stochastic methods for uncertainty quantification in numerical aerodynamics

31
Stochastic methods for simulating uncertainties in free stream turbulence and in the geometry Project MUNA: Final Workshop, Alexander Litvinenko, Institut f ¨ ur Wissenschaftliches Rechnen, TU Braunschweig 0531-391-3008, [email protected] March 22, 2010

Upload: alexander-litvinenko

Post on 21-Apr-2017

41 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Stochastic methods for uncertainty quantification in numerical aerodynamics

Stochastic methods for simulatinguncertainties in free stream turbulence and in

the geometry

Project MUNA: Final Workshop,Alexander Litvinenko,

Institut fur Wissenschaftliches Rechnen,TU Braunschweig0531-391-3008,

[email protected]

March 22, 2010

Page 2: Stochastic methods for uncertainty quantification in numerical aerodynamics

Outline

Overview

Modelling of free stream turbulenceNumerics

Uncertainties in geometryNumerics

Low-rank approximation of the solutionNumerics

Page 3: Stochastic methods for uncertainty quantification in numerical aerodynamics

Outline

Overview

Modelling of free stream turbulenceNumerics

Uncertainties in geometryNumerics

Low-rank approximation of the solutionNumerics

Page 4: Stochastic methods for uncertainty quantification in numerical aerodynamics

Overview of uncertainties

Input:

1. Parameters (α, Ma, Re, ...)

2. Geometry

3. Parameters of turbulence

Uncertain output:

1. mean value and variance

2. exceedance probabilities P(u < u∗)

3. probability density and distribution functions.

Page 5: Stochastic methods for uncertainty quantification in numerical aerodynamics

Our Aims

1. Sparse representation of the input data (random fields)

2. The whole computation process must be sparse and done in areasonable time

3. Changes in the deterministic solver so small as possible (use asa black-box)

4. A sparse format for the solution

Page 6: Stochastic methods for uncertainty quantification in numerical aerodynamics

Stochastical Methods overview

1. Monte Carlo Simulations (easy to implement, parallelisable,expensive, dim. indepen.).

2. Stoch. collocation methods with global or local polynomials (easyto implement, parallelisable, cheaper than MC, dim. depen.).

3. Stochastic Galerkin (difficult to implement, non-trivialparallelisation, the cheapest from all, dim. depen.)

Page 7: Stochastic methods for uncertainty quantification in numerical aerodynamics

Outline

Overview

Modelling of free stream turbulenceNumerics

Uncertainties in geometryNumerics

Low-rank approximation of the solutionNumerics

Page 8: Stochastic methods for uncertainty quantification in numerical aerodynamics

Modelling of uncertainties in free stream turbulence

α

v

v

u

u’

α’v1

2

Random vectors v1 and v2 model turbulence in the atmosphere.

Page 9: Stochastic methods for uncertainty quantification in numerical aerodynamics

Truncated Polynomial Chaos Expansion

We represent CL in a Hermitian basis Hβ , β ∈ J .

CL(θ) =∑β∈J

Hβ(θ)CLβ , (1)

where θ a vector of random Gaussian variables, J is a multiindex setand β = (β1, ..., βj , ...) ∈ J a multiindex.

CLβ =1β!

∫Θ

Hβ(θ)CL(θ) P(dθ). (2)

CLβ ≈ 1β!

n∑i=1

Hβ(θi)CL(θi)wi , (3)

where weights wi and points θi are defined from sparseGauss-Hermite integration rule.

Page 10: Stochastic methods for uncertainty quantification in numerical aerodynamics

Uniform and Gaussian distributions of α and Ma

The following experiments are done for:Profiles: RAE-2822, Wilcox-k-w turbulence model

Turbulence intensity I = 0.001

mean st. deviation σ variance σ2

α 2.790 0.1 1.0e-2Ma 0.734 0.005 2.5e-5

Table: Mean values and standard deviations

Page 11: Stochastic methods for uncertainty quantification in numerical aerodynamics

Sparse Gauss-Hermite Quadratures

Figure: Sparse Gauss-Hermite grids for the perturbed angle of attack α′

andthe Mach number Ma

, n = {13, 29, 137}.

