structural, optical and microscopy analysis of zno-cuo nanocomposite...

17
Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite Thin Films K.Kavitha 1 , T.Ranjeth Kumar Reddy 2 , T. SubbaRao 3 , R.Padmasuvarna 1 , V.S.Vani 4 1 Department of Physics, Jawaharlal Nehru Technological University, Anantapur- 515002,,India 2 Presidency University, Bangalore-560064,India 3 Sri Krishnadevaraya University, Anantapur-515002, India 4 Holy Mary Institute of Technology & Science, Hyderabad-501301, India [email protected] [email protected] [email protected] [email protected] [email protected] Research Scholar,Department Of Physics,JNTUA, Anantapur- 515002.. 161 ISSN NO: 1301-2746 http://adalyajournal.com/ ADALYA JOURNAL Volume 8, Issue 12, December 2019

Upload: others

Post on 06-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Structural, Optical and Microscopy Analysis of ZnO-CuO

Nanocomposite Thin Films

K.Kavitha1, T.Ranjeth Kumar Reddy

2, T. SubbaRao

3, R.Padmasuvarna

1, V.S.Vani

4

1Department of Physics, Jawaharlal Nehru Technological University, Anantapur-

515002,,India

2Presidency University, Bangalore-560064,India

3Sri Krishnadevaraya University, Anantapur-515002, India

4Holy Mary Institute of Technology & Science, Hyderabad-501301, India

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Research Scholar,Department Of Physics,JNTUA, Anantapur-

515002..

161

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 2: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Highlights:

ZnO-CuO nanocomposite thin films were synthesized by dip-coating technique.

The optical band gap of calculated using UV-visible spectroscopy

Easy way to synthesis of nanocomposites

Extensive discussion on Characterization

Abstract

In this present work, the ZnO-CuO Nano composite thin films were synthesized by dip coating technique. The

structural properties were studied by X-ray diffraction (XRD). The optical properties was studied using Ultra

Violet -Visible spectrophotometer (UV-visible) and Fourier transform infrared Spectrometer (FTIR). The surface

morphology of the samples was studied by SEM-EDX. It is proved that the prepared samples are crystalline in

nature as per XRD report. The optical band gap from UV-visible spectroscopy was determined to be equal to 3.5

eV, 3.3 eV and 3.1 eV for different molarities of 0.025 M, 0.05 M and 0.075 M respectively. The functional

groups of CuO and ZnO were estimated in FTIR. The surface morphology and the composition showing the

presence of the elements Zn, Cu and O were investigated using SEM-EDX.

Keywords: ZnO-CuO, nanocomposites, UV-visible, FTIR, structural, optical, SEM- EDX.

1. Introduction

Nanomaterial is a material which has unique value and properties for commercial applications. The key factors of

Nanomaterials are high dispersion, small particle size low agglomeration and narrow size distribution. Nanomaterials

are applied in various fields such as food engineering, energy conversion and storage, agriculture, construction,

paints, batteries, cosmetics and display etc. Several researches are involved in the progress of an efficient gas

sensor device to reach the future needs of the society. In current scenario, research on nanoparticles becomes an

active research area, due to its unique optimal, physical, chemical, and catalytic properties compared to the bulk

counter-parts. Previously, several researches are done for synthesizing the multi-dimensional nanostructures for

developing efficient and new Nano devices. [1,2]. ZnO-CuO nanocomposite material is a low cost and sustainable.

CuO is available in the form of a mineral with monoclinic structure and p-type semiconductor material having band

162

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 3: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

gap 1.7 eV. ZnO is available in the form of a mineral having Hexagonal structure and n-type semiconductor material

with band gap 3.37 eV. ZnO-CuO nanocomposites form hetero junctions which develop the separation between

electrons and holes. The ZnO-CuO nanocomposites are used in optoelectronic devices such as solar cells and also

various sensors such as biosensors and gas sensors (H2S). These nanocomposites can be prepared by many

techniques namely chemical vapor deposition, sol-gel and hydrothermal method, etc [3]. . The Pulsed layer

deposition technique (PLD) used to synthesis of (ZnO:C) thin films and determined the carbon was a novel dopant

and enhances the properties of ZnO semiconducting materials[4]. The spray pyrolysis technique applied to form Cu

doped SnO2

thin films at substrate temperature 350 ℃ and observed the enhancement of optical properties properties of the thin

films [5]. The extensive review was emphasized on controllable synthesis of metal oxides using solution-based

method and discussed their applications for electrochemical storage [6]. The comparative performance of ZnO, ZnO-

