statistical mechanics of quantum-classicalsystems · infm and dipartimento di fisica,...

11
Statistical mechanics of quantum-classical systems Steve Nielsen and Raymond Kapral Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada Giovanni Ciccotti INFM and Dipartimento di Fisica, Universita ` ‘‘La Sapienza,’’Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May 2001; accepted 13 July 2001 The statistical mechanics of systems whose evolution is governed by mixed quantum-classical dynamics is investigated. The algebraic properties of the quantum-classical time evolution of operators and of the density matrix are examined and compared to those of full quantum mechanics. The equilibrium density matrix that appears in this formulation is stationary under the dynamics and a method for its calculation is presented. The response of a quantum-classical system to an external force which is applied from the distant past when the system is in equilibrium is determined. The structure of the resulting equilibrium time correlation function is examined and the quantum-classical limits of equivalent quantum time correlation functions are derived. The results provide a framework for the computation of equilibrium time correlation functions for mixed quantum-classical systems. © 2001 American Institute of Physics. DOI: 10.1063/1.1400129 I. INTRODUCTION Often situations arise where it is appropriate to study composite dynamical systems with interacting quantum me- chanical and classical degrees of freedom. In condensed mat- ter physics such situations occur when one is interested in the dynamics of a light quantum particle or set of quantum degrees of freedom interacting with more massive particles. 1–3 Specific examples include proton transfer, 4 sol- vation dynamics of an excess electron, 5 and nonradiative re- laxation processes of molecules in a liquid-state environ- ment. 6 In these circumstances it is not feasible to attempt a full quantum solution of the Schro ¨ dinger equation for the entire system. Consequently one is led to consider the dy- namics of a quantum subsystem coupled to a bath where the environmental degrees of freedom are treated classically. Such mixed quantum-classical systems arise in other con- texts as well. 7 Different formulations of the dynamics of such mixed quantum-classical systems have appeared in the literature. In these reduced descriptions of the quantum dynamics the en- vironmental degrees of freedom are accounted for by the inclusion of dissipative and decoherence terms in the equa- tions of motion, 8–10 through multistate Fokker–Planck dynamics 11 or representations by quantum stochastic processes. 12 Other approaches utilize a more detailed treat- ment of the classical environment. These include simple adiabatic dynamics where the classical system evolves on a potential energy surface determined from a single adiabatic eigenstate, or Ehrenfest mean field models where the classi- cal evolution is governed by a mean force determined from the instantaneous value of the quantum wave function. 13,14 These descriptions produce a definite classical evolution but do not always give physically correct results. If we relax the continuity of the trajectory of the classical variables, 15 we are led to consider surface-hopping algorithms. 16–19 Evolution equations for the quantum-classical density matrix where the evolution operator is expressed in terms of a quantum- classical bracket have also been studied 20–2 6 and their solu- tions have been formulated in terms of surface-hopping trajectories. 26–28 In this paper we develop the statistical mechanics of mixed quantum-classical systems. We take as a starting point the evolution equation for the mixed quantum-classical den- sity matrix. 21,23–26,29 This equation may be derived by partial Wigner transforming the quantum Liouville equation over the bath degrees of freedom corresponding to massive par- ticles and expanding the resulting evolution operator to lin- ear order in the mass ratio ( m / M ) 1/2 , where m and M are the characteristic masses of the quantum subsystem and bath particles, respectively. 26 The resulting evolution equation can be recast as an integral equation in which classical trajectory segments are interspersed with environment-induced quan- tum transitions and corresponding bath momentum changes. 27 The canonical equilibrium density matrix for quantum- classical systems is constructed to be stationary under the quantum-classical evolution. Its form is derived and com- pared with its full quantum analog. A linear response deriva- tion is carried out to determine the response function and the forms of the equilibrium time correlation functions appearing in quantum-classical systems. Mixed quantum-classical dy- namics and the associated correlation functions present dif- ferences from their full quantum analogs: Identities among quantum correlation functions hold only approximately in the quantum-classical limit and properties such as time trans- lation invariance are also only approximately valid. The paper is organized as follows: Section II presents the formal structure of mixed quantum-classical dynamics and contrasts it with that of full quantum mechanics. In Sec. III we discuss the canonical equilibrium density matrix and in Sec. IV a linear response derivation of the response function JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 13 1 OCTOBER 2001 5805 0021-9606/2001/115(13)/5805/11/$18.00 © 2001 American Institute of Physics Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Upload: others

Post on 14-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

Statistical�

mechanics of quantum-classical systemsSteve�

Nielsen and Raymond KapralChemical Physics Theory Group, Department of Chemistry, University of Toronto,Toronto, ON M5S 3H6, Canada

Giovanni�

CiccottiINFM�

and Dipartimento di Fisica, Universita ‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy�Received�

29 May 2001;accepted13 July 2001�The statisticalmechanicsof systemswhoseevolution is governedby mixed quantum-classicaldynamics�

is investigated.The algebraicpropertiesof the quantum-classicaltime evolution ofoperators� andof thedensitymatrix areexaminedandcomparedto thoseof full quantummechanics.Theequilibriumdensitymatrix thatappearsin this formulationis stationaryunderthedynamicsanda methodfor its calculationis presented.Theresponseof a quantum-classicalsystemto anexternalforce

which is appliedfrom the distantpastwhenthe systemis in equilibrium is determined.Thestructure� of the resulting equilibrium time correlation function is examined and thequantum-classical� limits of equivalentquantumtime correlationfunctionsarederived.The resultsprovide a framework for the computationof equilibrium time correlation functions for mixedquantum-classical� systems. © 2001

�American Institute of Physics. � DOI:

�10.1063/1.1400129�

I.�

INTRODUCTION

Often�

situationsarise where it is appropriateto studycomposite� dynamicalsystemswith interactingquantumme-chanical� andclassicaldegreesof freedom.In condensedmat-ter�

physicssuchsituationsoccur when one is interestedinthe�

dynamicsof a light quantumparticle or set of quantumdegrees�

of freedom interacting with more massiveparticles. 1–3 Specific

�examplesincludeproton transfer,4

�sol-�

vation� dynamicsof an excesselectron,5�

and nonradiativere-laxation�

processesof moleculesin a liquid-state environ-ment.� 6

�In�

thesecircumstancesit is not feasibleto attemptafull quantumsolution of the Schrodinger

�equationfor the

entire� system.Consequentlyone is led to considerthe dy-namics� of a quantumsubsystemcoupledto a bathwheretheenvironmental� degreesof freedom are treated classically.Such�

mixed quantum-classicalsystemsarise in other con-texts�

aswell.7

Dif�

ferent formulationsof the dynamicsof such mixedquantum-classical� systemshaveappearedin the literature.Inthese�

reduceddescriptionsof the quantumdynamicsthe en-vironmental� degreesof freedom are accountedfor by theinclusion!

of dissipativeand decoherencetermsin the equa-tions�

of motion,8–10 through�

multistate Fokker–Planckdynamics� 11 or� representationsby quantum stochasticprocesses. 12 Other

�approachesutilize a more detailedtreat-

ment� of the classical environment.These include simpleadiabatic dynamicswherethe classicalsystemevolveson apotential energy surfacedeterminedfrom a single adiabaticeigenstate,� or Ehrenfestmeanfield modelswherethe classi-cal� evolution is governedby a meanforce determinedfromthe�

instantaneousvalue of the quantumwave function.13,14

These"

descriptionsproducea definiteclassicalevolutionbutdo�

not alwaysgive physicallycorrectresults.If we relax thecontinuity� of thetrajectoryof theclassicalvariables,15 we# areled to considersurface-hoppingalgorithms.16–19 Evolution

equations� for thequantum-classicaldensitymatrix wheretheevolution� operator is expressedin terms of a quantum-classical� brackethavealsobeenstudied2

$0–26 and their solu-

tions�

have been formulated in terms of surface-hoppingtrajectories.� 26–28

In�

this paper we develop the statistical mechanicsofmixedquantum-classicalsystems.We takeasa startingpointthe�

evolutionequationfor the mixed quantum-classicalden-sity� matrix.21,23–26,29This

"equationmaybederivedby partial

W%

igner transformingthe quantumLiouville equationoverthe�

bath degreesof freedomcorrespondingto massivepar-ticles�

andexpandingthe resultingevolutionoperatorto lin-ear� orderin themassratio (m& /

'M(

)) 1/2,* wherem& and M

(are the

characteristic� massesof the quantumsubsystemand bathparticles, respectively.26

$Theresultingevolutionequationcan

be+

recastasan integralequationin which classicaltrajectorysegments� are interspersedwith environment-inducedquan-tum�

transitions and corresponding bath momentumchanges.� 27

$The"

canonicalequilibrium densitymatrix for quantum-classical� systemsis constructedto be stationaryunder thequantum-classical� evolution. Its form is derived and com-pared with its full quantumanalog.A linear responsederiva-tion�

is carriedout to determinetheresponsefunctionandtheformsof theequilibriumtime correlationfunctionsappearingin quantum-classicalsystems.Mixed quantum-classicaldy-namics� and the associatedcorrelationfunctionspresentdif-ferences

from their full quantumanalogs:Identitiesamongquantum� correlation functions hold only approximatelyinthe�

quantum-classicallimit andpropertiessuchastime trans-lation�

invariancearealsoonly approximatelyvalid.The"

paperis organizedasfollows: SectionII presentstheformal structureof mixed quantum-classicaldynamicsandcontrasts� it with that of full quantummechanics.In Sec.IIIwe# discussthe canonicalequilibrium densitymatrix and inSec.�

IV a linear responsederivationof the responsefunction

JOURNAL,

OF CHEMICAL PHYSICS VOLUME 115, NUMBER 13 1 OCTOBER2001

58050021-9606/2001/115(13)/5805/11/$18.00 © 2001 American Institute of Physics

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 2: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

is carriedout and a generaldiscussionof the propertiesofmixedquantum-classicalcorrelationfunctionsis given.Con-cluding� remarksare madein Sec.V andAppendixesA–Ccontain� additionaldetails.

