Grammars, Right Linear and Left Linear Grammars from RE or FA.

5. Design Push down automata from given CFL or CFG

6. Design and identify the acceptance by Turing Machine

7. Design Linear bounded automata from Context Sensitive Language.

8. Identify solution of Post correspondence problem.

9. Analyze un-decidability of problem or languages

Text Book:

1. J Hopcraft H.E. & Ullman J: Introduction to Automata Theory, Languages and

Computation,

2. Peter Linz: An Introduction to Formal Languages and Automata(Chapter 1 to 12 except 6.3

& 7.4),)

Reference Books:

1. S.Rajendra Kumar: Theory of Automata, Languages & Computation,TMH, 2010.

2. Rajesh K. Shukla: Theory of Computation, CENGAGE Learning, 2009.

Page 27: Student-Handbook Second Year - PRMCEAM Badnera

3. K V N Sunitha and N Kalyani: Formal Languages and Automata Theory, McGraw

Hill,2010.

4. John C. Martin: Introduction to Languages and the Theory of Automata.

5. Lewis H.P. and Papadimition C.H.: Elements of Theory of Computation.

6. Mishra &Chandrashekharan: Theory of Computation.

7. C.K.Nagpal: Formal Languages and Automata Theory, Oxford University Press,2011.

Credits:1 Practical:50 Marks

4KS06/4KE06 Data Structures Lab.:

Minimum Eight experiments/programming assignments must be completed based on the respective

syllabus covering each of the units.

Credits:1 Practical:50 Marks

4KS07/4KE07 Analog & Digital IC’s Lab:

Minimum Eight experiments/programming assignments must be completed based on the respective

syllabus covering each of the units.

Credits:1 Practical:50 Marks

4KS08/4KE08 Object Oriented Programming Lab :

Minimum Eight experiments/programming assignments must be completed based on the respective

syllabus covering each of the units.

Credits:1 Practical:50 Marks

4KS09/4KE09 Assembly Language Programming Lab:

Minimum Eight experiments/programming assignments must be completed based on the respective

syllabus covering each of the units

Page 28: Student-Handbook Second Year - PRMCEAM Badnera

Relevant Clauses From Sant Gadge Baba Amravati University (SGBAU):

Clause No 9: The Internal Assessment marks for theory should be based on Class Test and

Attendance as follows :

Class Test-15 Marks will be based upon two Class Tests.

Attendance - Mark/s

75% to 80% - 1

81% to 85% - 2

86% to 90% - 3

91% to 95% - 4

96% to 100% - 5

Where ever if internal assessment marks are ‘ten (10)’ then it should be converted out of “20”.

Clause No 10: Subject to his/her compliance with the provisions of this Direction & other

Ordinances pertaining to Examination in force from time to time, the applicant for admission, at the

end of the course of study of a particular semester/session, to an Examination specified in column

(1) of the table I below, shall be eligible to appear if

i) he/she satisfies with the conditions in the table and the provisions thereunder.

ii) he/she complies with the provisions of the ordinance pertaining to the Examination in general

from time to time.

iii) he/she has prosecuted a regular course of study in a college affiliated to the University.

iv) he/she has in the opinion of the Principal shown satisfactory progress in his/her studies.

Clause No 13 :The fees for each B.E.(All Branches) Examinations (Theory & Practical) shall be as

prescribed by University from time to time.

Page 29: Student-Handbook Second Year - PRMCEAM Badnera

Clause No 14 :The computation of Semester Grade Point Average (SGPA) and Cumulative Grade

Point Average (CGPA) of an examinee shall be as given below :-

The marks will be given in all examinations which will include college assessment marks and the

total marks for each Theory / Practical shall be converted into Grades as per Table given.

SGPA shall be calculated based on Grade Points corresponding to Grade as given in Table II and

the Credits allotted to respective Theory / Practical shown in the scheme for respective semester.

SGPA shall be computed for every semester and CGPA shall be computed only in VIII semester.

The CGPA of VIII semester shall be calculated based on SGPA of VII and SGPA of VIII semester

as per following computation :-

SGPA = C1 x G1 + C2 x G2 + ....... + CnGn

C1 + C2 + ......... + Cn

Where C1 = Credit of individual Theory / Practial

G1 = Corresponding Grade Point obtained in the respective Theory / Practical

Page 30: Student-Handbook Second Year - PRMCEAM Badnera

(SGPA) VII X (Cr) VII + (SGPA) VIII X (Cr) VIII

CGPA =(Cr) VII + (Cr) VIII

Where (SGPA) VII = SGPA of VII Semester

(Cr) VII = Total Credits for VII Semester

(SGPA) VIII = SGPA of VIII Semester

(Cr) VIII = Total Credits for VIII Semester

CGPA equal to 6.00 and above shall be considered as equivalent to First Class which shall be

mentioned on Grade Card of VIII Semester as a foot note.

