steve smith - university of california, santa...

66
Introduction to Optical Tweezers Steve Smith Bustamante Group, Physics Dept. Howard Hughes Medical Institute University of California, Berkeley

Upload: buixuyen

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Introduction to Optical Tweezers

Steve Smith

Bustamante Group, Physics Dept.

Howard Hughes Medical Institute

University of California, Berkeley

Page 2: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Light transfers momentum to matterComet tail

Light exerts force on matter

James Clerk Maxwell

1831-1879

Page 3: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

E

V

B

F=eBVe-

Electromagnetic waves interact with electrons in matter

DP = DU/c

ele

ctr

ic

P = h k

Page 4: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Arthur Ashkin builds first optical trap

1970

Single-beam trap

Dual-beam trap

Axial escape

Page 5: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Photon meets refracting object

Pin

Pout

DP

F = dP/dt

q

P = h/l

For every action there exists an equal but opposite reactionSir Isaac Newton

Photon momentum

ashkin1.EXE

Page 6: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

a stable single-beam trap

Anti-scattering force:Forward momentum is increased by lens -focusing effect.

ASHKIN2.EXE

Page 7: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Infrared trap supports life !

Trap live bacteria

Sort living cells

Manipulate organellesinside cells

Nature, 1987

Page 8: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,
Page 9: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Estimating Forces1. Assume a linear-spring restoring force

2. Determine trap stiffness k

3. Measure Dx relative to trap center

Dx

F = k Dx

trap center

Page 10: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Calibrating trap stiffness

(1) Stokes’ law

(2) Corner frequency

(3) Equipartition

Page 11: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Fluid drag test force

Glass chamber

Distance

detector

Motorized

Stage with

encoder

Data

acquisition

Glass

Glass

water

F = 6prhVStokes’ law but corrected for proximity to walls

Page 12: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

xktFx D )(

Brownian noise as test forceLangevin equation:

Drag force = 6phrfor a sphere

Fluctuating force

<F(t)> = 0

< F(t) F(t’) > = 2kBTd(t-t’)

22

2 4)(

c

B

ff

Tkfx

D

Lorentzian power spectrum

Corner frequencyfc = 2p k /

Trap force

Page 13: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Power spectra

Pow

er (

nm2/H

z)

Frequency (Hz)

1/f2

4kBT/k2

fc=k/2p

Page 14: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Does not use drag coefficient, but rather ..

integrate area under power curve to get <DX2>

Equipartition method

However, you must have an accurate measure of Dx at high bandwidth. This value is more easily taken in AFMs than optical traps.

k = kBT / <Dx2>

½ k<Dx2> = ½ kBT

Page 15: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Position clamp avoids problems with trap linearity

Page 16: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Measuring forces by analyzing momentum of the trap beam

dP/dt = nW/cDdP/dt

F = -D dP/dt(nW/c) sin q

q

(nW/c) (1-cos q)Light ray with power W

input

dP/dtoutput

Page 17: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Counter-propagating beams for narrow-angle trap

OB

JO

BJ

LA

SE

RL

AS

ER

pipette

DNA

position detector

liquid chamber

position detector

qwppbs

Page 18: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

external force

liquid air

detector

Narrow beams stay within NA of lenses

Page 19: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Fro

nt fo

cu

s

Focal length L

Ba

ck fo

ca

l p

lan

e

X = n L sinq

Light leaving trap obeys Abbe sine condition

Objective lens

BFP : where angle q is best

represented by offset x

Page 20: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

How to measure light offset?quadrant photodiode

Page 21: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

versus PSD photodiode

Page 22: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

++

_ _

+

_ _

__

QPD

PSD

Page 23: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

N

P

N

P

In1 In2

Out1

Out2

PSD (position sensitive detector)

Plate resistorsseparated byreverse-biasedPIN photodiode

opposite electrodes held at same potentialno conduction unless there is light

Page 24: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

N

P

N

P

In1 In2

Out1

Out2

PSD (position sensitive detector)

Plate resistorsseparated byreverse-biasedPIN photodiode

In1 + In2 = Out1 + Out2 = Wi

by charge conservation

Out1 = Out2 = ½ WIn1 = In2 = ½Wby symmetry

Suppose we shine ray of light with intensity Wi in exact center of detector:

(sensitivity = 1)

Page 25: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

N

P

N

P

In1 In2

Out1

Out2

PSD (position sensitive detector)

Now suppose the ray of is off center.

Out1 + Out2 = W = In1 + In2 still holds

In1 > In2 and Out1 > Out2 due to resistance asymmetry

Opposite electrodes held at equal potential so currents to those electrodes divide inversely to the distance of the spot from electrode.

Page 26: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

N

P

N

P

In1 In2

Out1

Out2

PSD (position sensitive detector)

Multiple rays add their currents linearly to the electrodes,

where each ray’s power adds Wi current to the total sum.

Page 27: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

PSD (position sensitive detector)

N

P

N

P

In1 – In2 = S Wi xi / RD

Out1 – Out2 = S Wi yi / RD

x

y

Define x-y coordinates centered on detector

it can be shown

where RD is the half-width (or “radius”) of the detector

In2In1

Out1

Out2

Page 28: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

N

P

N

P

In1 In2

Out1

Out2

where sum = In1 + In2 = Out1 + Out2 = S Wi

Xcenter= RD (In1 –In2) / sum

Ycenter = RD (Out1 – Out2 ) / sum

PSD (position sensitive detector)

For arbitrary light distribution, centroid position given by difference of electrode currents

Sensitivity does not depend on spot size or shape

Page 29: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

N

P

N

P

In1 In2

Out1

Out2

SX = In1 – In2 = S W i xi / RD

SY = Out1 – Out2 = S Wi yi / RD

PSD force sensor

samples

unfocused

beam

Page 30: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Detecting external

force from

changes in

light momentum

flux

liquid air external force

X

2L

detector

Collector lens transforms exit angles into ray offsets

by Abbe Sine Condition: xi = L nL sin qi

PSD sums over rays to give signal SX RD= SWi xi

External force = light force = effect from all rays:

Fx = dP/dt = (nL/c) SWi sin qi

Then external transverse force is given by

FX = SXRD /cL

nL

Page 31: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Momentum sensor calibration

Calibrate signal to power ratio for PSDs / objectives with power meter and ruler.

No test force is used.

Calibration does not change with particle size, particle shape or laser power. Particle and trap are not being calibrated (don’t matter).

Methods in Enzymology v.361 (2003)

Page 32: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Measuring axial forces

dP/dt = nLW/cDdP/dt

F = -D dP/dt(nLW/c) sin q

q

(nLW/c) (1-cos q)Light ray with power W

input

dP/dtoutput

Page 33: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Size of exit beam indicates axial force on

trapped object

Laser beam

Page 34: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

tran

smis

sion

radius = nL * L

Correct weighting function to extract axial

momentum flux is semi-circle

bulls-eyeoptical attenuator

Page 35: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Placement of axial force sensors

Bulls-eyeattenuator

PlainPhotodiode

Page 36: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,
Page 37: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

10 nm

Path of bacterium

Flagellum wobble

1000 samples/sec

Page 38: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Force - Extension Behavior of dsDNA and ssDNA

Fractional Extension

For

ce (

pN)

Page 39: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Protein

ssDNA

Unzipping dsDNA

ssDNABockelmann, Heslot, 2002

S. Koch, M. Wang, 2003

Felix Ritort et al., in preparation

Page 40: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

15 pN

16 pN

17 pN

60 nm

Page 41: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Motor step size:how small can we detect?

• Effects of thermal noise and tether elasticity

Page 42: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Springs in series for motor

Tra

p c

ente

r

Light

springTether

spring

k1k2

Bead moves

Dxsig = Dxs k1

k1+k2

Motor steps

Dxs

Page 43: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Springs in parallel for thermal noise

Tra

p c

ente

r

Light

springTether

spring

Combined

potential

k2k1

k1 k2

Page 44: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

10-8

10-7

10-6

10-5

10-4

10-3

10 100 1000 104 105

0.27

0.54

0.82

2.03

5.10

<DF

2>

(pN

2/H

z)

Frequency (Hz)

<DF2> = 4kBT at low frequencies

Force-noise spectral density is proportional to bead size

Page 45: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Signal to noise ratio

SNR >1 when Dxsig > Dxtherm

Dxs k1 / (k1 + k2) > 2(kBT B)1/2 / (k1 + k2)

Thermal noise

= 2 (kBT B)1/2 / (k1 + k2)

where B is bandwidth in Hz

Dxtherm = DFtherm / (k1 + k2)

Dxstep > 2(kBT B)1/2 / k1

Tether

stiffness

Page 46: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Dxstep > 2(kBT B)1/2 / k1

Thermal limit to step detection

Resolution depends only on tether stiffness, not trap stiffness.

Resolution degrades as (drag)1/2

Comparing AFM to laser tweezers, the force noise scales as

sqrt(cantilever length / bead diameter). Therefore a 100um cantilever has

10x more force noise than a 1 um bead, and 10x bigger distance noise

for fixed k1.

A stiff linkage (large k1) gives an AFM very good resolution when it

pushes against a hard sample. To make a DNA tether stiff requires some

tension in the tether.

Page 47: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

-100

-50

0

50

100

0 5000 10000 15000 20000 25000 30000

Noise plus Steps

Sig

na

l

time

-100

-50

0

50

100

0 5000 10000 15000 20000 25000 30000

Running Window 10

filtere

d

time

-100

-50

0

50

100

0 5000 10000 15000 20000 25000 30000 35000

Running Window 100

filtere

d

time

-100

-50

0

50

100

0 5000 10000 15000 20000 25000 30000

Running Window 500

filtere

d

time

-100

-50

0

50

100

0 5000 10000 15000 20000 25000 30000

Running Window 1000

filtere

d

time

Averaging reduces bandwidth, suppresses noise

Page 48: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

For example:Bead is 2 um diameter, immersed in water.