II.-

QUANTUM-CLASSICAL DYNAMICS

Consider.

a quantumsystemwhich may be partitionedinto!

two interactingsubsystems,a quantumsubsystemwithparticles of massm& ,/ and a quantumbath with particlesofmassM, (/ M 0 m& )

). In order to describethe distinctive fea-

tures�

of quantum-classicaldynamics,we begin with a briefoverview� of the algebraicstructureof quantumandclassicaldynamics�

in the Wigner representationof the quantumbath.

A. Quantum and classical dynamics

The"

von Neumannevolution equationfor the quantummechanicaldensitymatrix 1ˆ is

243ˆ 5 t6 78

t6 9;: i<=?> H@ ˆ ,/ Aˆ B t6 CED ,/ F 1G

where# H@ ˆ is!

theHamiltonianof thesystem.Its formal solutionis

Hˆ I t6 JLK eM N iLtO Pˆ Q 0R SLT eM U iHtO /V WYXˆ Z 0R [ eM iHtO /V \ ,/ ] 2with# iL

< ˆ _ (`i</' a

)) b

H,/ c the�

quantumLiouville operator.And

alternativeform of the evolution equationmay beobtained� by takingthepartialWignertransformoverthebathdegrees�

of freedom.This partial Wigner transform of thedensity�

matrix is definedby

eˆ W f R,/ P gLhji 2 kmlonLp 3q

Nr

dzes iP t zu /V v R w zx

2 yˆ R z zx2

,/ {3| }

while# the correspondingtransformof an operatorA is givenby+

AW ~ R,/ P �L� dzs

e � iP � zu /V � R � zx2

A R � zx2

. � 4�Both�

the densitymatrix and quantumoperatorsretain theirabstract operatorcharacterin thequantumsubsystemdegreesof� freedombut arenow functionsin the � R,

�P� phase spaceof

the�

quantumbath.To proceedwe usethefact thattheWignertransform�

of a productof operatorsis given by30q

�AB � W � R,/ P �L� AW � R,/ P � eM ��� /2

ViBW � R,/ P � ,/ � 5� �

where# the left andright actingdifferentialoperator� is!

thenegativeof the Poissonbracketoperator,

��� �P   R ¡ ¢ R £ P ,/ ¤ 6¥ ¦

and the arrowsindicatethe directionsin which the gradientoperators� act.Using this resultandtaking thepartialWignertransform�

of Eq. § 1 we# find

©4ªˆ W « R,/ P,/ t6 ¬­

t6 ®;¯ i<°�± HWeM ²´³ /2

Vi µˆ W ¶ t6 ·L¸º¹ˆ W » t6 ¼ eM ½´¾ /2

ViHW ¿

À;Á i<Â�à H@ ÄÆÅÈLj W É t6 ÊL˺̈ W Í t6 Î H@ ÏÆÐÒÑ

Ó;Ô iL< ˆ

W Õˆ W Ö t6 ×Ø;ÙjÚ HW ,/ Ûˆ W Ü t6 ÝEÝ Q . Þ 7ß àIn�

theseequationswe havedefinedthe right (H@ áãâ

))

and left(`H@ äãå

))

actingoperators,

Hæãçéè HW ê R,/ P ë eM ì´í /2V

i,/ î8ï ð

Hñãòéó eM ô´õ /2V

iHW ö R,/ P ÷where# the partially Wigner transformedHamiltonianHW is

H@ ˆ

W ø R� ,/ Pù úLû Pù 2$

M( ý pþ ˆ 2

$2ü

m& ÿ VW � q�ˆ ,/ R� � . � 9� �

Here pþ ˆ and q�ˆ are the momentumand position operators,respectively� , of the quantumsubsystemand VW(

`q�ˆ ,/ R� )

)is the

partially Wigner transformedtotal potentialenergy operator,which# is the sumof the quantumsubsystem,quantumbath,and subsystem-bathpotentialenergies.

The"

secondequalityin Eq. � 7ß � defines�

thequantumLiou-ville� operatoriL

< ˆW in the partial Wigner representationand

the�

associatedLie bracket(H@

W , )/ Q . More generallythe Liebracket+

of two partially Wigner transformedoperatorsis de-fined as

A ˆ

W ,/ B� ˆ W � Q i<��� A ��� B

� ˆW � B

� ˆWA �����

� i<��� AWeM ��� /2

ViBW � BWeM �! /2

ViAW " . # 10$

Here%

the A &�'

and A (�)

operators� aredefinedasin Eq. * 8ï + with#the�

replacementH@ ˆ

W , A ˆ

W .The"

formal solutionof Eq. - 7ß . is!

/ˆ W 0 R� ,/ Pù ,/ t6 132 eM 4 iH576 tO /V 839ˆ W : R� ,/ Pù ,0/ ; eM iH<7= tO /V >? eM @ iLW

A tO Bˆ W C R� ,/ Pù ,0/ D . E 11FAd

similar setof equationsmay be written for the evolu-tion�

of anyquantumoperatorA ˆ . In theWignerrepresentation

these�

equationsand their solutions, respectively, take theform

dAs ˆ

W G t6 Hdts I iL

< ˆWA ˆ

W J t6 K3LNM H@ ˆ W ,/ A ˆ W O t6 PQP Q R 12Sand

A ˆ

W T t6 U3V eM iLWA tO A ˆ W W eM iHXZY tO /V [ A

ˆWeM \ iH]Z^ tO /V _ . ` 13a

bW%

e shall drop the dependenceof quantitieslike A ˆ

W(`R�

,/ Pù ))

on� the bath phasespacecoordinateswhen confusionis un-likely to arise.c

The"

Wigner transformof a productof operatorssatisfiesthe�

associativeproductrule,

5806 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Nielsen, Kapral, and Ciccotti

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 3: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

dABC e W fNgQg AWeM h�i /2

ViBW j eM k�l /2

ViCW m

nNo AWeM prq /2V

i s BWeM tru /2V

iCW vQv ,/ w 14xwith# an obvious generalizationto productsof ny operators.�Consider.

a quantumoperatorC z AB which# is theproductoftwo�

operators.Sincethe time evolutionof C maybewrittenas C(

`t6 )) { A

ˆ (`t6 )) B� ˆ (

`t6 )) , its partial Wigner transformis

CW | t6 }3~ A ˆ

W � t6 � eM ��� /2V

iB� ˆ

W � t6 � . � 15�W%

e may also obtain this result by consideringthe actionofthe�

Liouville operatoron the operatorproductin the partialW%

igner representation:

iL< ˆ

WCW � i<��� H@ ˆ WeM �r� /2

Vi � A ˆ WeM �r� /2

ViB� ˆ

W �Q�� i<���Q� AWeM ��� /2

ViBW � eM ��� /2

ViHW �

�N� iL< ˆWAW � eM ��� /2

ViBW � AWeM  �¡ /2

Vi ¢ iL< ˆ

WBW £ . ¤ 16¥In writing the last line of this equationwe have usedtheassociative property in Eq. ¦ 14§ . From this result we mayimmediatelycomputetherepeatedactionof iL

< ˆW on� CW and,

using¨ thedefinitionof theexponentialevolutionoperatorasapower series,find Eq. © 15ª by

+identificationof thetwo power

series� expansions.We shall makeuseof this lengthierrouteto�

Eq. « 15¬ in the sequelwherethe analogousdemonstrationfor

mixed quantum-classicalsystemsis not so straightfor-ward.#

The quantummechanicalLie bracket,eitherin its origi-nal� form as (i

</' ­

)) ®

A ˆ ,/ B� ˆ ¯ or� in its partially Wigner trans-

formed

form (A ˆ

W ,/ B� ˆ W))

Q ,/ satisfiesthe Jacobiidentity,°AW ,/ ± BW ,/ CW ² Q ³ Q ´Nµ CW ,/ ¶ AW ,/ BW · Q ¸ Q

¹NºBW ,/ » CW ,/ AW ¼ Q ½ Q ¾ 0.

R ¿17À

W%

e may remark on several limiting situationsof thisgeneralÁ formulation of quantumdynamics.If the quantumbath+

is absentand the systemcomprisesonly quantumsub-system� degreesof freedom,we simply havethe usualquan-tum�

dynamical description in terms of the von Neumannequation� Â 1Ã . If one considersthe quantumbath dynamicsalone without a quantumsubsystem,one has the ordinaryW%

igner representationof quantummechanicsand all par-tially�

Wigner transformedoperatorsbecomesimple phasespace� functions:AW(

`R,/ P)

) ÄAW(

`R,/ P)

). Theclassicallimit of

the�

quantumbathdynamics,which consistsin keepingonlyterms�

of order Å 0Æ

in!

the evolution operator, is obtainedbythe�

following truncationof thepowerseriesexpressionof theexponential� operator:exp(ÇÉÈ /2

'i<)) Ê

1 ËÍÌÏÎ /2'

i<. In this limit

the�

bracket(H@

W , )/ Q reduces� to the PoissonbracketÐ H@ W ,/ Ñand the Wigner representationof the quantum Liouvilleequation� becomesthe classicalLiouville equation, ÒÔÓ C /

' Õt6ÖØ×ÚÙ H@ W,/ Û C ÜÞÝØß iL

<C à C(

`t6 )) , whosesolution may be written

asá

C â R� ,/ Pù ,/ t6 ã3ä eM å iLCæ tO ç

C è R� ,/ Pù ,0/ éê eM ë 1/2H

ìWA í tO î

C ï R,/ P,0/ ð eM 1/2ñ Hì

WA tO . ò 18ó

The Poissonbracketis a Lie bracketandsatisfiesthe Jacobiidentity. Of course,productsof classicalphasespacefunc-tions�

satisfy the associativeproperty. Consequently, bothquantum� andclassicaldynamicshavea Lie algebraicstruc-ture�

and productsof quantumoperatorsor classicalphasespace� functionssatisfyan associativeproductrule.