Page 12: Stochastic methods for uncertainty quantification in numerical aerodynamics

Sparse Gauss-Hermite grid, 5 points

[min, max] mean variance st. dev. σ σ/meanα [2.69, 2.89] 2.79 0.01 0.1 0.036Ma [0.729, 0.739] 0.734 0.00003 0.005 0.007CL [0.837, 0.872] 0.853 0.00032 0.018 0.021CD [0.0178, 0.0233] 0.0206 0.00001 0.0031 0.151

Page 13: Stochastic methods for uncertainty quantification in numerical aerodynamics

Sparse Gauss-Hermite grid, 13 points.

[min, max] mean variance st. dev. σ σ/meanα [2.62, 2.96] 2.79 0.01 0.1 0.036Ma [0.725, 0.743] 0.734 0.00002 0.005 0.007CL [0.823, 0.884] 0.853 0.0003 0.0174 0.02CD [0.0161, 0.0254] 0.0206 0.00001 0.003 0.146

Page 14: Stochastic methods for uncertainty quantification in numerical aerodynamics

Sparse Gauss-Hermite grid, 29 points.

[min, max] mean variance st. dev. σ σ/meanα [2.56, 3.024] 2.79 0.01 0.1 0.036Ma [0.722, 0.746] 0.734 0.00002 0.005 0.007CL [0.812, 0.893] 0.852 0.0003 0.018 0.021CD [0.0148, 0.0271] 0.0206 0.00001 0.0031 0.151

Page 15: Stochastic methods for uncertainty quantification in numerical aerodynamics

Table: Statistic obtained from 1500 MC simulations, α and Ma have Gaussiandistributions.

[min, max] mean variance st. dev. σ σ/meanα [2.5, 3.12] 2.789 0.0095 0.0973 0.035Ma [0.718, 0.75] 0.734 0.00002 0.0049 0.007CL [0.805, 0.905] 0.8525 0.00030 0.0172 0.02CD [0.0127, 0.0301] 0.0206 0.00001 0.0030 0.146

Page 16: Stochastic methods for uncertainty quantification in numerical aerodynamics

0.75 0.8 0.85 0.9 0.950

5

10

15

20

25Lift: Comparison of densities

0.005 0.01 0.015 0.02 0.025 0.03 0.0350

50

100

150Drag: Comparison of densities

0.75 0.8 0.85 0.9 0.950

0.2

0.4

0.6

0.8

1Lift: Comparison of distributions

0.005 0.01 0.015 0.02 0.025 0.03 0.0350

0.2

0.4

0.6

0.8

1Drag: Comparison of distributions

sgh13

sgh29

MC

Page 17: Stochastic methods for uncertainty quantification in numerical aerodynamics

Table: Statistic obtained from 3800 MC simulations, α and Ma have uniformdistribution.

[min, max] mean variance st. dev. σ σ/meanα [2.69, 2.89] 2.787 0.0034 0.058 0.021Ma [0.729, 0.739] 0.734 0.00001 0.003 0.004CL [0.831, 0.8728] 0.853 0.0001 0.0104 0.012CD [0.0164, 0.0247] 0.0205 0.00000 0.0018 0.088

Page 18: Stochastic methods for uncertainty quantification in numerical aerodynamics

Figure: [min, max] intervals in each point of RAE2822 airfoil for the cp and cf.The data are obtained from 645 solutions, computed in n = 645 nodes ofsparse Gauss-hermite grid.

Page 19: Stochastic methods for uncertainty quantification in numerical aerodynamics

Figure: Intervals [mean− σ, mean + σ], σ standard deviation, in each point ofRAE2822 airfoil for the pressure, density, cp and cf. Build for 645 points ofsparse Gauss-Hermite grid.

Page 20: Stochastic methods for uncertainty quantification in numerical aerodynamics

α(θ1, θ2), Ma(θ1, θ2), where θ1, θ2 have Gaussian distributions

Table: Statistics obtained on sparse Gauss-Hermite grid with 137 points.