TiO2 and ZnO-Nb2O5 nanomaterial was applied to study on humidity sensor and observed the improvement in

sensitivity [7]. The structural properties of CuO and ZnO-CuO films which were prepared by chemical bath deposition

technique. The performance of the developed technique was estimated by using XRD and SEM. The insertion of ZnO

intermediate layer developed by dip coating in CuO layers was identified to be very effective for decreasing the

leakage current and also enhances the crystallite value of CuO films. Here, the potential and threshold voltage of

ZnO-CuO (heterojunction) and ZnO (dip coating) were intensely depends on the air annealing at different

temperatures which was considered as one of the issue while combining ZnO intermediate layer with CuO layers [8-

10].

T. Terasako, et al, [11] discussed about the electrical and structural properties of CuO

and ZnO-CuO films, which was assessed by Chemical Bath Deposition (CBD) technique. The

performance of the developed technique was estimated by using XRD, SEM, capacitance

voltage measurement and current density-voltage measurement. The insertion of ZnO

intermediate layer developed by dip-coating in CuO layers was identified to be very effective

for decreasing the leakage current and also it enhances the crystalline value of CuO films. Here,

the potential and threshold voltage of ZnO-CuO (heterojunction) and ZnO (dip coating) were

intensely depends on the air temperature, which was considered as an one of the major issue,

while combining ZnO intermediate layer with CuO layers.

S. Hussain, et al, [12] reported the characterization and fabrication of non-toxic

163

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 4: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

heterojunction of ZnO and CuO. These films were described by XRD, UV spectroscopy and

Field Emission-SEM (FESEM). The conduction and valence band edges were calculated by

photo-electron spectroscopy in air-temperature. In this research study, Cheung approach was

used to determine the electrical parameter of ZnO/CuO in heterojunction diode such as, barrier

height, ideality factor and series resistance. The identity factor was attributed to high series

defects, resistance and other phases of ZnO and CuO. A substantial modernization of

technological equipment was required for eliminating the drop-let phase, which was

accomplished in ion-plasma deposition.

In this present work, we synthesized a novel ZnO/CuO nanocomposite thin films using Dip coating technique. It is a

process used for thin film coatings of Nanomaterials. In this thin films

are produced from sol-gel precursors. Sol-gel is a simple method for nanomaterial synthesis. This method involves

two stages of sol and gel formation. Many techniques could be applied in the sol-gel technology such as the changing

of initial precursor, time of gel formation, type of catalyst, rate of solution formation, gel formation conditions and gel

physical processing. Thus, the sol-gel process enables the formation of solid material through gelation from a

solution.

Their crystallinity, crystallite size, band gap and structural properties were analyzed. The variation of band gap as a

function of particle size was determined by absorption spectra obtained by UV Visible Spectrophotometer. The

functional groups of nanocomposites were studied using FTIR. The morphology and composition of the samples were

also studied using SEM-EDX. Herein, as per the review of literature we made an attempt first time to characterization

of these nanocomposites were prepared by dip coating for low concentration.

2. Materials and Methods

2.1 Materials

Zinc acetate [Zn(CH COO)2.2H2O] (99%), Copper(II) acetate monohydrate Cu(OH)2CO3(98%), acetic acid

(CH COOH)(98%),NaOH (1M ) were used without further purification. All the chemicals are of FINAR grade. The

molecular weights of these chemicals are 219.498 gm-mol-1

, 199.65gm-mol-1

, 60.052 gm-mol-1

and 39.9 gm-mol-1

respectively.