B. Quantum-classical dynamics

The"

formulation of quantum dynamics in the partialWô

igner representationallows the limit of a mixed quantum-classical� systemto betakeneasily. In suchquantum-classicaldynamics,�

the full quantumdynamicsof the subsystemistaken�

into accountwhile the bath, in isolation, evolvesac-cording� to the classicalequationsof motion. This limit istaken�

by replacingH@ õ÷ö

and H@ øÞù

by+

their expansionsto firstorder� in ú :

H@ ûÞüþý ÿ � ��� H

@ ˆW 1 �

���2i< ,/

�19

H��� �������� 1 ����2i< HW .

The"

full systemevolution,which includestheinteractionbetween+

the quantum subsystemand classical bath, isthen�

given by the mixed quantum-classicalLiouvilleequation:� 2

�0–26

���ˆ W � R,/ P,/ t6 ��

t6 "! i<#%$ H@ ˆ W ,/ &ˆ W ' t6 (*),+ 1

2ü -/. H@ ˆ W ,/ 0ˆ W 1 t6 243

57698ˆ W : t6 ; ,/ H@ ˆ W <>=?"@BA H@ ˆ W ,/ Cˆ W D t6 EFEHG"I i

< J ˆ Kˆ W L t6 M . N 20ü O

The last equalitiesin Eq. P 20Q define�

the mixed quantum-classical� Liouville operatorR ˆ ,/ and the bracketwhich takesthe�

form23,24

SA ˆ

W ,/ B� ˆ W THU i<VXWZY/[H\ B

� ˆW ] B

� ˆW ^`_Hacb

d i<e A

ˆW 1 f

g�h2ü

i< B� ˆ

W i B� ˆ

W 1 jkml2ü

i< A ˆ

W

n i<oXp AW ,/ BW q,r 1

2s`t

AW ,/ BW u�v7w BW ,/ AW x>y ,/ z 21{

where| }/~H� is definedas ����� in Eq. � 19� with| HW � AW . Thebracket�

reducesto thequantumLie bracket(i� �

)� � 1 � A� ˆ W ,� B� ˆ W �

when| the classicalbath is absentand to the classicalLiebracket� �

Poisson�

bracket��� AW ,� BW � when| the quantumsub-system� is absent.

Using�

this notation, the evolution equationsfor �ˆ W(�t� )�

and� an operatorA� ˆ

W are� given, respectively, by���

ˆ W � t� ��t� �¡ B¢ HW ,� £ˆ W ¤ t� ¥F¥ ¦ 22§

and�

5807J.¨

Chem. Phys., Vol. 115, No. 13, 1 October 2001 Statistical mechanics of quantum-classical systems

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 4: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

dA© ˆ

W ª t� «dt© ¬B­ HW ,� AW ® t� ¯F¯ ,� ° 23±

in²

apparentcompleteanalogywith purequantumandclassi-cal³ dynamics.However, a numberof importantdifferencesexist´ which we now examine.

Considerµ

the product of three operatorsin the mixedquantum-classical¶ limit. From Eq. · 14 we| have

¹ABC º W » AW 1 ¼

½m¾2i� BW 1 ¿

ÀmÁ2i� CW

 A� ˆ

W 1 ÃÄ�Å2Æ

i� B

Ç ˆW 1 È

ÉmÊ2Æ

i� CW

ËÍÌ 2

4ÎÏÎFÎ

AW Ð BW ÑÓÒ CW ÔÕBÖ AW ×ÙØ BW Ú CW ÛÏÛFÛ ,� Ü 24Ý

where| the last term is Þ (ß à 2)

�. Thus,the associativeproduct

rule is no longerexactbut is valid only to terms á (ß â 2�)�. This

hasimportantimplicationsfor thedynamics.In particular, inthisã

limit, considertheactionof themixedquantum-classicalLiouville operator on the product of two operators,CWä A� ˆ

W(1ß åçæmè

/2é

i�)�BÇ ˆ

W :

i� ê ˆ CW ë i

�ì í�î�ï A

� ˆW 1 ð

ñmò2Æ

i� BÇ ˆ

W

ó i�ô A

� ˆW 1 õ

öm÷2Æ

i� BÇ ˆ

W ø�ùûúüBý i� þ ˆ AW ÿ 1 �

���2i� BW

�A� ˆ

W 1 ����2Æ

i� � i� ˆ B

Ç ˆW ��� ������ . � 25

Æ �Thus, while Eq. � 16� is exact, the correspondingquantum-classical³ equationis valid only to terms � (

ß �)�. From this

result� it follows that

CW � t� ��� e� i ˆ t! CW "$# e� i % ˆ t! A� ˆ W & 1 '(*)2Æ

i� + e� i , ˆ t! BÇ ˆ W -�.�/�02143

5 AW 6 t� 7 1 89*:2i� BW ; t� <>=@?�A�B�C . D 26E

Consequentlyµ

, the evolution of a composite operator inquantum-classical¶ dynamicscannotbedeterminedexactlyintermsã

of the quantum-classicalevolution of its constituentoperators,F but only to terms G (

ß H)�, in contrastboth to quan-

tumã

andclassicaldynamics.This resulthasimplicationsfortheã

computationof time correlationfunctions discussedinSec.I

V.The Jacobi identity involving the quantum-classical

bracket�

is valid only to terms J (ß K

):�

LA� ˆ

W ,� M BÇ ˆ W ,� CW NON�P$Q CW ,� R A� ˆ W ,� BÇ ˆ W SOS�T$U BÇ ˆ W,� V CW ,� A� ˆ W WOWX�Y[Z�\�] ; ^ 27Æ _

thus,ã

the quantum-classicalbracket is not strictly a Liebracket.�

As a consequence,Poisson’s theorem,which statesthatã

thePoissonbracket ` orF thequantumLie bracketa ofF anytwoã

constantsof themotion is alsoa constantof themotion,fails. More generally, from this resultwe concludethatprod-uctsb or powersof theconstantsof themotionareconstantsoftheã

motion only to c (ß d

).�

Thee

formal solutionsof theequationsof motionthatpar-allel� thoseof full quantummechanicsalsorequiresomedis-cussion.³ For example,the formal solutionof Eq. f 23g can³ bewritten| as

A� ˆ

W h t� i�j e� i k ˆ t! AW lnmpo e� i q rts t! /u v AWe� w i x ytz t! /u {�| . } 28~Here�

the operator� specifies� the rule that must be usedtoevaluate´ the exponentialoperatorsin the secondequality inEq. � 28� . AppendixA givesthe detailsof the rulesthat mustbe�

followed in order for the formal solution involving theexponentials´ of the left ����� and� right �2��� operatorsF to beequivalent´ to thatobtainedusingthequantum-classicalLiou-ville� operator.

Given�

this compact formulation of mixed quantum-classical³ dynamicsthat exploits the formal similarity withfull�

quantummechanics,we turn to a descriptionof the sta-tisticalã

mechanicsof such systems.In the next sectionweconsider³ the determinationof the equilibrium densitymatrixfor a mixed quantum-classicalsystemand then turn in thefollowing�

sectionto a moregeneralstudyof thepropertiesofequilibrium´ time correlationfunctions.

III. EQUILIBRIUM DENSITY MATRIX

Thee

quantummechanicalequilibrium canonicaldensitymatrix� hasthe familiar form

�ˆ e�Q � Z� � 1e� ��� H,� � 29

Æ �where| Z

�is²

thepartitionfunction,Z� �

Te

r exp(��� H� ˆ ).�

Its partialW�

igner transformis given by

�ˆ WeQ � R,� P  �¡ dz

©e iP ¢ z£ /u ¤ R ¥ z¦

2 §ˆ e�Q R ¨ z¦2

. © 30ª «

W�

e denotethecorrespondingcanonicalequilibriumden-sity� matrix in the quantum-classicallimit by ¬ˆ We(

ßR,� P)

�which| is definedto betheapproximationto ­ˆ We

Q (ßR®

,� P¯ )�

that isstationary� underquantum-classicaldynamics:

i� ° ˆ ±ˆ We ² i

�³µ´�¶2·¹¸»ºˆ We ¼¾½ˆ We ¿ À¹Á»Â>à 0.Ä Å

31ª Æ

The solution of Eq. Ç 31ª È

can³ be found in the followingway:| we first write Ɉ We as� a powerseriesin Ê$Ë orF in themassratio� (mÌ /

éMÍ

)� 1/2 if

²scaledvariablesareusedÎ

ψ We Ð ÑnÒ Ó 0ÔÕ×Ö

nÒ Øˆ We

ÙnÒ Ú . Û 32

ª ÜSubstitutingÝ

this expressionin Eq. Þ 31ª ß

and� grouping bypowersà of á ,� we obtainthe following recursionrelations:fornâ ã 0:

Äi� ä

HW ,� åˆ We

æ0Ô çéèëê

0Ä ì

33ª í

5808 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Nielsen, Kapral, and Ciccotti

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 5: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

and� for nâ î 0,Ä

i� ï

H� ˆ

W ,� ðˆ We

ñnÒ ò 1 óõô¹ö 1

2÷ ø H� ˆ W ,� ùˆ We

únÒ ûõüþý 1

2÷ ÿ��ˆ We

�nÒ � ,� H� ˆ W

�. � 34

ª �An�

analogousset of recursionrelationsmay be writtenfor�

the partial Wigner transform of the full quantumme-chanical³ canonicalequilibrium densitymatrix. Theserecur-sion� relationsaregivenin AppendixB whereit is shownthat�ˆ We

Q (ßR,� P)

�and ˆ We(

ßR,� P)

�are identical to (

ß �)�. We shall

exploit´ this featurebelow wherethe solutionsof the mixedquantum-classical¶ recursionrelationsarepresented.

