stochastic aerodynamics

Upload: luis-horacio-martinez-martinez

Post on 01-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Stochastic Aerodynamics

    1/17

    Stochastic Aerodynamics:

    An Application to Bluff

    Body with Variable Gust

    Inlets

    Dr. Imran Afgan

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    2/17

    Breakdown of Work

    Modelling and Numerics LES (Standard Smagorinsky) model with Code_Saturne

    Conforming/Non-Conforming Mesh Refinement Investigation

    Bluff Body 1 (Flat Plate)

    Bluff Body 2 (Cylinder arrays)

    Code_Saturne Development

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    3/17

    Bluff Body 1 (Flat Plate)

    Establish a test case with for flow over a Bluff body (Normal & oblique

    Flat Plate) using literature review Code_Saturne user programming tweaking to obtain desired output

    variables

    Testing of Code_Saturne on the user subroutines for a simple channelflow

    Benchmark the test case with available data Use Generalized Chaos polynomial (gCP) as a Black box to obtain

    desired input parameters

    Perform a number of LES runs to obtain the output variables.

    Postprocess the output variables by gCP to obtain a set of data for thedesired range

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    4/17

    Bluff Body 2 (Cylinder Arrays) Establish test cases with flow over a wide range of

    tube bundle configurations Benchmark the test case with available data

    Testing a number of non-conforming meshes for a

    complete parametric study

    Perform a refined LES/DNS of the tube bundles with

    various inlet

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    5/17

    Over & Above Bluff Body 2 (Cylinder arrays)

    Perform a refined LES/DNS of the tube bundles with

    various inlet conditions

    Perform a gCP analysis much like Case 1 to generate

    a test database

    Code_Saturne Development

    Implementation of Wall adapting Local Eddy Viscosity

    Model in Code_Saturne via user subroutines

    Benchmark the case with a channel flow simulation

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    6/17

    Case 1: Flat Plate Establishment of test case and Flow parameters

    Re (2.5 x 104 2.5 x 105)

    Uniform Inlet

    2 Configurations to be tested

    Flat Plate normal (900) to the inflow

    Flat Plate oblique (450) to the inflow

    Lift, drag, Pressure, Admittance Parameter, U,V,W,

    some higher order statistics uiuj

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    7/17

    Geometry

    STURM4

    6H

    24H

    15HH

    Height (y): H

    Thickness (x): 0.1H

    Length (z): 14H (Spanwise direction Periodic BC

  • 8/9/2019 Stochastic Aerodynamics

    8/17

    Numerical Grid

    STURM4

    2 D Mesh contains 250,000 cells

  • 8/9/2019 Stochastic Aerodynamics

    9/17

    Flat Plate Data

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    10/17

    Application of Gust Inlet

    STURM4

    ( )( )

    [ ]

    2 2

    0 4( )( ) sin 3

    / 2

    is Gust Life, is Amplitude and 0,

    t t Tu t U A t T TT

    T A t T

    = + +

    T

    A

    ( , , , ) velocity signal with gust inlet

    ( , , ), ( , , ) decoupling life and amplitude of gust

    ( , , ) for different cases, where is number of cases choseni i

    u f x t T A

    u f x t A u f x t T

    u f x t A i

    =

    = =

    =

  • 8/9/2019 Stochastic Aerodynamics

    11/17

    gPC Pre-processor

    ( , , )u x t

    ( , , ) where 1,inlet ju x t z j Nq=

    CFD Solver

    Code_Saturne

    PDF of Stochastic Input is chosen a priori andassigned

    Nq number of Quadrature points are also chosen apriori

    var( , , ) where 1,

    iable jO x t z j Nq=

    Stochastic Collection Method

    2

    ( , , ), ( )( , ) where k=0,K

    ( )

    k

    k

    k

    O x tO x t

    =

    where

    ( , , ), ( ) ( , , ). ( ). ( )k kO x t O x t d

    =

    Can be approximated by Monte Carlo method or quasi Monte Carlo method

    We on the other hand use Deterministic Numerical Quadrature Method

    var

    0

    ( , , ), ( ) . ( , , ). ( ) where 0,Z

    k j j k j

    j

    O x t w O x t z z k K =

    = =

    Wherejw is the weight function, ( )k is the orthogonal polynomial which depends up

    the PDF selection criteria

    gPC Method

    Some Selected Classical orthogonal PolynomialsRandom field data is now represented using

    gPC expansion of the form

    0

    ( ; , ) ( , ). ( )K

    k k k

    k

    O x t w O x t =

    =

  • 8/9/2019 Stochastic Aerodynamics

    12/17

    Case 2: Tube Bundles Cross flow over square in-line tube bundles with 4 different gap ratios was tested. P/D=1.2, 1.5, 1.6

    and 1.75

    Comparison was made with experimental data and with LES of Code Saturne

    P/D=1.5 case was also simulated with conventional URANS models

    Average Cp comparison

    for P/D=1.5 case

    Cross sectional View of

    the grid

    Pseudo-average mean velocity streamlines. From left to right: P/D=1.2, P/D=1.5, P/D=1.6 and P/D=1.75