164

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 5: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

2.2 Synthesis of ZnO-CuO nanocomposite films

The synthesis of ZnO-CuO nanocomposites [9] were synthesized using simple chemical route i.e. dip coating. CuO-

ZnO (0.025M,0.05M and 0.075 M) nanocomposites have been prepared. All the chemicals used for synthesis are of

FINAR grade. Suitable molar ratios i.e. by using molarity calculation, the suitable amount of Zinc acetate [Zn

(CH COO)2.2H2O] and cupric acetate were dissolved in distilled water to acquire the above mentioned Molarity .

Acetic acid (CH COOH), having better solvent properties was added as a surfactant to these solutions. After

complete dissolution of precursors, NaOH (1M sol) was added drop-wise to adjust the pH value at 11. This is to

control the particle size and morphology of the material prepared. After adjusting the pH value, the solutions were

stirred for 2 hours at 100 ℃ to complete the reactions. The glass substrates were cleaned in an ultrasonic bath in

acetone, ethanol and distilled water respectively. The layers were deposited by immersing these substrates in the

solution and annealed at 500℃ for 2 hours in order to enhance the crystalline quality of the synthesized samples.

The porosity of the ZnO/CuO nanocomposite at 500 °C annealing temperature was 3.764% and at 600 °C it was

4.258 % (The theoretical density of ZnO/CuO composite is 4.7476 g/cc). This showed that when the annealing

temperature increased the porosity of the nanocomposite was also increased because of the agglomeration when

temperature increases agglomerations are found. It is noticed that, the porosity increased at 600℃, agglomeration

was observed. More the agglomeration, lesser will be the surface area [2]. Hence in the present work, the samples

for annealed at 500℃.

2.3 Methods of characterization

2.3.1. X-ray powder diffraction

The samples are obtained by keeping the dip coated substrates at annealing temperature 500°C. The

resultant samples are undergone XRD analysis. The structural characterization is performed by using X-ray

diffractometer of type Bruker Advance-D8 with CuKα 1.54 A°. The primary and secondary variable detectors involved

are Cu tube and Th scintillation.

2.3.2. UV-Visible Spectroscopy:

The absorption measurements of the material in liquid phase were obtained in order to observe the inclusion effect

of the nanocomposite powder. The double beam UV Visible spectrometer 2202 in scan mode of operation was used

for the collection of data. The gel samples were diluted in equal amount with ethanol as it was a solvent used in

synthesis.

165

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 6: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

2.3.3. FTIR:

FTIR spectra of the samples were obtained using Thermo Nicolet Nexus 670 spectrometer of resolution 4/cm with a

detector DTGS KB and KBr beam splitter. KBr is used for sample preparation.

2.3.4: SEM-EDX:

The thin films are submitted to SEM of Zeiss EVO model to obtain the morphology and composition of the

samples. The SEM images of the thin film surfaces are obtained at 50 KX magnification by using SEM. The

microscope is operated in secondary electron detection at an accelerating voltage 10KV. The X- rays in the SEM

can be used to identify the elemental composition of the sample by Energy dispersive X-ray(EDX).

3. Results and Discussions

The size of the synthesized samples was determined by XRD pattern for ZnO-CuO nanocomposite thin films of

different molarities are shown in Fig. 1. The XRD peaks were well distinct and matching with JCPDS card numbers

36-1451 and 89-5899 for ZnO (hexagonal) and CuO (monoclinic) respectively [11]. The sharp peaks represent that

the obtained from nanocomposite thin film is having high crystallinity in nature. The data concludes that the obtained

the ZnO-CuO nanocomposite has been formed. The d-spacing values of ZnO-CuO nanocomposite thin films from

JCPDS card numbers are almost equal to d-spacing values measured from Bragg’s law. The result of XRD analysis

showed that ZnO diffraction pattern appears in the peak 2θ of 32.3°, 33.3° and 30.2°. Their interplanar spacing (d) at

these angles were determined by using miller indices (1 0 0), (0 0 2) and (1 0 1). These values are 2.810 Å, 2.667 Å,

and 2.476 Å respectively. Similarly, CuO diffraction pattern in the peak 2θ of 34.3° and 35.4°, 36.3° and 39.2° for

respectively as shown in the table.1.