It is convenientto analyzethe structureof the recursionrelationsandobtaintheir solutionsin anadiabaticbasis.Theadiabatic� statesaredefinedto be theeigenstatesof thequan-tumã

subsystemwith fixed classicalcoordinates,

h�ˆ

W R� ����� ;R� ���

E� ���

R� �����

;R� �

,� � 35ª �

where|

h�ˆ

W R� !#" P$ ˆ 2%

mÌ & VW ' q(ˆ ,� R� ) . * 36ª +

Teaking matrix elementsof Eqs. , 33

ª -and� . 34

ª /,� respec-

tivelyã

, we find,

iE� 0103254

We

60Ô 798:83;=<

0,Ä >

37ª ?

iE� @1@3A5B

We

CnÒ D 1E�F1F3GIHKJ iL

� L1LNMPOWe

QnÒ R9S:S3TIUWVXYX�Z

J[ \1\3]

, ^Y^�_5` We

anÒ b=cYc�d .e

38ª f

This setof equationsis equivalentto gihYh�j i� kml1l3n , oporq5s WetYt�u=v 0Ä

with| wWexYx�y written| asa powerseriesin z . In theseequations,

usingb the definitionsin Ref. 26, we havethe classicalLiou-ville� operator,

iL� {:{3|I} P

MÍ ~~ R

� � 1

2Æ � F� W��� F

�W�3�P� ��

P$ ,� � 39

ª �where| F

�W���W����� ;R

� ���VW(

ßq(ˆ ,� R� )/

� �R� ���

;R� �

is²

the Hellmann–Feynmanforce for state � ,� the energy differenceE �1�3� (ß R)

�� E � (ß R)� �

E  N¡ (ß R)�, and the term responsiblefor nonadia-

batic�

transitions,

J[ ¢1¢3£

, ¤Y¤�¥I¦K§ P

MÍ d

© ¨ª©1 « 1

2Æ S¬ ­:® ¯¯ P

$ °²±3³µ´�¶· P

$M

d© ¸N¹µº�»* 1 ¼ 1

2S¬ ½3¾9¿rÀ* ÁÁ P Â²ÃªÄ . Å 40Æ

InÇ

this equationthe nonadiabaticcouplingmatrix elementis

d© È1ÈNÉ=ÊÌË�Í

;R ÎÐÏÏ R Ñ�ÒÔÓ ;R Õ ,� Ö 41×while| the quantityS

¬ Ø:Ùis²

definedas

S¬ Ú:ÛÝÜßÞ

FWà:áÝâ FWãåä ã:æ ç P

Md© è:é ê 1

ë E� ì:í

d© î:ï P

$M

d© ð:ñ ò 1

,� ó 42ô õ

and� specifiesthe momentumtransferto andfrom the classi-cal³ subsystemarisingfrom quantumtransitions.

Equation ö 37ª ÷

providesà no informationaboutthe diago-nal elementsø We

(0)ù ú1ú�ûýü

We(0)ù þ

but�

requiresthat the off-diagonal

elements´ ÿWe(0)ù �����

be�

zero.Similarly, Eq.�38ª �

for nâ � 0�

pro-vides� no information about the diagonal elements � We

(1)ù

� �We(1)ù �

but�

relatesthe off-diagonalelements� We(1)ù ����

toã

thediagonal�

elements� We(0)ù �

. For nâ � 1 Eq. � 38ª �

determines�

thediagonal�

elements� We(ùn� )� �

in termsof theoff-diagonalelements

ofF thesameorder, andtheoff-diagonalelements� We(ùn� � 1) �� � in

termsã

of the diagonalandoff-diagonalelementsof ! We(ùn� )� "�"�#

.Thus,providedwe know thediagonalelements$ We

(0)% &

thereã

issufficient� information to determinethe completesolutionof'

We(( ) .Thee

methodusedto solveEq. * 38ª +

for�

the diagonalele-ments� ,

We(%n� )- .

requires� somediscussion.Writing this equationexplicitly´ for the diagonalelementswe have

iL� /10

We

2n� 3547698:<;>=@? 2ACB J[ DD , EFE@GIH We

Jn� KMLFL@NPO ,� Q 43R

where| we haveused S WeTT�UWV X WeY�Z\[ * and] J[ ^�^

, _`_baWc J[ dd

, e@f5g* and]theã

fact thatJ[ h�h

, i`i<j 0�

whena realadiabaticbasisis chosen.Theleft-handsideof Eq. k 43l consists³ of a linearself-adjointdifm

ferential operatoriL� n

acting] on the diagonalelementsoftheã

density matrix, iL� o1p

We(qn� )r sutwv

H�

Wx ,� y W(qn� )r z|{

and,] due to thePoisson}

bracket form of this operator, one can determine~W(qn� )r �

onlyF up to a constantof themotionundertheadiabaticHamiltonian�

H�

W� . To insurethat a solutioncanbe found wemust invoke the theoremof the Fredholmalternativewhichrequiresthat the right-handsideof Eq. � 43� be

�orthogonalto

theã

null-spaceof iL� �

.31�

Thise

null-spaceconsistsof the con-stants� of themotionundertheadiabaticHamiltonianH

�W� —at

least�

any function F�

(ßH�

W� (ßR�

,� P$ )�) of this Hamiltonian.Hence

we� mustverify that the following condition is satisfied:

dR©

dP ��<���b� 2��� J[ �� , �F�@�I� We

�n� �M�`�b�P� F � HW� �1¡ 0.

� ¢44£

e show in Appendix C that ¥ (ßJ[ ¦¦

, §`§b¨I© We(ªn� )« ¬`¬b­

)�

isa no ddfunction of P. This, along with the fact that F(

ßHW® ) i

�s an

even¯ function of P$

since° it is a function of the Hamiltonian,guarantees± the validity of Eq. ² 44

ô ³.

Thus,we may write the formal solutionof Eq. ´ 43µ as¶·

We

¸n¹ ºM»7¼�½

iL� ¾1¿1À 1 ÁÂÄÃ>ÅbÆ 2

Æ Ç�ÈJ[ É�É

, ÊFÊ@ËIÌ We

Ín¹ ÎMÏ`ÏbÐPÑ ,� Ò 45

ô ÓandÔ the formal solutionof Eq. Õ 38

ª Öfor� ×ÙØÚ×ÜÛ

asÔÝ

We

Þnß à 1 á5ââ�ãWä i

�E åå�æ iL

� ç�ç�èIéWe

ênß ëMìì�íWîÚïð`ðbñ

J[ òò�ó

, ôFô@õIö We

÷nß øMù`ùbú .û

46ô ü

Using�

the formal resultsoutlined above,we may con-structý the form of the mixed quantum-classicalcanonicalequilibriumþ densitymatrix. In AppendixB we showthat

ÿWe

�0� �����

Z�

0� � 1e �� H

WA � ,� Z

�0� ����� dR

©dPe ��� H

�WA � ,� � 47

ô �andÔ that � We

(1)� ���

0.�

Then,taking n� � 0�

in Eq. 46! we" obtain,after# somealgebra,

5809J.¨

Chem. Phys., Vol. 115, No. 13, 1 October 2001 Statistical mechanics of quantum-classical systems

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 6: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

$We

%1 &(')'+*�,.- i

� P

Md© /0/2143

We

506 7(8 9

2 : 1 ; e< =?> E@ ACBEDGF

H 1 I e< J�K E@ LNMPO

E� Q0Q2R S 1 TVUXW0W+Y4Z . [ 48

ô \W¤

e may then usetheseresultsin the recursionrelationstoobtainF all higher order terms in the expansion.The higherorderF termsare more difficult to evaluateand, as we shallshow] in the following section,theexplicit solutionsto ^ (

ß _)�

will" sufficesinceall resultswe canobtainarereliableonly tothisã

order.

IV. TIME CORRELATION FUNCTIONS

Teo deriveexpressionsfor transportpropertiesin termsof

equilibrium` time correlationfunctions,onemayconsidertheresponseof a systemto an external force using linear re-sponse] theory or monitor the equilibrium fluctuationsin asystem.] In this sectionwe examinelinearresponsetheoryformixed quantum-classicalsystems.

A. Response function

Standarda

descriptionsof linear responsetheory32b

assume#thatã

a systemwhich is in thermalequilibrium in the distantpastà is subjectedto a time dependentexternal force. Theresponsec of thesystemto this externalforceis determinedbycomputing³ theaveragevalueof somepropertyat time t� usingbtheã

densitymatrix determinedto linearorderin theforce.Weadopt# a similar point of view hereexceptthatwe supposethesystem] follows quantum-classicaldynamicsinsteadof fullquantumd mechanics.