Clause No 15 :

(i) The scope of the subjects shall be as indicated in the syllabi.

(ii)The medium of instruction and examination shall be English.

Clause No 17: An examinee who does not pass; or who fails to present himself/herself for the

examination shall be eligible for readmission to the same examination/semester, on payment of

fresh fees and such other fees as may be prescribed.

Clause No 18: A candidate who could not complete a semester satisfactorily or who has failed will

be eligible for readmission to the same semester. However readmission to semester should be

allowed only when a regular session is running for the particular semester.

General Guideline :

6.1 Learning Process :

The student must attend theory , tutorial and practical regularly.

The assignments must be honestly worked out and submitted in time.

The internal test must be attended with full preparation.

The practical in laboratory sessions must be performed with full involvements and

with curiosity.

The students should use library and internet facilities for the subject taught.

Interaction with concerned teacher regarding the subject difficulty is highly

appreciated.

6.2.1 Discipline :

We insist on full attendance both for theory classes and for laboratory classes.

Students should take prior permission before absenting from the class , failure of

which will be viewed seriously and informed to the parents.

Use of mobiles/cell phones is strictly prohibited for the students in college campus.

Students should not carry cell phones, if found with cell phones the handset shall be

seized.

Smoking or other form of consumption of tobacco is prohibited inside the campus.

Boys and girls should not wear any costly gold ornaments during college hours.

1) Dress Code :

FOR BOYS : Trouser and shirt (made of the dress material supplied by the college )

with black socks , black shoes and black belt.

Page 31: Student-Handbook Second Year - PRMCEAM Badnera

FOR GIRLS :Salwar and kurta (made of the dress material supplied by the college )

with black socks , black shoes/sandals.

2) Identity Card :

Each student is provided with an identity card with his/her name and photo. They

should wear the identity card inside the campus and while travelling in the college

bus.

Code Of Conduct :

1) Teaching process :

The department shall plan the lessons to be taught, preparation of lesson plans ,

assignments to be given, test to be held seminars and industrial visits to be organized

for the whole semester and shall be included in the departmental academic calendar.

Class notes and lab manuals shall be prepared for the laboratories specified in the

syllabus. Special classes shall be arranged for the benefit of students needing extra

help and one to one interaction with respective lecturers.

Guest lectures shall be arranged periodically to motivate students towards better

performance in interviews and other academic pursuits.

Experts representing Engineering and Technology , Research and Development ,

Placement and Communication skills shall be invited to interact with and motivate

the students.

Students shall be encourage to take part in co-curricular activities ,games and sports

and interact with other institutions.

Course monitoring committee shall meet the requirements of student regarding

theory and practical by taking their at regular interval.

2) Leave Regulation : All students should make note of the following leave regulations and

are expected to abide by these rules while they apply for leave.

To avail one day : For medical leave , the medical certificate should be enclosed

along with the leave application.

To avail two days : Leave letter should be submitted on the previous day itself with

the parents signature. OR Leave letter should be submitted on the first day of leave

through anyone of his/her friend.

Three days and above : For any family function and other medical/health reasons

the parent come in person and avail the leave from respective class in charge

.otherwise the administration will be constrained to remove the student from

college.

General : If the leave taking exceeds 6 days per year, it will be viewed seriously. If

the college sends telegram regarding the leave and other disciplinary issues to the

family of student, then the parents are requested to come in person and report at

college office. Guardians are not permitted, failure to report may result in removal

of student’s name from attendance register.

All requisition letters for leave, medical certificate, permission ,hostel matters

including permission and leave should be addressed to the principal. Students should

take prior permission before absenting from the class , failure of which will be

viewed seriously and parents will be informed of the same.

3) College Timing : College timing are from 8:30 a.m. to 2:30 p.m. Students are not

permitted entry into the college campus after 8:15 a.m. and are also not allowed to leave the

Page 32: Student-Handbook Second Year - PRMCEAM Badnera

college before 2:30 p.m. Visitors to meet students are strictly not allowed during college

hours.

4) Test and Examination, Vacations :

The purpose: The purpose of test and examination are to document to which extent

the examinee fulfils the purpose and requirement, which have been set for the

course. Therefore, the test are arranged with the view to document the degree of the

fulfillment of the purpose in relation to the essential purposes and requirement . At

all test an individual assessment of the presentation is undertaken.