    Average Velocity contours at

    mid section for P/D=1.5 case

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    13/17

    WALE Model*

    Based on the traceless part of the

    square of the velocity gradient tensor

    Where the Wale constant is

    estimated as

    Model is based purely on wall

    behaviour and dimensional analysis

    so no additional and/or special walltreatments are required

    ( )

    ( ) ( )

    3/ 2

    12 2

    5/ 45/ 22

    & &

    ( ) ( ) & &

    d d

    ij ij

    T W W d d

    ij ij ij ij

    OP

    v C COP S S= =

    +

    ( )3/ 2

    1/ 2

    2 2

    1

    2

    2 ij ijW S

    ij ij

    S S

    C C

    OPS SOP

    =

    STURM4

    * Nicoud, F., Ducros, F. 1999. Subgrid scale stress modelling based on the square of the

    velocity gradient tensor. Flow, Turbulence and Combustion. Vol 62, 183-200

  • 8/9/2019 Stochastic Aerodynamics

    14/17

    Bibliography Flat Plate Breuer, M., Jovicic, N. 2001. Separated Flow Around a Flat Plate at High Incidence: An LES

    Investigation. Journal of Turbulence, 1468-5248, Vol. 2, N 18.

    Chen, J. M., Fang, Y. -C. 1996. Strouhal Numbers of Inclined Flat Plates. Journal of WindEngineering and Industrial Aerodynamics, 61, pp 99-112.

    Drabble, M. J., Grant, I., Armstrong, B. J., Barnes, F. H. 1990. The Aerodynamic Admittance of aSquare Plate in a Flow with a Fully Coherent Fluctuation. Physics of Fluids A 2(6), pp 1005-1013.

    Dennis, S. C. R., Wang Qiang, Coutanceau, M., Launay, J. L. 1993. Viscous Flow Normal to aFlat Plate at Moderate Reynolds Numbers. Journal of Fluid Mechanics. Vol. 248, pp 605-635.

    Fage, A., Johansen, F. C. 1927. On the Flow of Air behind an Inclined Flat Plate of Infinite Span.

    Proceedings of the Royal Society of London, Series A. Vol. 116, No. 773, pp 170-197. Julien, S., Lasheras, J., Chomaz, J,-M. 2003. Three-Dimensional Instability and Vorticity Patters in

    the Wake of a Flat Plate. Journal of Fluid Mechanics. Vol. 479, pp 155-189.

    Julien, S., Ortiz, S., Chomaz, J.-M. 2004. Secondary Instability Mechanisms in the Wake of a FlatPlate. European Journal of Mechanics B/Fluids. Vol. 23, pp 157-165.

    Kiya, M., Matsumura, M. 1988. Incoherent Turbulence Structure in the Near Wake of a Normal

    Plate. Journal of Fluid Mechanics. Vol 190, pp 343-356. Leder, A. 1991. Dynamics of Fluid Mixing in Separated Flows. Physics of Fluids A 3, pp 1741-

    1748.

    Mazharoglu, C., Hacisenvki, H. 1999. Coherent and Incoherent Flow Structures Behind a NormalFlat Plate. Experimental Thermal and Fluid Science 19, pp 160-167.

    STURM4

    http://www.informaworld.com/smpp/title~db=all~content=t713665472~tab=issueslist~branches=2#v2http://www.informaworld.com/smpp/title~db=all~content=t713665472~tab=issueslist~branches=2#v2http://www.informaworld.com/smpp/title~db=all~content=t713665472~tab=issueslist~branches=2#v2
  • 8/9/2019 Stochastic Aerodynamics

    15/17

    Najjar, F. M., Vanka, S. P. 1995a. Simulations of the Unsteady Separated Flow Past a NormalFlat Plate. International Journal of Numerical Methods in Fluids. Vol. 21, pp 525-547.

    Najjar, F. M., Vanka, S. P. 1995b. Effects of Intrinsic Three-Dimensionality on the DragCharacteristics of a Normal Flat Plate. Physics of Fluids 7(10), pp 2516-2518.

    Najjar, F. M., Balachandar, S. 1998. Low Frequency Unsteadyness in the Wake of a Normal FlatPlate. Journal of Fluid Mechanics. Vol. 370, pp 101-147.