The mixed quantum-classicalsystemis subjectedto atimeã

dependentexternalforce F(ßt� )� which couplesto theob-

servable] AW† e †f is theadjointg and# is appliedfrom thedistant

past.à The partially Wigner transformedHamiltonian of thesystem] in the presenceof the externalforce is

HW h t� iNj HW k AW† F l t� m . n 49o

The evolution equationfor the density matrix is obtainedfrom�

Eq. p 22Æ q

by�

replacingrts)u and# vtw)x by�

Hy z|{

(ßt� )� andH

y }|~(ßt� ),�

respectively, to yield���ˆ W � t� ��

t� ��� i� ���N� 1 � Hy �|��� t� ���ˆ W � t� �N���ˆ W � t� � Hy �|��� t� ����. �¡ i� ¢ ˆ £ i

� ¤ ˆA¥ F ¦ t� §¨§¨©ˆ W ª t� « ,� ¬ 50

­ ®where" H|° (

ßt� )� ±³²t´)µ·¶³¸º¹N»

F(ßt� )� and i

� ¼ ˆA hasa form analogous

toã

i� ½ ˆ with¾ A

� ˆW† replacingc H

� ˆW ,� i

� ¿ ˆA¥ À (

ßA� ˆ

W† ,� ). The formal

solution] of this equationis foundby integratingfrom t� 06 toã

t� ,�Áˆ W  t� ÃNÄ eÅ Æ i Ç ˆ È tÉ Ê tÉ 0Ë Ì(͈ W Î t� 06 Ï

ÐtÉ 0ËtÉdt© Ñ

eÅ Ò i Ó ˆ Ô tÉ Õ tÉ ÖØ× i� Ù ˆ A Úˆ W Û t� Ü�Ý F Þ t� ß�à . á 51­ â

Choosingµ ã

ˆ W(ßt� 06 )� to be the equilibrium densitymatrix,äˆ We ,� definedto beinvariantunderquantum-classicaldynam-

ics, i� å ˆ æˆ We ç 0,

èthe first term on the right-handside of Eq.é

51­ ê

coincidesë with ìˆ We andí is independentof t� 06 . We can

now assumethat thesystemwith HamiltonianHW is in ther-mal� equilibrium from t� î.ï³ð upb to t� 06 . With this boundarycondition,ë to first order in the externalforce Eq. ñ 51

­ òyieldsó

ôˆ W õ t� öN÷�øˆ We ù úXûtÉdt© ü

eÅ ý i þ ˆ ÿ tÉ � tÉ ��� i� � ˆ A¥ �ˆ WeF � t� �� . 52

­ �The nonequilibriumaveragevalue of any operatorBW

over� the densitymatrix ˆ W(ßt� ),� B

�(ßt� )� � Tr

� ���dR©

dP BW �ˆ W(ßt� )�

maybecomputedto determinetheresponseof thesystemtothe�

externalforce.Using Eq. � 52­ �

we¾ may write this as

�B�

W � t� ��� �! tÉdt© "

Tr� #

dR©

dP BWeÅ $ i % ˆ & tÉ ' tÉ (*) i+ , ˆ A -ˆ WeF� .

t� /0132 4!5tÉ

dt© 687:9

AW† ,; BW < t� = t� >?@?BA F C t� DE

F G!HtIdt© JLK

BAM N t� O t� PQ F� R t� ST ,; U 53

­ VwhereW X BW(

ßt� )� Y BW(

ßt� )� Z\[ BW ] . In this equationwe made

use^ of integrationby partsandcyclic permutationsunderthetrace_

to movethe evolutionoperatoronto BW and` i+ a ˆ

A ontobB� ˆ

W(ßt� c t� d )� . Thenusingthedefinitionof i

+ e ˆA as` thequantum-

classicalf bracket and the definition of the average g fh ˆ

W ij Tr k�l dR©

dP f W mˆ We for any operatorfh ˆ

W ,; we arrive at theformn

in the secondline. The prime on the tracedenotesthefactn

that the traceis over the quantumsubsystemstates.Thelast line definestheresponsefunction o BA whichW is givenbyp

BA q tr s�t3u\v:w Ax ˆ W† ,y Bz ˆ W { tr |@|B} . ~ 54

­ �The�

responsefunction in Eq. � 54­ �

wasW derivedby consider-ing a systemfollowing quantum-classicaldynamics,in equi-librium in the past, subject to a time dependentexternalforce.n

This quantum-classicalresponsefunction shouldnowbe�

comparedwith the reductionof the responsefunction fora` fully quantummechanicalsystemto its quantum-classicalform.

The�

quantumexpressionfor the responsefunction is32b

�BAMQ � tr ���3� i

+� Tr � A†,y �ˆ e�Q � B � tr ��� i+� Tr � A†,y B � tr �����ˆ e�Q ,y � 55

­ �which,W taking the partial Wigner transform of the secondequality� in Eq. � 55

­ �,y may be written as

�BAMQ � tr  �¡3¢ Tr £ dR

©dP

i+¤¦¥ AW

† e§ ¨ª© /2«

iBW ¬ tr ­® BW ¯ tr ° e§ ±ª² /2

«iAW

† ³µ´ˆ WeQ

¶3· Tr� ¸

dR©

dPi+¹¦º Ax »½¼ B

z ˆW ¾ tr ¿BÀ B

z ˆW Á tr  Ax ýÄLŵƈ We

Q

Ç3ÈÊÉÌË Ax ˆ W† ,y Bz ˆ W Í tr Î@Î Q Ï . Ð 56

­ ÑT�o obtain the first equality we have usedthe fact that the

partialÒ Wigner transformof Tr AB Ó Tr Ô�Õ dR©

dP AWBW .W¤

e wish to take the mixed quantum-classicallimit ofthis_

expressionbut this cannotbe doneby a simple expan-

5810 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Nielsen, Kapral, and Ciccotti

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 7: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

sionÖ in × . Mixed quantum-classicaldynamicsis definedbythe_

evolution equation Ø 20Ù whereW the evolution operatorisobtainedb by an expansionto first order in ÚÜÛ orb the massratioÝ Þ ; however, the time-evolveddensitymatrix containsallordersb in ß sinceÖ it involvestheexponentialof theevolutionoperatorb . The sameargumentsapply to operatorsat time trand` the equilibrium densitymatrix.

As�

anansatzonemayreplacethe time dependentopera-tor_

Bz ˆ

W(ßtr )à and the quantumequilibrium densitymatrix ሠWe

Q

by�

their quantum-classicalforms. In addition, we may re-placeÒ thequantumLie bracket( , )Q by

�its quantumclassical

analog,` ( , )Q â (ß

, ) which is equivalentto replacingthe ex-ponentialÒ operatorexp(ã!ä /2

éi+)à

by its expansionto linear or-derå

in æ ,y exp(çéè /2é

i+)à ê

1 ëíìïî /2é

i+. After thesereplacements

the_

responsefunction takesthe form

ðBAM ñ tr ò�ó3ô Tr

� õdR©

dPi+ö¦÷ Ax ˆ W

† ø 1 ùíúüû /2é

i+ ý

Bz ˆ

W þ tr ÿ� BW

�tr ��� 1 ���� /2

éi+

AW† � �ˆ We

����� Ax ˆ W† ,y Bz ˆ W � tr ����� ,y � 57

­ �whichW is exactly the result in Eq. � 54

­ �obtainedb by perform-

ing�

a linear responsederivation directly on the mixedquantum-classical� equationsof motion. This entitlesone touse^ the above intuitive correspondencerule to convert aquantum� mechanical correlation function to its mixedquantum-classical� analog.

InÇ

thelinearresponseapproachto dynamicalphenomenathere_

arevarioususefulequivalentwaysto representthe re-sponseÖ function. Moreover, since the responsefunction isessentially� an equilibrium correlationfunction, its computa-tion_

is generallysimplifiedby usingthesymmetrypropertiesofb the equilibrium system.As we shall seein the next sec-tions_

the situation is much less favorable in the quantum-classicalf casesincemanyof therigorousequivalencesestab-lished in quantum or classical responsetheory are onlyapproximately` true in the quantum-classicallimit. The firstand` most important equivalenceis obtained through theKubo�

identity; therefore,we begin our discussionwith thiscase.fB. Kubo transformed correlation functions

In quantummechanics,correlationfunctions often ap-pearÒ in Kubo transformedform. Making useof the quantummechanical� identity,

i+�! A†,y "ˆ e�Q #%$

06&

d© ')(

ˆ e�QA† *,+ i+ -.0/

,y 1 58­ 2

in the first equality of Eq. 3 55­ 4

weW may write the responsefunctionn

as

5BAMQ 6 tr 798;:

06<

d© =

Tr A† >,? i+ @A0B

B C tr D Eˆ e�QFHG

06I

d© J

Tr K dR©

dP L A†W M N i

+ OQPSRT

eU VXW /2Y

iBW Z tr [�[ \ˆ WeQ ,y ] 59

­ ^

whereW we have again written the secondline in partiallyW¤

igner transformedform. Using the correspondencerule totake_

thequantum-classicallimit of this expression,we obtain

_BA ` tr a9b;c

06d

d© e

Tr f dR©

dP g AW† h i i

+ jk0lmon

1 p�qr /2é

i+ s

Bz ˆ

W t tr u�u vˆ We . w 60x y

e shall shownow thatEqs. z 57­ {

and` | 60x }

are` not equaland` agreeonly to ~������ . The quantummechanicalidentity�Eq.� �

58­ ���

used^ to obtain the Kubo transformedcorrelationfunctionusestheexplicit form for thethermaldensitymatrix

ofb �ˆ e�Q � Z� � 1eU ��� H

� ˆ. In thequantum-classicalcasethestructure

ofb �ˆ We is complicated� seeÖ Sec.III � and` we do not haveaclosedf form expressionfor it. Consequently, it is necessarytoobtainb an expressionfor �ˆ We that

_is analogousto �ˆ e�Q soÖ that

manipulations� parallel to those in the quantumderivationmay� be performed.We shall seethat this is possibleonly toterms_ �

(ß � 2�).à

The unnormalizedequilibrium quantumdensitymatrix,� ˆe�Q ,y satisfiesthe Bloch equation,