Sample ZnO intensity at 2θ = 74⁰ Cuo intensity at 2θ =39⁰

0.025 M % 110 104

0.05 M % 68 334

0.075 M % 60 339

Table1: Intensity of CuO and ZnO in CuoO-ZnO

The d-values at indices (1 1 1), (1 0 1) and (1 1 1) are 2.518 Å, 2,486 Å, and 2.349 Å, respectively. The average

crystallite size was determined using Debye-Scherer’s formula, ⁄ Where K-Debye-Scherer’s constant, λ-

Wavelength of the radiation (CuKα1=0.154 nm), β-Full Width Half Maximum (FWHM) and θ-Bragg’s angle. As all the

samples were

166

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 7: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

synthesized under same annealing temperature, there was no breaking of internal bond. The average crystallite size

was measured as ~22 nm to ~28 nm for different annealing temperatures. It can be concluded that that the particle

size was obtained as 34 nm from SEM. Hence the particle size was more than the average crystallite size [12,

23].This data is in good agreement with JCPDS 36-1451 and JCPS 05-0661[13].

The absorption spectra of ZnO-CuO nanocomposite thin films for different molarities are shown in Fig.2. At 500℃

annealing temperature, the absorbance varies with respect to wavelength with bandwidth 2 nm. The UV–Visible

spectra of the films were recorded from 200 nm to 1000 nm wavelength at room temperature [14]. After 330nm, the

absorbance decreases s shown in fig.2. In the formula Eg= 1240/λc where ‘λc’ is the cut-off wavelength for maximum

absorbance. Basing on Using this formula, the optical band gap was determined. The values of optical band gap are

3.5 eV, 3.3 eV and 3.1 eV for the ZnO-CuO nanocomposite thin films of different molarities i.e.0.025M, 0.05M and

0.075M respectively. It is clear that if the molarity is more then the thickness is more. As thickness increases,

resistance decreases which in turn band gap decreases. Also these samples are most suitable in gas sensors

because of low molarities [2].That means the sensitivity can be better. It is observed that because of low molarities

the variation of absorbance with wavelength is less in all the cases i.e. for 0.025M, 0.05 M and 0.075 M. Fig. 3 (a),

(b) and (c) shows the FTIR of ZnO-CuO nanocomposite thin films of different molarities 0.025M, 0.05 M and 0.075 M

respectively. FTIR spectra revealed that the presence of functional frequencies of ZnO and CuO were observed at

443 and 616 cm-1

[13, 19, 22, 26] for nanocomposites powder. The strong peaks around 1400cm-1

and 3400cm-1

represents that the hydroxyl groups and the stretching band of water molecules on the surface of nanocomposite

thin films. The CuO stretching band was obtained around 600 cm-1

. The peaks between 1000 to 1600 cm-1

represents the presence of C-H vibration of stretching band. ZnO stretching band was observed between 700 and

1300cm-1

. The range between 1000 and 2100 cm-1

indicates the weak vibration of absorbed CO2. The C=O and C-H

groups appeared because the synthesis used the precursor of Zn (CH3COO)2.2H2O that was not perfectly

decomposed to ZnO. The morphology, topography and composition of ZnO-CuO nanocomposite thin films were

studied using SEM and the results are depicted in Fig.4 (a), (b) and (c). The different shapes of nanoparticles were

observed from the images and the measured sizes of these shapes were coinciding with the size of nanoparticles

measured from XRD. The different sizes and shapes causes may be which are agglomerated due to growth in high

density of atoms [14]. The elemental composition of the prepared ZnO-CuO nanocomposite thin films shown in Fig.5

(a), (b) and (c) , which is investigated by using Energy Dispersive X-ray Spectroscopy (EDX). This observed

spectrum shows the presence of many well-defined peaks which are related with Zn, Cu and O only. Also, it is

observed that no other peaks related with impurities are present in the EDX spectrum, which confirmed the formation

and purity of ZnO-CuO nanocomposite [15-17]. Recently nanocomposite transducers have been arrived as a

167

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 8: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

substitute for piezoelectric ceramics [18]. The degree of crystallinity can be increased by the incorporation of Nano

platelets [20]. The samples can be synthesized by several methods [21-25]. The nanocomposites prepared by these

methods have wide range of applications such as nano electronic device applications, gas sensors and antibacterial

activity etc.[28-34].