The Place: Examination are primarily carried out at the college premises or as

declared by the Sant Gadge Baba Amravati university (SGBAU).

Student Identity card & Examination admit card: Valid students identity card as

well as the examination admit card must be carried by all students. Immediately

before the beginning of the test the student identity card has to be shown to the

invigilator , as a proof that the examinee has turned up.

Time Of Examination and test: The examinees have to turn up so well in time that

they can be seated in the room before the beginning of the test. External examination

for theory are three-hour or four-hour duration as specified in the scheme in the

syllabus. Internal examination for theory are normally one-hour duration. Practical

examination are normally of two-hour duration.

Modes Of Examination: The modes of examination in total must consider the

purpose of education and the form of examination must furthermore ensure that an

individual evaluation of the examinee can be undertaken. Following modes of

examination are used:

Oral Exam

Written Exam

Practical Exam

The examination are arranged as individual exams. The mode of examination is

stated in the scheme in the syllabus along with course subject and course

contents. Examination are either internal or external

Internal examination are understood as examinations, which are assessed

by examiner who are among the faculty of institutions

External examination are the assessment undertaken by the external

examiners , who are appointed by the university and are from different

engineering college.

Grading : External examiners ensure that :

The requirement of the examination are in accordance with the established aim

of the syllabi.

The examination are carried out in accordance with the rules in force and

The students are receiving the same fair treatment and a reliable assessment as

per the rules in force.

At least half of engineering education is evaluated by the tests/examination with

external grading.

Registration For the Examination :

Page 33: Student-Handbook Second Year - PRMCEAM Badnera

It is students responsibility to ensure that the registration for the examination is

correctly done. All registration for the regular admission are transferred

automatically to the examination.

However, it is the responsibility of the student to ensure that the registration for

university examination is done correctly by filling up the exam form and

submitting it to the office as per the specified schedule of the university.

If the student has not been registered for a regular course (failure students )

registration for the supplementary examination must be done directly before the

examination and as per the specified schedule of the university. This is also the

responsibility of the student.

Internal Assessment Examination :

The college has a successful centralized system for conducting internal

assessment exam to ensure commonality of dates carrying 27 marks with

duration of 1 hour for Test 1 and Test2 and 80 marks for duration of three hrs

for Common Test.

The valuation will be completed within three days after the internal exams.

Three such internal exams will be conducted for each subject and the best two of

three will be assessed for 15 marks.

Vacations :One week winter vacation is effective after the university theory & practical

examinations. The schedule for winter vacation is declared separately. Similarly, a two

week summer vacation is effective after the university theory and practical

examinations. The schedule for summer vacation is also declared separately. It is

desirable that the students shall truly get a break from academic activities during these

vacations.

Departmental USP :

• Faculty Advisor , Group Advisors

• University Services at department

• Conduction of content beyond syllabus

• Communication Skill classes from second year

• Individual setup for each student in laboratory

• Conduction of tutorial classes as per university scheme

• Conduction of Make-up classes for slow learners.

• Question banks for every theory and practical subject

• Conduction of tests for all semesters

• All Class rooms well equipped with modern teaching aids

Page 34: Student-Handbook Second Year - PRMCEAM Badnera

Central Library:

5.1 Books & Journals

No. of Titles(CSE): 760

No. of Volumes (CSE): 6795

Journals: 12

Total No. Of Titles: 3077, Total No. Of Volumes: 31,275

5.2 Salient Features

1. Digital Library

Seven Computers connected through Wi-Fi connections

Two MBPS Broadband Internet Connection

Freeware e-Journals

CD’s and DVD’s (Books + Magazine)– 1460 different titles

579+ NPTEL’s DVDS

E-Journals & E-books Subscribed(available on static IP address): IEEE, Springer, McGraw Hill Access

Engineering, Elsevier’s Science Direct, J-Gate –Engineering Technology, ASTM Digital Library

2. e-Lecture Hall

3. Free Book Bank facility to all students

5.3 Important Links & Phone Numbers

Prof Ram Meghe College of Engineering & Management,

College Address: New Express Highway,

Badnera – Amravati

444 701 (M.S.) , INDIA

Phone No.(Office) : 0721 – 2580371,2580373

Fax No. : 0721 - 2580372

Website: http://www.prmceam.ac.in

Email : [email protected]

SGBAUniversity: www.sgbau.ac.in

Director of Technical Education: www.dte.org.in

Shikshan Shulka Samiti : www.sspnsamiti.gov.in

AICTE, New Delhi: www.aicte-india.org