[min, max] mean variance st. dev. σ σ/meanα [2.04, 3.56] 2.8 0.041 0.2 0.071Ma [0.72, 0.74] 0.73 0.00001 0.0026 0.0036CL [0.7047, 0.967] 0.85 0.0014 0.0373 0.044CD [0.0113, 0.0313] 0.01871 0.00001 0.00305 0.163

Page 21: Stochastic methods for uncertainty quantification in numerical aerodynamics

Table: Comparison of results obtained by a sparse Gauss-Hermite grid (ngrid points) with 17000 MC simulations.

n 137 381 645 MC,17000

σCL

CL0.044 0.042 0.042 0.0145

σCD

CD0.163 0.159 0.16 0.1589

|CL−CL0|

CL7.6e-4 1.3e-3 1.6e-3 4.2e-4

|CD−CD0|

CD1.66e-2 1.46e-2 1.4e-2 2.1e-2

Page 22: Stochastic methods for uncertainty quantification in numerical aerodynamics

Outline

Overview

Modelling of free stream turbulenceNumerics

Uncertainties in geometryNumerics

Low-rank approximation of the solutionNumerics

Page 23: Stochastic methods for uncertainty quantification in numerical aerodynamics

Uncertainties in geometry

Random boundary perturbations:∂Dε(ω) = {x + εκ(x , ω)n(x) : x ∈ ∂D}.where κ(x , ω) is a random field.

How to generate geometry with uncertainties ?Algorithm:

1. Assume cov. function cov(x , y) for random field κ(x , ω) given

2. Compute Cij := cov(xi , xj) for all grid points (in a sparse format!)

3. Solve eigenproblem Cφi = λiφi

4. Then κ(x , ω) ≈ ∑mi=1

√λiφiξi(ω), where ξi (ω) are uncorrelated

random variables.

Sparse approximation of dense matrix C is done in [Khoromskij,Litvinenko, Matthies, 2009]

Page 24: Stochastic methods for uncertainty quantification in numerical aerodynamics

69 RAE-2822 airfoils with uncertainties

Covariance function - Gaussian.

Page 25: Stochastic methods for uncertainty quantification in numerical aerodynamics

Uncertainties in geometry

[min, max] mean variance, σ2

st. dev.σ

σ/mean

CL [0.828, 0.863] 0.8552 0.00002 0.0049 0.0058CD [0.017, 0.022] 0.0183 0.00000 0.00012 0.0065

PCE of order 1 with 3 random variables and sparse Gauss-Hermitegrid wite 25 points were used.

Page 26: Stochastic methods for uncertainty quantification in numerical aerodynamics

Outline

Overview

Modelling of free stream turbulenceNumerics

Uncertainties in geometryNumerics

Low-rank approximation of the solutionNumerics

Page 27: Stochastic methods for uncertainty quantification in numerical aerodynamics

Low-rank approximation of the solution

U VΣ T=M

UVΣ∼

∼ ∼ T

=M∼

Figure: Reduced SVD, only k biggest singular values are taken.

Page 28: Stochastic methods for uncertainty quantification in numerical aerodynamics

Decay of eigenvalues

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−20

−15

−10

−5

0

5

log, #eigenvalues

log

, va

lue

s

pressuredensitycpcf

Figure: Decay (in log-scales) of 100 largest eigenvalues of the combinedmatrix constructed from 645 solutions (pressure, density, cf, cp) on thesurface of RAE-2822 airfoil.

Page 29: Stochastic methods for uncertainty quantification in numerical aerodynamics

Low-rank approximation of the solution matrix

M = [density; pressure; cp; cf] ∈ R2048×645 (4)

M in dense matrix format requires 10.6 MB.

rank k ‖M − Mk‖2/‖M‖2 memory, kB1 0.82 222 0.21 435 0.4 10810 5e-3 21520 5e-4 43150 1.2e-5 1080

Page 30: Stochastic methods for uncertainty quantification in numerical aerodynamics

Literature

1. A.Litvinenko, H. G. Matthies, Sparse Data Representation ofRandom Fields, PAMM, 2009.

2. B.N. Khoromskij, A.Litvinenko, H. G. Matthies, Application ofhierarchical matrices for computing the Karhunen-Loeveexpansion, Springer, Computing, 84:49-67, 2009.

3. B.N. Khoromskij, A.Litvinenko, Data Sparse Computation of theKarhunen-Loeve Expansion, AIP Conference Proceedings,1048-1, pp. 311-314, 2008.

4. H. G. Matthies, Uncertainty Quantification with Stochastic FiniteElements, Encyclopedia of Computational Mechanics, Wiley,2007.

Page 31: Stochastic methods for uncertainty quantification in numerical aerodynamics

Acknowledgement

Elmar Zander

A Malab/Octave toolbox for stochastic Galerkin methods(KLE, PCE, sparse grids, tensors, many examples etc)

http://ezander.github.com/sglib/