4. Conclusions

Low-cost ZnO-CuO nanocomposite thin films were synthesized by dip coating technique for different

molarities at constant 500 ℃ annealing temperature. The high crystalline nature of nanocomposite material and

average crystallite size were measured by X-ray diffractometer. The peaks confirmed that the obtained

nanocomposite thin films were ZnO as Hexagonal and CuO as Monoclinic. The energy band gap was found 3.5 eV,

3.3 eV and 3.1 eV for the ZnO-CuO nanocomposite thin films of different molarities using UV-visible spectrum. The

random shape and size was identified in SEM and given good support to the results of XRD. The result of EDX

confirms that, the presence of elements in nanocomposites was synthesized perfectly using Zinc acetate and cupric

acetate.

5. Future Scope:

ZnO-CuO nanocomposite is used for enhancing the photovoltaic performance of Dye sensitized solar cell. These characteristics are suitable for third generation photovoltaic technology which is to be studied in future work.

Conflict of interest:

The authors declare that they have no competing interests.

Acknowledgement:

Not Applicable

Funding:

Not applicable

Author’s contribution:

Author 1: Corresponding Author carried out the selection of nanocomposite and experimentation, acquisition of

data, characterization, and finding the applications.

Author 2: Author 2 participated in selection of journal, co-operated in overall development of the content.

Author 3: Author 3 participated in general supervision and approving of the research.

Author 4: Author 4 participated in general supervision and guidance.

168

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 9: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Author 5: Author 3 participated in the sequence alignment, performed the statistical analysis and helped to draft

the manuscript.

References:

[1].Kumar, H. and Rani, R., (2013), Structural and optical characterization of ZnO nanoparticles synthesized by

microemulsion route. Int. Lett. Chem., Phys. Astron., 14 pp.26-36.

[2].CH. Ashok, K. Venkateswara Rao, CH. Shilpa Chakra,(2016) Facile synthesis and characterization of ZnO/CuO

nanocomposite for humidity sensor application, J. Adv. Chem. Sci. 2(2)223–226.

[3].Iqbal, J., Jan, T., Ul-Hassan, S., Ahmed, I., Mansoor, Q., Umair Ali, M., Abbas, F. and Ismail, M.,(2015). Facile

synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties. AIP

Adv., 5(12) , p.127112.

[4].Manikandan, E., Moodley, M.K., Ray, S.S., Panigrahi, B.K., Krishnan, R., Padhy, N., Nair, K.G.M. and Tyagi,

A.K..(2010) Zinc oxide epitaxial thin film deposited over carbon on various substrate by pulsed laser deposition

technique. J. Nanosci. Nanotechnol., 10(9) , pp.5602-5611.

[5].Roy, S.S. and Podder, J..(2010) Synthesis and optical characterization of pure and Cu doped SnO2 thin films

deposited by spray pyrolysis. J. Optoelectron. Adv. Mater., 12(7), p.1479.

[6].Xia, X., Zhang, Y., Chao, D., Guan, C., Zhang, Y., Li, L., Ge, X., Bacho, I.M., Tu, J. and Fan, H.J..(2014) Solution

synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 6(10), pp.5008-5048.

[7].Srivastava, R. Yadav, B.C.(2012) Nanaostructured ZnO, ZnO-TiO2 and ZnO-Nb2O5 as solid state humidity

sensor. Adv Mater Lett, 3(3), pp.197-203.

[8].W. Ang, X. Li, S. Li, L. Yan-Jun, L. Wei-Wei(2013), CuO nanoparticle modified ZnO nanorods with improved

photo catalytic activity, Chin. Phys. Lett. 30(4) 046202.

[9].R. M. Allaf, L. J. Hope-Weeks(2014), Synthesis of ZnO-CuO nanocomposite aerogels by the sol-gel route, J.

Nanomater. 491817.

[10].Caglar, Y., Oral, D.D., Caglar, M., Ilican, S., Thomas, M.A., Wu, K., Sun, Z. and Cui, J. ( 2012),, Synthesis and

characterization of (CuO) x (ZnO) 1− x composite thin films with tunable optical and electrical properties. Thin

Solid Films, 520(21) pp.6642-6647.