��� ˆe�Q���¡ ;¢ H £ ˆ e�Q ¤;¥�¦ ˆ e�QH. § 61

x ¨

T�aking its partial Wigner transformwe may write it in the

form

©�ª ˆWeQ

«�¬®­;¯ H°²±�³ ˆ WeQ ´;µ�¶ ˆ

WeQ H·¹¸ ,y º 62

x »

withW the boundarycondition ¼ ˆ WeQ (ß ½¿¾

0)À Á

1.The normalizedformal solution  taking

_into accountthe

boundary�

conditionà is�

Ĉ WeQ ŠZ

� Æ 1 Ç eU È�É HÊÌË 1 Í9Î Z� Ï 1 Ð 1eU ÑÓÒ HÔÖÕØ× . Ù 63

x ÚByÛ

the usual rule the quantum-classicallimit should beobtainedb by the replacementH

Ü ÝQÞàß)á. However, by direct

calculationf one may show that (exp(âäã�åçæ�è )1)à

and(ß1 exp(é¿ê�ëíì�î )

à) agreeonly to first orderin ï .33

bMoreover, to

first orderin ð they_

alsoagreewith ñˆ We whoseW explicit formto_

this orderis givenin Eqs. ò 47ó ô

and` õ 48ó ö

. Thus,to this orderthese_

expressionsmay be usedinterchangeably.The Kubo identity ÷ 58

­ øin the partialWigner representa-

tion_

is

ùûúˆ We

Q ,y AW† ü

Q ý06þ

dÿ ���

ˆ WeQ eU ��� /2

YiAW

† ��� i+ � �

,y � 64x �

and` its quantum-classicalanalog,which holdsonly approxi-mately� , is

���ˆ We ,y AW

† ���06�

dÿ ���

ˆ We 1 ����2i+ AW

† ��� i+ �! "�#%$'&)( *

+-,/.%0'13254 . 6 65x 7

This�

resultis derivedasfollows: performingtheintegralover8weW obtain

5811J.9

Chem. Phys., Vol. 115, No. 13, 1 October 2001 Statistical mechanics of quantum-classical systems

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 8: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

i+ :�;/<>=@?

ˆ We 1 AB�C2i+ DFE eU GIH J�K AW

† eU LNMIO P�QSR

T@Uˆ We 1 V

W�X2Y

i+ Ax ˆ

W†

Z>[ Z\ ] 1 ^ 1eU _N`Ia b�cSd 1 e

f�g2Y

i+ hFi eU j H

k lnmAx ˆ

W† eU oNpIq r�sSt

u@vˆ We 1 w

x�y2i+ AW

† z%{'|)} 2 ~ ,y � 66x �

whereW we haveusedoneof the ‘‘equivalent’’ expressionsfor�ˆ We ,y andwe remindthereaderthat the interpretationof � ( )�

is�

given in Appendix A. Next, expandingthe exponentialoperatorb andusingthequantum-classicalassociativeproductrule � valid� to terms � (

� � 2�)à �

weW may showthat

�1eU ����� ���S� 1 �

���2Y

i+ � eU �N�I� �����%���)� 2   ,y ¡ 67

¢ £

1 ¤¥�¦2i+ § eU ¨�©�ª «�¬ 1 ­�® eU ¯N°I± ²�³�´%µ�¶)· 2 ¸ ,y ¹ 68

¢ º

and` usetheseresultsto manipulateEq. » 66¢ ¼

. We have

i+ ½�¾/¿>À

Z Á 1eU ÂNÃIÄ Å�Æ�ÇFÈ eU ÉIÊ Ë�Ì AW† eU ÍNÎIÏ Ð�ÑSÒ

Ó@Ôˆ We 1 Õ

Ö�×2i+ AW

† Ø%Ù'Ú)Û 2Ü Ý

. Þ 69¢ ß

T�o further simplify the right-handside of this equationwe

use^ the relation

eU à�á�â ã�ä�åFæ eU çIè é�ê AW† eU ëNìIí î�ïSð�ñ AW

† eU òNóIô õ�ö�÷%ø�ù)ú 2Ü û

,y ü 70ý þ

whichW maybeprovedby directexpansionof theexponentialoperators.b ThenusingEq. ÿ 68

¢ �weW have

i+ �������

Z\ � 1A

x ˆW† 1

��2Y

i+ � eU ���� ��� 1 �����ˆ We 1 �

���2Y

i+ Ax ˆ

W†

��� �"! 2 #

$�% AW† 1 &

')(2i+ *ˆ We +�,ˆ We 1 -

.�/2i+ AW

† 0�13254 2 6

7 i+ 8:9�;

ˆ We ,y Ax ˆ W† <�=�> ?"@ 2 A . B 71

ý C

StartingD

with Eq. E 54F G

and` usingEq. H 65¢ I

givesJK

BA L tr M�N�O Tr P dRÿ

dP Q AW† ,y BW R tr STSVUˆ We

WYX Tr� Z

dRÿ

dP []\ˆ We ,y Ax ˆ W† ^ Bz ˆ W _ tr `

aYb0cd

dÿ e

Tr f dRÿ

dP AW† gVh i

+ i�jlkm

1 no�p2i+ B

z ˆW q tr r sˆ We tYu v5wyx . z 72

ý {

The last equalityhasbeenobtainedby substitutingEq. | 65¢ }

and` thenusingcyclic permutationof thetraceandintegrationby�

parts.Following~

Kubo, we maydefinea newcorrelationfunc-tion,_

also in the mixed quantum-classicallimit, by

�Ax ˆ

W ;Bz ˆ

W � tr ���V� 1�0c�

dÿ �

Tr� �

dRÿ

dP Ax ˆ

W† ��� i

+ �)�y��

1 ��)�2Y

i+ B

z ˆW � tr � �ˆ We . � 73

ý �

Using�

this notation, the responsefunction may be writtensimplyÖ as

�BAM � tr �������y� Ax ˆ W ;B

z ˆW   tr ¡£¢�¤�¥ ¦"§l¨ . © 74

ª «Equation� ¬

74ª ­

may� be useful in practicalcalculations.How-ever� , since the equivalencebetweenthe two forms of theresponseÝ function ® Eqs.

� ¯57° ±

and` ² 74ª ³µ´

cannotf be establishedto_

all ordersin ¶ ,y themagnitudeof their numericaldifferencemustbe evaluatedin specificapplicationsin order to deter-mine the applicability of Eq. · 74

ª ¸.

C.¹

Time translation invariance

Forº

both quantumand classicalsystemsin equilibriumthe_

time evolution of an observablegeneratesa stationaryrandomprocess.In particular, ensembleaveragesof observ-ables` areindependentof time andtime correlationfunctionsdo»

not dependon the time origin but only on time differ-ences.� For quantum-classicaldynamicstheensembleaverageofb an observableis independentof time,

Tr� ¼

dRÿ

dP AW ½ tr ¾T¿ˆ We À Tr� Á

dRÿ

dP  eU i à tI AÄ ˆ W ÅVƈ We

Ç Tr È dRÿ

dPAW É eU Ê i Ë tÌ Íˆ We ÎÏ Tr� Ð

dRÿ

dPAW ш We ,y Ò 75ª Ó

whereW we haveusedthe stationarityof Ôˆ We ,y while for thetime_

correlationfunction in Eq. Õ 57° Ö

weW only have×ÙØ

AW ,y BW Ú tr ÛTÛ£Ü�ÝßÞáà AW â�ã£ä ,y BW å tr æYç�èTè£é�ê�ë ì"íyî . ï 76ª ð

Indeed,ñ

for the exactequality to hold oneneeds

AW† ò�ó�ô 1 õ

ö)÷2Y

iø BW ù tr úüû£ý�þ AW

† 1 ÿ���2Y

iø BW

�tr � ���� .

77ª �

A special caseof this is, for any operatorsCW and` DW ,yCW(

�tr )à � 1 (

� ���/2�

iø)à �

D� ˆ

W(�tr )à � (

�CW � 1 � (

� ���/2�

iø)à �

D� ˆ

W)(à

tr ).à Anecessary� andsufficientconditionfor this to be true is

iø � ˆ CW 1 �

���2iø DW

�! iø " ˆ CW # 1 $%�&2Y

iø D

� ˆW ' CW 1 (

)�*2Y

iø + iø , ˆ D

� ˆW - . . 78

ª /

5812 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Nielsen, Kapral, and Ciccotti

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 9: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

However, we haveshownin Eq. 0 251 that2

this is trueonly to3547698. Thus,time translationinvarianceis valid only approxi-

mately: in quantum-classicaldynamics.

V. CONCLUSION

The;

resultsobtainedin this paperprovide the basisforthe2

computationof equilibrium time correlationfunctionsinmany-bodyquantum-classicalsystems.The numericalcom-putationÒ of time correlationfunctionsentailsboth the simu-lation<

of the evolution of dynamicalvariablesor operatorsthat2

enterin thecorrelationfunctionof interestandsamplingover= a convenientweight function (exp(>@? H

A ˆW))à

which ispartÒ of the quantum-classicalcanonicalequilibrium densitymatrix. Algorithms havebeendevelopedfor the simulationof= quantum-classicalevolutionandtheir furtherdevelopmentisB

a topic of continuingresearch.Samplingmethodsfor thecalculationC of quantum-classicaltime correlationsrequiread-ditional»

considerations.Typically, in simulationsof classicalequilibriumD time correlationfunctionsthe ensembleaverageisB

replacedby a time averageandthe informationneededtosampleE from the equilibrium distribution is obtainedfrom along moleculardynamicstrajectory. The validity of suchaprocedureÒ hingeson the assumedergodicity andstationarityof= the systemandreplacesdirect samplingfrom the equilib-rium distributionusingMonte Carlo methodsby a time av-erage.D This ensembleaveragemethodhasbeenusedocca-sionallyE but sinceit is not necessaryand is algorithmicallymore complex, requiring both Monte Carlo and moleculardynamics»

programs,its practicalimportancehasbeenminor.Forº

quantum-classicalsystemsneitherthe assumptionof er-godicityF nor stationaritycanbemadeandsamplingfrom theequilibriumD distribution or anothersuitableweight functionmustbe carriedout to evaluatethe correlationfunctions.