    Narasimhamurthy, V. D., Andersson, H. I. 2009. Numerical Simulation of the Turbulent WakeBehind a Normal Flat Plate. International Journal of Heat and Fluid Flow. 30, pp 1037-1043.

    Perry, A. E., Steiner, T. R. 1987. Large-scale Vortex Structures in Turbulent Wakes behind Bluff

    Bodies. Part 1: Vortex Formation Processes. Journal of Fluid Mechanics. Vol. 174, pp 233-270. Steiner, T. R., Perry, A. E., 1987. Large-scale Vortex Structures in Turbulent Wakes behind Bluff

    Bodies. Part 2: Far-Wake Structures. Journal of Fluid Mechanics. Vol. 174, pp 271-298.

    Saha, A. K. 2007. Far-Wake Characteristics of Two-Dimensional Flow past a normal flat plate.Physics of Fluids. Vol. 19, Article 128110.

    Tamaddon-Jahromi, H. R., Townsend, P, Wbster, M. F. 1994. Unsteady Viscous Flow Past a Flat

    Plate Orthogonal to the Flow. Computers and Fluids. Vol. 23, No. 2, pp 433-446. Wu, S. J., Miau, J. J., Hu, C. C., Chou, J. H. 2005. On Low-Frequency modulations and three-

    dimensionality in Vortex Shedding Behind a Normal Plate. Journal of Fluid Mechanics. Vol. 526,pp 117-146.

    Yeung, W. W. H., Pakinson, G. V. 1997. On the Steady Separated Flow Around and Inclined FlatPlate. Journal of Fluid Mechanics. Vol. 333, pp 403-413.

    STURM4

    Bibliography Flat Plate (cont.)

  • 8/9/2019 Stochastic Aerodynamics

    16/17

    Bibliography Tube Bundles Aiba, S., Tsuchida, H., Ota, T. 1982. Heat Transfer around Tubes in In-line Tube Banks. Bull. JSME, 25, 919-926.

    Benhamadouche, S., Laurence, D., 2003. LES, coarse LES, and transient RANS comparisons on the flow acrosstube bundle. Int. J. Heat and Fluid Flow 4, 470-479.

    Benhamadouche, S., Laurence, D., Jarrin, N., Afgan, I., Moulinec, C. 2005. Large Eddy Simulation of Flow AcrossIn-line Tube Bundles, 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11),Popes Palace Conference Center, Avignon, France. Paper: 405.

    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L. 1992. New Insights into LES. Fluid Dynamics Res. 10, 199-228.

    Bouris, D., Bergeles, G. 1999. Two dimensional Time Dependent Simulation of the Subcritical Flow in a StaggeredTube Bundle using a Subgrid-scale Model. J. Heat and Fluid Flow 20:2, 105-114.

    Bouris, D., Papadakis, G., Bergeles, G. 2001. Numerical Evaluation of Alternate Tube Configurations for ParticleDeposition Rate in Heat Exchanger Tube Bundles. J. Heat and Fluid Flow 22:5, 525-536.

    Breuer, M., Rodi, W. 1994. LES of Turbulent Flow through a Straight Square Duct and 1800 End. Voke, P. et al.(Eds), Direct and LES I. Kluwer Academic Publishers, Dordrecht. 273-285.

    Celik, I. B., Cehreli, Z. N., Yavuz, I. 2005. Index of resolution quality for Large Eddy Simulations. J. of Fluids Engg,127, 949-958.

    Chen, S. S. 1987. Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere publishing corporation.

    Chen, S.S., Jendrzejczyk, J.A. 1987. Fluid Excitation Forces Acting on a Square Tube Array. JSME TransactionsVol 109, 415-423.

    Ferziger, J.H., Peric, M. 2002. Computational Methods for Fluid Dynamics. Springer, third edition. Fitz-Hugh, J.S. 1973. Flow Induced Vibration in Heat Exchangers. Proc. Int. Sym. on Vibration Problems in

    Industry, Keswick, UK, Paper No. 427; in Flow induced vibration of circular cylinder structures by Chen, S. S.

    Frohlich, J. Rodi, W. 2002. Introduction to Large Eddy Simulation of Turbulent Flows. Closure strategies forturbulent and transitional flows by B. Launder and N. Sandham, Cambridge University press. 267-298.

    Hassan, Y., Ibrahim, W. 1997. Turbulence Prediction in Two-Dimensional Tube Bundle Flows using Large EddySimulation, Nuclear Technology 119, 11-28.

    STURM4

  • 8/9/2019 Stochastic Aerodynamics

    17/17