[11].Terasako, T., Murakami, T., Hyodou, A. and Shirakata(2015),, S. Structural and electrical properties of CuO

films and n-ZnO/p-CuO heterojunctions prepared by chemical bath deposition based technique. Sol. Energy

Mater. Sol. Cells, 132 pp.74-79.

169

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 10: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

[12]. S. Hussain, C. Cao, G. Nabi, W.S. Khan, M. Tahir, M. Tanveer, and I. Aslam 2017, “Optical and electrical characterization of ZnO/CuO heterojunction solar cells”, Optik-International Journal for Light and Electron Optics, vol.130, pp.372-377,.

[13].A.K. Srivastava, B.C. Yadav(2010), Humidity sensing properties of TiO2-Sb2O5 nanocomposite, Mater. Sci.

Poland 28 491-502.

[14].N.K. Pandey, K. Tiwari, A. Roy, ZnO-TiO2 nanocomposite: characterization and moisture sensing studies, Bull.

Mater. Sci. 35 (2012) 347-352.

[15].N.Widiarti., J.K. Sae and S.Wahyuni(2017). IOP Conf. Ser.: Mater. Sci. Eng. 172 012036.

[16].Saravanan, R., Karthikeyan, S., Gupta, V.K., Sekaran, G., Narayanan, V. and Stephen, A. ( 2013),,. Enhanced

photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.

Mater. Sci. Eng., C, 33(1) pp.91-98.

[17].Saravanan, R., Thirumal, E., Gupta, V.K., Narayanan, V. and Stephen, A.J.J.O.M.L(2013),.,. The photocatalytic

activity of ZnO prepared by simple thermal decomposition method at various temperatures. J.Mol.

Liq., 177pp.394-401.

[18].D. Saravanakkumar, . Sivaranjanil,, K. Kaviyarasu, A. Ayeshamariam1, B. Ravikumar, S. Pandiarajan, C.

Veeralakshmi, M. Jayachandran, M. Maaza, 2018 Synthesis and characterization of ZnO–CuO nanocomposites

powder by modified perfume spray pyrolysis method and its antimicrobial investigation J.Semicond. 39(3) pp

033001-7.

[19]. Fuku, X., Kaviyarasu, K., Matinise, N. and Maaza, M. Punicalagin ( 2016), green functionalized Cu/Cu 2

O/ZnO/CuO nanocomposite for potential electrochemical transducer and catalyst. Nanoscale Res. Lett., 11(1)

p.386.

[20].Park, M.H., Schenk, T., Fancher, C.M., Grimley, E.D., Zhou, C., Richter, C., LeBeau, J.M., Jones, J.L.,

Mikolajick, T. and Schroeder, U., 2017. A comprehensive study on the structural evolution of HfO 2 thin films

doped with various dopants. Journal of Materials Chemistry C, 5(19), pp.4677-4690.

[21].Mwakikunga, B.W., Forbes, A., Sideras-Haddad, E., Scriba, M. and Manikandan, E. ( 2010), Self assembly and

properties of C: WO 3 nano-platelets and C: VO 2/V 2 O 5 triangular capsules produced by laser solution

photolysis. Nanoscale Res. Lett, 5(2) p.389.

170

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 11: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

[22].Zhang, Y.P., Lee, S.H., Reddy, K.R., Gopalan, A.I. and Lee, K.P.,. ( 2007), Synthesis and characterization of

core‐shell SiO2 nanoparticles/poly (3‐aminophenylboronic acid) composites. J.Appl. Polym.Sci., 104(4) pp.2743-

2750.

[23]. Manikandan, E., Murugan, V., Kavitha, G., Babu, P. and Maaza, M.,. (2014), Nanoflower rod wire-like

structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties. Mater.

Lett., 131pp.225-228.

[24].Kruk, M. and Jaroniec, M.,. ( 2001), Gas adsorption characterization of ordered organic− inorganic

nanocomposite materials. Chem. Adv. Mater., 13(10) pp.3169-3183.