The;

analysispresentedin this papergivesall of the in-formationG

neededto computeequilibrium time correlationsin the quantum-classicallimit in a consistentfashion and,thus,2

providesa useful way to treat a large classof many-bodyH

systemswherethe environmentaldegreesof freedomhaveI

a classicalcharacter.

ACKNOWLEDGMENTSJ

This work was supportedin part by a grant from theNaturalK

Sciencesand Engineering ResearchCouncil ofCanada.L

Acknowledgmentis madeto the donorsof The Pe-troleum2

ResearchFund,administeredby theACS, for partialsupportE of this research.Oneof theauthorsM S.N.

N OwouldP like

to2

acknowledgea Walter C. SumnerMemorial Fellowship.

APPENDIX A

The;

meaningof the formal solutionin thesecondequal-ity in Eq. Q 28R willP beestablishedhereby comparingthetwoforms in this equation

AW S tr TVUXWZY eU i [ \^] t_ /Y ` AWeU a i b c^d t_ /Y ef ,y g A1handi

AW j tr kVl eU i m ˆ t_AW . n A2o

The first few terms p thought2

of asa powerseriesexpan-sionE in it

q/� r�s

are,i from Eq. t A2u ,yeU i v ˆ t_ AW w AW x it

qy{z}|�~�� AW � AW � �����V� tr 2

2� 2� �}�����9�}��� AW

�X������� AÄ ˆ W � �����V�!�}���� AÄ ˆ

W ¡£¢ ¤�¥�¦ AÄ ˆ

W § ¨�©9ª�«�¬®­

¯ itq 3°

6¢ ± 3

° ²�³�´�µ9¶�·�¸9¹�º�» AW ¼X½ ¾�¿9À�Á�Â�à AW Ä Å�Æ®Ç

ÈXÉ�Ê�Ë�ÌÍÌ�Î}Ï�Ð AW Ñ£Ò Ó�Ô�ÕÖØ×}Ù�Ú�Û AW Ü Ý�Þ9ß�à�á�âã!ä}å�æ�ç9è�é�ê AW ë£ì í�î�ï!ð}ñ�ò�óõô

AW ö ÷�ø®ùÍù£ú�û�üý!þ}ÿ�� � AÄ ˆ

W���������� ��

AÄ ˆ

W � ����������������� ,� � A3 !

and,i from Eq. " A1 #

,�$

e% i & '�( t_ /) * AÄ ˆ

We% + i , -/. t_ /) 0

1 AÄ ˆ

W 2 itq35476�8�9�: A

Ä ˆW ; AÄ ˆ

W < =�>�?�@ tA 2�2B C 2 DFE�G H�IJ�K�L A

Ä ˆW

M 2N�O�P AW Q R�S�T AW U V�WX�Y�Z\[�] itq 3°

6¢ ^ 3

° _7`�a�b�cd�e�fg�h�i AW

j 3k l�m�no�p�q

AÄ ˆ

W r s�t�u 3k v�w�x

AÄ ˆ

W y z�{|�}�~� AÄ ˆ

W � �������������\��� . � A4 �

For theseexpressionsto agreewe must make assignmentslike<�7�������

AÄ ˆ

W � ����������� 1

3� ��������� AW  �¡ ¢�£¤�¥�¦�§©¨�ª�«�¬®­ AW ¯ °�±\²�²�³�´�µ¶¸·�¹�º®»

AÄ ˆ

W ¼ ½�¾¿�À�Á�Â� . à A5 Ä

In generalthe term Å ((� Æ�Ç�È

)É jÊAW(

� Ë�Ì�Í)Î kÏ)Î

is composedof ( jÐÑ

kÒ)!/Î

jÐ! kÒ! separatetermseachwith a prefactorof j

Ð! kÒ!/( jÐÓ

kÒ)Î! . Eachof theseseparatetermscorrespondsto a unique

associationi of terms indicating the order in which the ÔÖÕoperators= act.

APPENDIX B

This;

appendix concernsthe relationship betweenthequantum× Øˆ We

Q (�RÙ

,� PÚ )Î

and quantum-classicalÛˆ We(�RÙ

,� PÚ )Î

equi-libriumÜ

densitymatricesin thecanonicalensemble.We beginbyH

derivingtherecursionrelationsfor thequantummechani-calC equilibrium densitymatrix.

The thermaldensitymatrix ݈ WeQ is stationaryunderthe

quantum× dynamicsin Eq. Þ 7ª ß ,�0à á©â

Hã ˆ

W ,� äˆ WeQ å

Q

æ içèêé Hã ˆ Weë ìîí /2

ïi ðˆ We

Q ñ5òˆ WeQ eë óõô /2

ïiHã ˆ

W ö . ÷ B1ø ù

5813J.ú

Chem. Phys., Vol. 115, No. 13, 1 October 2001 Statistical mechanics of quantum-classical systems

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 10: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

If we substitutethe expansion,

ûˆ WeQ üþý

nÿ � 0�

� �ˆ WeQ � nÿ ��� nÿ ,� B2

ø into Eq. � B1� andi groupby powersof weP obtain � using� thefactG

that the PÚ

dependence»

of Hã

isB

of the form PÚ 2/2

�M� �

0à ���

iç ����� 1 � HW ,� �ˆ We

Q � 0� � �

,� ! B3"0à #%$ 0

� &iç '

Hã ˆ

W ,� (ˆ WeQ ) 1 * +-, 1

2. /ˆ We

Q 0 0� 1�2

Hã ˆ

W 3 12. Hã ˆ

W 465ˆ WeQ 7 0

� 8:9,� ; B4

ø <0à =%> 1 ? i

ç @Hã ˆ

W ,� Aˆ WeQ B 2

C D E-F 1

2G H We

Q I 1 J�K Hã ˆ

W L 1

2G Hã ˆ

W M%Nˆ WeQ O 1 P

Q 1

8R

iç S We

Q T 0� U�V

2CHã ˆ

W W 1

8R

iç Hã ˆ

W X 2C Y

ˆ WeQ Z 0

� [,� \ B5

ø ]

0à ^%_ 2 ` i

ç aHW ,� bˆ We

Q c 3d e f-g 1

2 hˆ WeQ i 2

C j�kHW l 1

2HW m%nˆ We

Q o 2C p

q 1

8R

iç r We

Q s 1 t�u 2CHã ˆ

W v 1

8R

iç Hã ˆ

W w 2C x

ˆ WeQ y 1 z|{ 1

48} ~ We

Q � 0� ���

3dHã ˆ

W

� 1

48HW � 3

d �ˆ We

Q � 0� �

,� � B6�andi soon. Theseresultsshouldbecomparedwith themixedquantum-classical× recursionrelationsgiven in Eqs. � 33

k �andi�

34k �

.NoticeK

that the first two recursionrelationsareidenticalinB

the quantum-classicalandfully quantummechanicalsys-tems2 �

seeE Eqs. � 33k �

andi � 34k �

for n� � 0,à �

B3� ,� and � B4��� .Hence,we cancalculatethe first two termsfor the quantummechanical� system� inB the partially Wigner transformedrep-resentation� � andi the results will also be valid for thequantum-classical× system.

In quantummechanicswe have for the unnormalizedcanonicalC equilibrium densitymatrix, � ˆ We

Q

� ˆWeQ  �¡ eë ¢¤£ H

k ˆ ¥W

¦ 1 §6¨ Hã ˆ

W ©ª 2

C2G Hã ˆ

Weë «­¬ /2ï

iHã ˆ

W ® . ¯ B7ø °

This powerseriesin ± mustbeconvertedinto a powerserieswithP respectto ² . Extractingthe first two termsin this newpower³ seriesgives

´ ˆWeQ µ eë ¶¸· H

k ˆW¹ º¼»

2iç

½Hã ˆ

W¾P

¿nÿ À 0

�Á ÂÄÃ6ÅÇÆ

nÿ È 2Én� Ê 2 Ë !

̼ÍjÎ Ï

0�

nÿ Ðn� Ñ 2

GjÐ Ò

Hã ˆ

Wnÿ Ó j

Î Ô HWÕRÙ H

ã ˆWjÎ ÖØ×ÚÙÜÛ

2C Ý

,� Þ B8ø ß

afteri isolatingthezerothandfirst ordertermsandprovingbyinductionB

to first order in à that2

áHnÿ â 2 ã

W

ä1stå æ|çéè

2iç ê H

ã ˆWë

P

ìjí î

0�

nÿ ïn� ð 2 j

ñ òHW

nÿ ó jí ô Hã ˆ

WõR

HWjí

. ö B9÷The operatorsHW andi ø HW /

� ùR do»

not commuteandso theorder= mustbe preservedasshown.

It is possibleto show that in the adiabaticbasisrepre-sentationE ú properlyû normalizedü these

2are the resultsquoted

inB

Eqs. ý 47} þ

andi ÿ 48} �

. We haveestablishedthe equivalencebetweenH

the secondterm on the right-handsideof Eq. � B8ø �

andi Eq. � 48� byH

a direct calculationwhich showsthat thematrix representationof this term in Eq. � B8� is the sameasthe2

Taylor expansionof Eq. � 48} �

inB

powersof .

APPENDIX C

Here we establish that (�J� � �

, ������� We(�nÿ )� �����

)�

isa no ddfunctionG

of PÚ

. Using the definitions in Sec. III, this isequivalent� to the condition that � ((

� �(�P/�M )�

d� ���! *" 1

2. E# $ $!%

d� & &!'* (

� (/� )

))� *

We(�nÿ )� +�+!,

)�

be an odd function of PÚ

or= ,choosingC to work with a real adiabaticbasisso that d

� - -!.is

real,� this simplifies to the conditionsthat PÚ /

(� 0

We(�nÿ )� 1 132

)�

and4/� 5

PÚ 6

(� 7

We(�nÿ )� 8 8!9

)�

be odd functionsof PÚ

. The effect of multi-plicationû by P or= differentiation with respect to P is to

changeC the parity of the factor : (� ;

We(�nÿ )� < <3=

)�, if indeed this

factor has a definite parity; thus, we must show that>(� ?