Tether is 10 kbp of dsDNA and tether tension is either 2 pN or 20 pN.

Signal of interest is at 1 Hz, so that much bandwidth is required.

Tether stiffness k1 = dF/dx for WLC at either tension (assume P~50nm).

at 2 pN tension, k1 = 12 pN/um

at 20 pN tension, k1 = 170 pN/um

Then smallest resolvable step Dxs= 2(kBT B)1/2 / k1

Dxs= 1.5 nm @ 2 pN tension

Dxs = 0.1 nm @ 20 pN tension (in 1 Hz bandwidth)

Averaging for infinite time will reduce B to zero and resolve infinitely small steps

[ but completely lose temporal resolution]

Slow down the process?

[ now limited by position drift of instrument ]

Page 49: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Work-Horse Optical TrapMeasures force by light momentum change

10 years gaveover 30 papers

Page 50: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Movable microchamber, fixed trap position

X-Y-Z piezo-flexure stage (Martoc)

Page 51: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Glasspipette

Piezo stage

Typical configuration to pull a molecule

Page 52: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Methods in Enzymology

volume 361 (2003)

pipette

1.3nmFor

ce (pN

)

0

1

2

3

Sta

ge position (nm

) 8 0

-8 -

16

Special configuration tests “drift” noise

Page 53: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

basepair / sec

count

Drift offset = 0.3 bp/sVelocity SD = 2 bp/s @ 1 Hz

see Neuman and BlockCell, 2003

Characterizing “drift” with velocity histograms

Low-pass filter position signal

(here 1 Hz)

Score average velocities

in 2 sec intervals

Fit distribution to Gaussian

Page 54: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Optics sensitive to:Operator’s touch, breath, voiceChanges in room temperature, air-flow, vibrationAtmospheric fluctuations (star twinkle)

become management problems

Technical problems

Only works in special room in basement Needs operator training for good data Competition for machine time Expensive to build extra machines

Page 55: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Our solution: “Mini-Tweezers”

Page 56: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Table-top

instrument

Optics head

hangs from

bungee cord

Works OK on

upper floors

Page 57: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

300 mW typical

single-mode fiber

output

975 nm or 845 nm

Mini uses telecom “pump” lasers

Page 58: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Fixed chamber, movable traps

gives increased stability

Page 59: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Fiber wiggler moves trap

Page 60: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

1.32 1.34 1.36 1.38 1.4 1.42 0.06 0.08 0.1 0.12 0.14 0.16

Martock flexure stage Fiber wiggler

posi

tion

time (s) time (s)

Moving the fiber is faster

than moving the chamber

Page 61: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Compact optical path avoids “twinkle” effect

10 cm from fiber to trap (3 cm air)

Page 62: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

0.5 nm steps at 1 Hz

beam

Motorized stage remains fixed

Beams move up and downPipette bead remains fixed

Page 63: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Wooden box

Page 64: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Less velocity-noise with

mini-Tweezers

basepair / sec

count

mini

standard

Velocity noise = 0.4 bp/s @ 1Hz BW

Page 65: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Analytical

optical

traps

can do:

RNA hairpins assay helicase activity

RNA secondary structure, folding and refolding

Phage packaging motors

Polymer entropic elasticity

DNA mechanics (torsional rigidity, phase transitions)

DNA condensation phase transitions

DNA thermodynamics, base-pair energies

Force-melting DNA shows sequence (unzipping)

Molecular motors in muscle (myosin, actin)

Cell transport: kinesin on tubulin, dynein on tubulin

Cell import: endosome degradation

Protein folding and refolding (RnaseH, T4 Lysozyme)

Protein folding multimers (Titin)

Enzyme movements, kinetics: topoisomerase, gyrase

Polymerases (DNA, RNA)

Affinity studies: antibody, ligand

DNA/protein binding, e.g. recA,

Chromatin structure and remodeling

Combinatorial chemistry, bead sorting

Cell sorting by drag coefficients

Rheology of polymers

Reptation studies

Electrophoresis forces

Cell wall deformability

Statistical mechanics (Jarzynski, Crooks theorems)

Bacterial motility (swimming force) in 3 dimensions

Education / training in biophysics

Page 66: Steve Smith - University of California, Santa Cruzphysweb.ucsc.edu/drupal/sites/default/files/SmithOpticalTweezers.pdf · Introduction to Optical Tweezers Steve Smith Bustamante Group,

Thanks:

• Carlos Bustamante and lab members

• Howard Hughes Medical Institute

• Claudio Rivetti, University of Parma

• Agilent Technologies Foundation

http:// tweezerslab.unipr.it