[25].Manikandan, E., Kavitha, G. and Kennedy, J.,. ( 2014), Epitaxial zinc oxide, graphene oxide composite thin-

films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int., 40(10) pp.16065-

16070.

[26].Diallo, A., Manikandan, E., Rajendran, V. and Maaza, M.,. (2016), Physical & enhanced photocatalytic

properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J. Alloys Compd., 681pp.561-570.

[27].Saasa, V., Mokwena, M., Dhonge, B., Manikandan, E., Kennedy, J., Murmu, P.P., Dewar, J., Erasmus, R.,

Whaley, M.F., Mukwevho, E. and Mwakikunga, B.,. ( 2015), Optical and structural properties of multi-wall-

carbon-nanotube-modified ZnO synthesized at varying substrate temperatures for highly efficient light sensing

devices. Sens. Transducers J., 195(12) p.9.

[28].Sathyaseelan, B., Manikandan, E., Sivakumar, K., Kennedy, J. and Maaza, M. (2015), Enhanced visible

photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-

LED) application. J. Alloys Compd., 651pp.479-482.

[29].Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S. Jaganathan, S.K., Ladchumananandasivam, R.,

Henini, M., Maaza, M. and Aanand, J.S.,.(2017) Rare earth element (REE) lanthanum doped zinc oxide (La:

ZnO) nanomaterials: synthesis structural optical and antibacterial studies. J. Alloys Compd, 723(pp.1155-1161.

[30].Kaviyarasu, K., Magdalane, C.M., Anand, K., Manikandan, E. and Maaza, M.,. (2015), Synthesis and

characterization studies of MgO: CuO nanocrystals by wet-chemical method. Spectrochim. Acta, Part

A, 142pp.405-409.

[31].Lupan, O., Chow, L., Ono, L.K., Cuenya, B.R., Chai, G., Khallaf, H., Park, S. and Schulte, A.,. (2010),

Synthesis and characterization of Ag-or Sb-doped ZnO nanorods by a facile hydrothermal route. The J. of Phy.

Chem C, 114(29) pp.12401-12408.

171

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 12: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

[32].Sathyaseelan, B., Manikandan, E., Lakshmanan, V., Baskaran, I., Sivakumar, K., Ladchumananandasivam, R.,

Kennedy, J. and Maaza, M., (2016),. Structural, optical and morphological properties of post-growth calcined

TiO2 nanopowder for opto-electronic device application: Ex-situ studies. J. Alloys Compd, , 671pp.486-492.

[33].Shivaraj, Sujata Naduvinamani, P. Soumya, D. Shriya and Sourabh(2015) Design and Development of Gas

Analyzer for Detecting Ammonia, NO2, CO and CO2 International Journal on Emerging Technologies (Special

Issue on NCRIET-2015) 6(2): 144-149

[34].Parveen Kumar1 , Ashwani Sharma and Sanjay Dahiya(2017) Structural and Optical Study of Zn doped CuO

Nano Particles Synthesized by Sol Gel Method. International Journal of Theoretical & Applied Sciences, 9(2):

114-118

172

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 13: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Fig.1 (a), (b) and (c) XRD results of ZnO-CuO nanocomposite films

173

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 14: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

200 300 400 500 600 700 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0A

bso

rban

ce

Wavelength (nm)

0.025 M

0.05 M

0.075 M

Fig.1. UV-visible spectrum of ZnO-CuO nanocomposite films

174

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 15: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Fig.3 (a), (b) and (c) FTIR results of ZnO-CuO nanocomposite films

175

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 16: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Fig.4 (a), (b) and (c) SEM results of ZnO-CuO nanocomposite films

176

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019

Page 17: Structural, Optical and Microscopy Analysis of ZnO-CuO Nanocomposite …adalyajournal.com/gallery/17-dec-2310.pdf · 2020-06-08 · 2.2 Synthesis of ZnO-CuO nanocomposite films The

Fig.5 (a), (b) and (c) EDX results of ZnO-CuO nanocomposite films

177

ISSN NO: 1301-2746

http://adalyajournal.com/

ADALYA JOURNAL

Volume 8, Issue 12, December 2019