We(�nÿ )� @ @!A

)�

is an evenfunctionof PÚ

. For technicalreasonsit

willP alsobeusefulto showthat B (� C

We(�nÿ )� D�D!E

)�

is an oddfunctionof= P.

WF

e usean inductive proof. The statementsare true for

nG H 1. From Eq. I 48J weP seethat K We(1)� L�LNM

andthat O We(1)� P�P!Q

is pure imaginaryandodd in P for RTSURWV . AssumingXZY\[We

]nÿ ^`_�_!acb even� function of P dfe ,� gWh ,� nG ,� i C1

j klnm\o

We

pnÿ q`r r3sct odd= function of P

Ú ufv,� wWx ,� nG ,� y C2

j zweP show that theseconditionsare true for nG { 1. From Eq.|46} }

weP have

~����We

�nÿ � 1 �`� �3�c��� 1

E ���!� � PÚM

��R�����

We

�nÿ �`� �!�c�

� 1

2G � F� ��� F

� �!�c ¢¡¡ PÚ £�¤\¥ We

¦nÿ §`¨ ¨3©cª

«­¬ ®�¯ d° ± ±�² 1

2E ³�³�´¶µµ P · P

M ¸�¹�º We

»nÿ ¼¾½�¿�À!ÁcÂ

Ãd° Ä3Å�ÆÈÇ 1

2G E# É!ÊÌË�ͶÎÎ P

Ú Ï PÚM� Ð�Ñ�Ò We

Ónÿ Ô¾Õ Õ�ÖØ× .

ÙC3Ú Û

Eachof the termson theright-handsideis evenwith respect

to2

P soE Ü (Ý Þ

We(ßnÿ à 1) á�á!â )ã is even in P. The analysis ofä

(Ý å

We(ßnÿ æ 1) ç ç!è )ã is similar andwill be omitted.Thus,the state-

ment is true for né ê 1 completingthe inductiveproof.

1J.ë

C. Tully, in Modernì

Methods for Multidimensional Dynamics Compu-tations in Chemistry, editedby D. L. Thompsoní Wî orld Scientific,NewYork, 1998ï , p. 34.

2ðM. F. Herman,Annu.Rev. Phys.Chem.45, 83 ñ 1994ò ; J. Chem.Phys.87,4779ó ô

1987õ .3öClassical and Quantum Dynamics in Condensed Phase Simulations, ed-

5814 J. Chem. Phys., Vol. 115, No. 13, 1 October 2001 Nielsen, Kapral, and Ciccotti

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Page 11: Statistical mechanics of quantum-classicalsystems · INFM and Dipartimento di Fisica, Universita`‘‘La Sapienza,’’ Piazzale Aldo Moro, 2, 00185 Roma, Italy Received 29 May

ited by B. J. Berne,G. Ciccotti, and D. F. Coker ÷ Wø orld Scientific,Sin-gapore,1998ù .

4úSee,for instance,A. Staib,D. Borgis,andJ.T. Hynes,J.Chem.Phys.102,2487 û 1995ü ; D. Laria, G. Ciccotti, M. Ferrario,andR. Kapral, ibid. 97,378 ý 1992þ ; D. Borgis,G. Tarjus,andH. Azzouz,J.Phys.Chem.96, 3188ÿ1992� ; D. Li and G. Voth, ibid. 95, 10425 � 1991� ; S. Hammes-Schiffer

andJ. C. Tully, J. Chem.Phys.101, 4657 � 1994� ; S. ConstaandR. Kapral,ibid. 104, 4581 � 1996� ; S. Hammes-Schiffer, ibid. 105, 2236 � 1996� ; K.HinsenandB. Roux, ibid. 106, 3567 1997 , andreferencestherein.

5�B.

�J. Schwartzand P. J. Rossky, J. Chem.Phys.101, 6917 1994� ; 101,

6902 � 1994� ; E. Keszei,T. H. Murphrey, andP. J. Rossky, J. Phys.Chem.99, 22 � 1995� ; A. A. Mosyak,O. V. Prezhdo,andP. J. Rossky, J. Chem.Phys.

�109, 6390 � 1998� ; E. R. Bittner and P. J. Rossky, ibid. 107, 8611�

1997� ; B. SpaceandD. F. Coker, ibid. 96, 652 � 1992� ; 94, 1976 � 1991� ;G. J. Martynaand M. L. Klein, ibid. 96, 7662 � 1992� .

6�S. A. Egorov, E. Rabani,and B. J. Berne, J. Chem. Phys. 110, 5238�1999 .

7!For

"example,in cosmologyoneis led to theideaof a compositesystemin

models of the early universewhereby quantumfluctuationsseedlatergalaxy formation in a # classical$ generalrelativistic setting. B. L. Hu,PhysicaA 158, 399 % 1989& ; B. L. Hu, J. P. Paz,andY. Zhang,Phys.Rev.D 45, 2843 ' 1992( .

8)G. Lindblad,Commun.Math.Phys.48, 119 * 1976+ .

9,A.

-O. CaldeiraandA. J. Leggett,PhysicaA 121, 587 . 1983/ .

10U.0

Weiss, Quantum Dissipative Systems 1 Wø orld Scientific, Singapore,19992 .

11Y. TanimuraandS. Mukamel,J. Chem.Phys. 101, 3049 3 19944 .12N.

5Gisin, Phys.Rev. Lett. 52, 1657 6 19847 ; N. Gisin and I. Percival, J.

Phys.�

A 258

, 5677 9 1992: ; I. Percival,Quantum State Diffusion ; CambridgeUniversity

0Press,Cambridge,UK, 1998< .

13H. J. BerendsenandJ. Mavri, J. Phys.Chem.97, 13464 = 1993> ; P. Bala,B.

�Lesyng,and J. A. McCammon,Chem.Phys.Lett. 219

8, 259 ? 1994@ .

14A.-

Anderson,in Quantum Classical Correspondence: Proceedings of the4th

ADrexel Symposium on Quantum Non-Integrability, edited by D. H.

FengandB. L. Hu B InternationalPress,Cambridge,MA, 1997C , pp. 213–227.

15J.D

C. Tully, in Dynamics of Molecular Collisions, Part B, editedby W. H.Miller E Plenum,New York, 1976F , p. 217.

16J.D

C. Tully, J. Chem.Phys. 93, 1061 G 1990H ; Int. J. QuantumChem.25,299 I 1991J ; D. S. Sholl andJ. C. Tully, J. Chem.Phys.109, 7702 K 1998L .

17L.M

Xiao andD. F. Coker, J. Chem.Phys. 100, 8646 N 1994O ; D. F. CokerandL. Xiao, ibid. 102, 496 P 1995Q ; H. S. Mei andD. F. Coker, 104, 4755R1996S .

18F". Webster, P. J. Rossky, andP. A. Friesner, Comput.Phys.Commun.63,

494ó T

1991U ; F. Webster, E. T. Wang, P. J. Rossky, and P. A. Friesner, J.Chem.Phys.100, 4835 V 1994W .

19T. J. Martinez, M. Ben-Nun,and R. D. Levine, J. Phys.Chem.A 101,6389 X 1997Y .

20ð

I.Z

V. Aleksandrov, Z. Naturforsch.A 36a[

, 902 \ 1981] .21Wø

. BoucherandJ. Traschen,Phys.Rev. D 37[

, 3522 ^ 1988_ .22Wø

. Y. ZhangandR. Balescu,J. PlasmaPhys.40, 199 ` 1988a ; R. BalescuandW. Y. Zhang,ibid. 40, 215 b 1988c .

23ð

A. Anderson,Phys.Rev. Lett. 74, 621 d 1995e .24O. V. PrezhdoandV. V. Kisil, Phys.Rev. A 56, 162 f 1997g .25C. C. Martens and J.-Y. Fang, J. Chem. Phys. 106, 4918 h 1996i ; A.

DonosoandC. C. Martens,J. Phys.Chem.102, 4291 j 1998k .26ð

R. Kapral andG. Ciccotti, J. Chem.Phys.110, 8919 l 1999m .27ð

S.Nielsen,R. Kapral,andG. Ciccotti, J.Chem.Phys.112, 6543 n 2000o ; J.Stat.Phys.101, 225 p 2000q .

28C. Wan andJ. Schofield,J. Chem.Phys. 113, 7047 r 2000s .29C. Schutte,

tpreprintSC 99-10,Konrad-Zuse-Zentrum,1999.

30ö

E. P. Wigner, Phys.Rev. 40, 749 u 1932v ; K. Imre, E. Ozizmir, M. Rosen-baum,

wandP. F. Zwiefel, J. Math. Phys.5, 1097 x 1967y ; M. Hillery, R. F.

O’Connell,M. O. Scully, andE. P. Wigner, Phys.Rep.106, 121 z 1984{ .31ö

R.|

Courant and D. Hilbert, Mathematical}

Methods of Physics ~ InterZ

-science,New York, 1953� .

32ö

R. Kubo,J.Phys.Soc.Jpn.12, 570 � 1957� ; R. Kubo,Rep.Prog.Phys.29,255 � 1966� .

33ö

A-

specificexampleis enoughto demonstratethe inequivalenceof thesetwo

tquantities.The secondorder in � terms

tfor a two-level quantum

subsystemin the adiabaticbasishavebeenexplicitly calculated� analyti-cally� andshownto be different.

5815J.�

Chem. Phys., Vol. 115, No. 13, 1 October 2001 Statistical mechanics of quantum-classical systems

Downloaded 25 Sep 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp