snapshot: histone readers...chp1 mpp8 tip60 h3k27me3/2 pc h3k27/k9me3/2 cbx2,4,6,7,8 double...

2
Bromodomain H3/H4Kac ANCCA (H3K14) BDF1 BRD2,3,4,7 BRDT(H4K5K8; H3K18) BRG1 CBP/p300 (H4K20; H3K36) GCN5 (H4K16) PB-2 (H3K14) PCAF RSC4 (H3K14) TAF1 TRIM24 (H3K23) GCN5 H3K4me3/2 BPTF ING1,2,3,4,5 JARID1A KDM7A(ce) KIAA1718 Lid MLL1 PHF2,8 PHO23 Pygo RAG2 TAF3 YNG1,2 H3un AIRE BHC80 CHD4 DNMT3L JADE1 TRIM24 H3K9me CHD4 ICBP90 SMCX H3K14ac DPF3 H3K4me3 ZCWPW1 PHD Tandem PHD ZF-CW H3R2 WDR5 H3/H4/H1Kme3 EED H4un (15-41) RbAp46/48 EED WD40/ β propeller 14-3-3 H3S10ph H3S28ph 14-3-3 14-3-3 L3MBTL1 H3/H4Kme1/2 L3MBTL1,2 MBTD1 SCM SCML2 SFMBT H3K9me2/3 LIN61 MBT MDC1 H2AXS139ph MDC1 BRCT BRPF1 H3K36me3 BRPF1 DNMT3A H4K20me1 PDP1 PWWP H4K20me2 53BP1 CRB2 H3/H4Rme2 TDRD3 H3/H4Kme3 FXR1,2 (H4K20) JMJD2A (H3K4) JMJD2A (H4K20) UHRF1 (H3K9) 53BP1 Tudor/ Tandem Tudor HP1 H3K4me CHD1(h) H3K36me3/2 EAF3 MRG15 MSL3 (H4K20me1-DNA) H3K9me3/2 HP1 CBX1,3,5 CDY CHP1 MPP8 Tip60 H3K27me3/2 Pc H3K27/K9me3/2 CBX2,4,6,7,8 Double Chromodomain Chromodomain Chromo Barrel H3K9me2/1 G9a GLP GLP Ankyrin ING2 842 Cell 146, September 2, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.08.022 See online version for legend and references. SnapShot: Histone Readers Tatiana G. Kutateladze 1 1 Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA

Upload: others

Post on 19-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SnapShot: Histone Readers...CHP1 MPP8 Tip60 H3K27me3/2 Pc H3K27/K9me3/2 CBX2,4,6,7,8 Double Chromodomain Chromodomain Chromo Barrel H3K9me2/1 G9a GLP GLP Ankyrin ING2 842 Cell 146,

Bromodomain

H3/H4KacANCCA (H3K14)BDF1BRD2,3,4,7BRDT(H4K5K8; H3K18)BRG1CBP/p300 (H4K20; H3K36)GCN5 (H4K16)PB-2 (H3K14)PCAFRSC4 (H3K14)TAF1TRIM24 (H3K23)GCN5

H3K4me3/2BPTFING1,2,3,4,5JARID1AKDM7A(ce)KIAA1718LidMLL1PHF2,8PHO23PygoRAG2TAF3YNG1,2

H3unAIREBHC80CHD4DNMT3LJADE1TRIM24

H3K9meCHD4ICBP90SMCX

H3K14acDPF3

H3K4me3ZCWPW1

PHD

TandemPHD

ZF-CW

H3R2WDR5

H3/H4/H1Kme3EED

H4un (15-41)RbAp46/48

EED

WD40/β propeller

14-3-3

H3S10phH3S28ph14-3-3

14-3-3

L3MBTL1

H3/H4Kme1/2L3MBTL1,2MBTD1SCMSCML2SFMBT

H3K9me2/3LIN61

MBT

MDC1

H2AXS139phMDC1

BRCT

BRPF1 H3K36me3BRPF1DNMT3A

H4K20me1PDP1

PWWP

H4K20me253BP1CRB2

H3/H4Rme2TDRD3

H3/H4Kme3FXR1,2 (H4K20)JMJD2A (H3K4)JMJD2A (H4K20)UHRF1 (H3K9)

53BP1

Tudor/Tandem Tudor

HP1

H3K4meCHD1(h)

H3K36me3/2EAF3MRG15MSL3 (H4K20me1-DNA)

H3K9me3/2HP1CBX1,3,5CDYCHP1MPP8Tip60

H3K27me3/2Pc

H3K27/K9me3/2CBX2,4,6,7,8

DoubleChromodomain

Chromodomain Chromo Barrel

H3K9me2/1G9aGLP

GLP

Ankyrin

ING2

842 Cell 146, September 2, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.08.022 See online version for legend and references.

SnapShot: Histone ReadersTatiana G. Kutateladze1

1Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA

Page 2: SnapShot: Histone Readers...CHP1 MPP8 Tip60 H3K27me3/2 Pc H3K27/K9me3/2 CBX2,4,6,7,8 Double Chromodomain Chromodomain Chromo Barrel H3K9me2/1 G9a GLP GLP Ankyrin ING2 842 Cell 146,

SnapShot: Histone ReadersTatiana G. Kutateladze1

1Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA

842.e1 Cell 146, September 2, 2011 ©2011 Elsevier Inc. DOI 10.1016/j.cell.2011.08.022z

Posttranslational modifications (PTMs) of histone proteins and methylation of DNA are major components of the epigenetic machinery that regulates the structure and dynamics of chromatin, gene transcription, DNA replication, DNA recombination, and DNA repair. The PTMs alter direct interactions between histones and DNA and serve as docking sites for epigenetic effectors. A number of PTMs have been identified in the flexible histone tails that protrude from the nucleosomal core and are readily accessible to histone acetyltransferases (HATs), histone deacetylases (HDACs), histone lysine methyltransferases (HKMTs), kinases, phosphatases, and other enzymes capable of depositing or removing PTMs. The list of PTMs is rapidly growing and includes acetylation, methylation, ubiquitination, and SUMOylation of lysine residues, methylation and citrullination of arginine residues, phosphorylation of serine and threonine residues, and ADP-ribosylation of glutamate and arginine residues.

The histone PTMs are recognized by protein modules, referred to as epigenetic effectors, histone-binding domains, or simply “readers” of PTMs. Binding of the effectors recruits or stabilizes various transcription factors, chromatin remodeling complexes, and other components of the transcriptional network at chromatin. Many chromatin-associating proteins contain multiple copies of an effector or several different effectors, often specific for distinct PTMs. This provides a multivalent mechanism for targeting to a particular genomic site and ensures the proper biological outcome. Furthermore, the effectors are commonly found in macromolecules that either possess catalytic activities or act as scaffolding proteins that tether multisubunit enzymatic complexes to chromatin. These, in turn, further modify the epigenetic landscape by “erasing” PTMs, “writing” new epigenetic marks, or cleaving off the entire tail. This SnapShot shows the histone-binding effectors, their atomic-resolution structures, and the reported specificities for PTMs.

RefeRences

Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21, 381–395.

Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407–412.

Campos, E.I., and Reinberg, D. (2009). Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599.

Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.

Ruthenburg, A.J., Li, H., Patel, D.J., and Allis, C.D. (2007). Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994.

Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41–45.

Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D., and Patel, D.J. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040.

Turner, B.M. (2002). Cellular memory and the histone code. Cell 111, 285–291.