signals and systems chapter 12

Upload: physisis

Post on 07-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 signals and systems chapter 12

    1/34

    1

    Chapter 12

    Three-Phase Circuit

    Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

  • 8/19/2019 signals and systems chapter 12

    2/34

  • 8/19/2019 signals and systems chapter 12

    3/34

    3

             

     

     

    Structure of ower System

    : 10~20kV

     : 154, 345, 765kV

    : 154, 66kV : 380V

    : 120/220V: 6.6, 11.4, 22.9kV

    Energy

    Source

    Fossil

    Fuel

    Hydro

    Power

    Power Plant

    Ther 

    mal

    Mecha

    nical

    Electri

    cal

    Prime Mover Generator

    Transf 

    ormati

    on

    Transf 

    ormer

    Power

    Transmission

    Line

    Transf 

    ormati

    on

    High

    Voltage

    Transmis

    sion

    Netwo

    rk

    Trans

    format

    ion

    Distribu

    tion

    Station

    Small

    Consu

    mption

    Transf 

    ormer

    Transformer

    for Distribution

    Ho

    me

    Small

    Consu

    mer

    Fac

    toryLarge

    Consu

    mer

    L

    O

     A

    D

    Motor

    Heater

    Light

    and Etc.

     Atom

    Fuel

    Ther 

    mal

    Mecha

    nical

    Electri

    cal

    Mecha

    nical

    Electri

    cal

    Substation Substation

    Power

    Distribution

    Line

  • 8/19/2019 signals and systems chapter 12

    4/34

    4

    12.1 What is a Three-Phase Circuit?

    a

    b

     A

    B

    V  pÐf   Z L

    Single Phase vs. Three Phase

    N  

    S  

    a

    n

    b   

    n   

       c   n

    N  

    S  

    a

    b

    magneto

    a

    b

     A

    B

    V  pÐ0°

    Z L

    c    C 

    V  pÐ-120°

    n   N 

    V  pÐ+120°

    Z L

    Z L

  • 8/19/2019 signals and systems chapter 12

    5/34

    5

    • It is a system produced by a generator consisting ofthree sources having the same amplitude andfrequency but out of phase with each other by 120°.

    12.1 What is a Three-Phase Circuit?

    Three sources

    with 120° out

    of phaseFour wired

    system

    neutral line

  • 8/19/2019 signals and systems chapter 12

    6/34

    6

    Advantages:

    1. Most of the electric power is generated anddistributed in three-phase.

    2. The instantaneous power in a three-phase systemcan be constant.

    3. The amount of power of the three-phase systemis more economical than that of the single-phase.

    4. In fact, the amount of wire required for a three-

    phase system is less than that required for anequivalent single-phase system.

    12.1 What is a Three-Phase Circuit?

  • 8/19/2019 signals and systems chapter 12

    7/34

    7

    12.2 Balanced Three-Phase Voltages

    • Balanced three-phase voltages are defined as the voltagesequal in magnitude and are out of phase with each other by120 o.

    Sinusoidal form of the balanced three-phase voltages

  • 8/19/2019 signals and systems chapter 12

    8/34

    8

    12.2 Balanced Three-Phase Voltages

    • Two possible configurations:

    Three-phase voltage sources:

    (a) Y-connected configuration; (b) Δ-connected configuration

  • 8/19/2019 signals and systems chapter 12

    9/34

    cnbnan

     p pcn

     pbn

     pan

    leadsturninwhichleads

    V V 

    V,VV

    V120V240V

    V120V

    V0V

    °Ð°-Ð

    °-аÐ

    9

    12.2 Balanced Three-Phase VoltagesThree-phase voltage configuration has two possible combinations

    with different phase sequence.

    In both cases,

    abc  or positive sequence(clockwise direction) acb or negative sequence(counterclockwise direction)

    bncnan

     p pbn

     pcn

     pan

    leadsturninwhichleads

    V V 

    V V 

    V,VV

    V120V240V

    V120VV0V

    °Ð°-Ð

    °-аÐ

    effective or rms 

    0an bn cn

    an bn cn

    v v v

    v v v

    + +

  • 8/19/2019 signals and systems chapter 12

    10/34

    10

    12.2 Balanced Three-Phase Voltages

    • Balanced phase voltages are equal inmagnitude and are out of phase with each otherby 120°.

    • The phase sequence is the time order in whichthe voltages pass through their respectivemaximum values.

    Graph in the time domain for the positive sequence 

  • 8/19/2019 signals and systems chapter 12

    11/34

    11

    12.2 Balanced Three-Phase Voltages

    Example 1

    Determine the phase sequence of the

    set of voltages.

    )110cos(200)230cos(200

    )10cos(200

    °- °-

    °+

    t vt v

    t v

    cn

    bn

    an

     

     

     

  • 8/19/2019 signals and systems chapter 12

    12/34

    12

    12.2 Balanced Three-Phase Voltages

    Solution:

    The voltages can be expressed in phasor formas

    We notice that Van leads Vcn by 120° and Vcn inturn leads Vbn by 120°.

    Hence, we have an acb (negative) sequence.

    V110200V

    V230200V

    V10200V

    °-Ð

    °-Ð

    °Ð

    cn

    bn

    an

  • 8/19/2019 signals and systems chapter 12

    13/34

    13

    12.3 Balanced Three-Phase Connection

     Balanced Load Configuration

    Z1

    Z2

    Z3

    a

    b

    n

    Za

    ZbZc

    a

    b

    Y connected Load D connected Load

    - A balanced load is one that in which the phase impedance are equal in

    magnitude and phase.

    1 2 3, =Y a b c Z Z Z Z Z Z Z Z D

    - Y-connected Load can be interchangeable with D connected load each other.

    13 , ,3

    Y Y  Z Z Z Z D D

  • 8/19/2019 signals and systems chapter 12

    14/34

     Delta-Y Conversion 

    Similarly

    321

    213 )(

     R R R

     R R R

     R R cb ++

    +

    + 321321 )(

     R R R

     R R R

     R R ac ++

    +

    + Rbc =  Rca =(2) (3)

    From (1), (2), (3)

     R R R

     R R R

     R R R

     R R R

     R R R

     R R

     R

    c

    b

    a

    ++

    ++

    ++

    321

    13

    321

    32

    321

    21

    ++

    ++

    ++

     R

     R R R R R R R

     R

     R R R R R R R

     R

     R R R R R R R

    a

    accbba

    c

    accbba

    b

    accbba

    3

    2

    1

    Delta to Y

    Y to Delta

    Delta to Y

    conversion

    Y to Delta

    conversion

    (4)

    (5)

    (6)14

  • 8/19/2019 signals and systems chapter 12

    15/34

    15

    12.3 Balanced Three-Phase Connection

    •Four possible connections

    1. Y-Y connection (Y-connected source with a

    Y-connected load)

    2. Y-Δ connection (Y-connected source with aΔ-connected load)

    3.   Δ-Δ connection

    4.   Δ-Y connection

  • 8/19/2019 signals and systems chapter 12

    16/34

    16

    Three Line (Wire) System

    , , L ab bc cav v v v

    - Line Current

    , , L a b c I I I I - Line Voltage

     A

    B

    C

    a

    c

    b

    Ia

    Ib

    Ic

    Three Phase

    Signal Source

    Three Phase

    Load

    wrt the

    interconnection

    Ib

    Ic

    ZY

    ZY   ZY

     A

    B  C

    Ia

    N

    I AN

    IBN   ICN

    Ib

    Ic

     A

    B  C

    ZD   ZD

    ZDIBC

    I AB

    ICA

    Ia

    1

    2

    , ,, ,

     L AN AN CN 

     L AB BC CA

    v v v vv v v v

    - Phase Current

    1

    2

    , ,

    , ,

     P AN BN CN 

     P AB BC CA

     I I I I 

     I I I I 

    - Phase Voltage

    Y-connected

     Δ -connected

    Y-connected

     Δ -connected

     In Y-connected system

    phase current = line current

    phase voltage ≠ line voltage 

     In Δ -connected system

    phase current ≠ line current 

    phase voltage = line voltage

    Need to find phase (line) current & phase (line) voltage

  • 8/19/2019 signals and systems chapter 12

    17/34

  • 8/19/2019 signals and systems chapter 12

    18/34

    18

    12.3 Balanced Three-Phase Connection

     The line voltages lead their corresponding phase voltage by 30o.

    °-Ð-

    °-Ð-

    °Ð 

      

     ++

    °-Ð-°Ð-

    °Ð

    °-Ð

    °Ð

    2103VVV

    903VVV

    similarly,

    3032

    3

    2

    11

    1200VVV

    V,V,V

     voltageslineorvoltagesline-to-lineThe

    V120V

    V120V

    V0V

     pancnca

     pcnbnbc

     p p

     p pbnanab

    cabcab

     pcn

     pbn

     pan

    V  jV 

    V V 

    areand 

    Phasor diagram illustrating the relationship between line and phase voltages in

    a balanced Y-Y system.

    Van

    Vbn

    Vcn  Vab

    Vbc

    Vca

    Line voltage:abc sequence

  • 8/19/2019 signals and systems chapter 12

    19/34

    19

    12.3 Balanced Three-Phase Connection

    The voltage across the neutral line is zero, so the neutral line can be removed

    without affecting the system.

    0IZV

    0III-I

    0III

    240I240VV

    I

    120I

    120VV

    I

    VI

    ++

    ++

    -Ð-Ð

    nnnN 

    cccn

    ccc

    o

    a

    o

    an

    cnc

    o

    aY 

    o

    an

    bn

    b

    ana

    or 

     Z  Z 

     Z  Z 

     Z 

     Applying KVL to each phase,

    we obtain line currentsby KVL

    - Only three wires are needed in the balanced three phase system

    - Find line currents, which are phase currents in Y-configuration

    Line current:

    abc sequence

  • 8/19/2019 signals and systems chapter 12

    20/34

    20

    12.3 Balanced Three-Phase Connection

     An alternative way of analyzing a balanced Y-Y system is to do so on

    a “per phase” basis. 

    From Ia, we use the phase sequence to obtain other line currents. Thus, as long

    as the system is balanced Y-Y connected, we need only analyze one phase.

    ana

     Z 

    VI  

  • 8/19/2019 signals and systems chapter 12

    21/34

    21

    12.3 Balanced Three-Phase Connection

    Example 2

    Calculate the line currents in the three-wire Y-Y

    system shown below:

     A

     A

     A

     j j j Z 

     Z 

    ooo

    ac

    oo

    ab

    o

    o

    o

    a

    o

    ana

    2.9881.68.26181.6240II

    8.14181.6120II

    8.2181.68.21155.16

    0110I

    8.21155.1661581025

    VI

    Ð-Ð-Ð

    -Ð-Ð

    -ÐÐÐ

    Ð+++-

    Balanced Y-Y system ? OK. Then,line impedance

    load impedance

  • 8/19/2019 signals and systems chapter 12

    22/34

  • 8/19/2019 signals and systems chapter 12

    23/34

    23

    12.3 Balanced Three-Phase Connection

    °-а-Ð

    °-Ð-+

    °-Ð-°Ð

    °-Ð

    °-а-аÐ

    303II,303II,

    303I866.05.01I

    240101II-II

    240II

    240II,120II,0II

    I-III-III-II ,,,

    CAc BC b

     AB AB

     ABCA ABa

     ABCA

     ABCA AB BC m AB

     BC CAc AB BC bCA ABa

     similarly

     j

    Since

    The line currents are obtained from the phase currents.

    CA BC  AB p

    cba L

     p L

     I 

     I 

     I  I 

    III 

    III 

    where,3

    Phasor diagram illustrating the

    relationship between phase

    and line currents in delta

    connection.

     An alternative way of analyzing the Y-∆ circuit is to

    transform the ∆ connected load to an equivalent Y

    connected load. Using Y-∆ transformation formula 

    3

    ZZ   DY 

    phase current

    line current

    Each line current lags the

    corresponding phase

    current by 30o.

    abcsequence

  • 8/19/2019 signals and systems chapter 12

    24/34

    24

    12.3 Balanced Three-Phase ConnectionExample 3

    A balanced abc -sequence Y-connected source with( ) is connected to a Δ-connected load (8+j4) per phase. Calculate the phase and line currents.

    SolutionUsing single-phase analysis,

    Other line currents are obtained using the abc  phasesequence

    °Ð 10100Van

    A57.1654.33

    57.26981.2

    10100

    3/Z

    VI an °-Ð

    °Ð

    °Ð

    D

    a

    A43.10354.33120II

    A57.13654.33120II

    °Ð°+Ð

    °-а-Ð

    ac

    ab

    °-Ð 303II  ABa

  • 8/19/2019 signals and systems chapter 12

    25/34

    25

    •  A balanced Δ- Δ system is a three-phase system with a

    balanced Δ -connected source and a balanced Δ -connectedload.

    12.3 Balanced Three-Phase Connection

    V120V

    V120V

    V0V

    °Ð

    °-Ð

    °Ð

     pca

     pbc

     pab

     Assuming positive sequence,

    In this configuration, line voltages are same asphase voltages.

    If there is no line impedance, the phase voltages

    of the delta-connected source are equal to the

    voltages across the impedances;

    CAca Bbc ABab VV,VV,VV C  

    Hence, the phase currents are

    DD

    DD

    DD

     Z  Z 

     Z  Z 

     Z  Z 

    caCACA

    bc BC  BC 

    ab AB A

    VVI

    ,VV

    I

    ,VV

    I B

  • 8/19/2019 signals and systems chapter 12

    26/34

    26

    •  A balanced Δ- Δ system is a three-phase system with a balanced Δ -

    connected source and a balanced Δ -connected load.

    12.3 Balanced Three-Phase Connection

    The line currents are obtained from the phase currents by

    applying KCL. (same w/ balanced Y-Δ system)

    °-а-Ð

    °-Ð-+

    °-Ð-°Ð°-Ð

    303II,303II,

    303I866.05.01I

    240101II-II240II

    I-III-III-II ,,,

    CAc BC b

     AB AB

     ABCA ABa

     ABCA

     BC CAc AB BC bCA ABa

     similarly

     j

    Since

    CA BC  AB p

    cba L

     p L

     I 

     I 

     I  I 

    III 

    III 

    where,3

    Each line current lags the

    corresponding phase current

    by 30o.

     An alternative way of analyzing the Δ- Δ circuit is to convert both the source and the load to their Y equivalents.

    3ZZ   DY see the next section.

    Phasor diagram illustrating the

    relationship between phase

    and line currents.

    Each line current lags thecorresponding phase

    current by 30o.

  • 8/19/2019 signals and systems chapter 12

    27/34

    27

    •  A balanced Δ- Δ system is a three-phase system with a balanced Δ -

    connected source and a balanced Δ -connected load.

    12.3 Balanced Three-Phase Connection

    The line currents are obtained from the phase currents by

    applying KCL. (same w/ balanced Y-Δ system)

    °-а-Ð

    °-Ð-+

    °-Ð-°Ð°-Ð

    303II,303II,

    303I866.05.01I

    240101II-II240II

    I-III-III-II ,,,

    CAc BC b

     AB AB

     ABCA ABa

     ABCA

     BC CAc AB BC bCA ABa

     similarly

     j

    Since

    CA BC  AB p

    cba L

     p L

     I 

     I 

     I  I 

    III 

    III 

    where,3

    Each line current lags the

    corresponding phase current

    by 30o.

     An alternative way of analyzing the Δ- Δ circuit is to convert both the source and the load to their Y equivalents.

    3ZZ   DY see the next section.

    Phasor diagram illustrating the

    relationship between phase

    and line currents.

    Each line current lags thecorresponding phase

    current by 30o.

  • 8/19/2019 signals and systems chapter 12

    28/34

    •  A balanced Δ-Y system is a three-phase system with abalanced Δ -connected source and a balanced Y-

    connected load.

    12.3 Balanced Three-Phase Connection

     Assuming positive sequence,

    V120VV,120VV,0V   °Ð°-аР  pca pbc pab   V V V 

    These are also the line voltages and phase voltages.

    We can obtain the line currents in many ways.

    Method1.

     Apply KVL to loop aANBba, writing

    o

     pba

    o pabbaY 

    bY aY ab

     Z V  I  I V  I  I  Z 

    or  I  Z  I  Z 

    00V

    0V-

    Ð-Ð-

    -+

    Since, ,120   sequenceabcin I  I    oab   -Ð

    oaa

    o

    a ba

    303I2

    3 j

    2

    11I12011III   Ð

     

     

     

     ++-Ð--

      o

    ac

    o

    ab

    o

     p

    a   I  I  I  I  Z 

    V  I  120,120,

    303/Ð-Ð

    2 3 l d h h

  • 8/19/2019 signals and systems chapter 12

    29/34

    Balanced Δ-Y system

    12.3 Balanced Three-Phase ConnectionMethod2.

    To replace the delta-connected source with its equivalent Y-

    connected source.

    ☞ Line voltages of a Y-connected source lead their correspondingphase voltage by 30o. Therefore, we obtain each phase voltage of

    the equivalent Y-connected source by and shifting its phase -30o.3

    °+а-а-Ð 903

    V,1503

    V,303

    V  p

    cn

     p

    bn

     p

    an

    V V V 

    single phase equivalent circuit

     p

    a Z 

    V   303/I

    °-Ð

    °-Ð 303

    V  p

    an

    V0V   °Ð   pab   V 

    Recalling

    V120VV,120VV,0V   °Ð°-аР  pca pbc pab   V V V positive

    sequence

    Same result

    from the KVL

    method

  • 8/19/2019 signals and systems chapter 12

    30/34

    30

    12.4 Power in a Balanced System

    • Let’s examine the instantaneous power observed by the load. 

    ☞ In the time domain, for a Y-connected load, the phase voltages are

    o pCN o p BN  p AN    t V vt V vt V v 120cos2,120cos2,cos2   +-      necessary because V p has been defined as the rms value of the phase voltage.

    , Ð Z  Z  If   Y 

      o pco pb pa   t  I it  I it  I i 120cos2,120cos2,cos2   +----         

    ☞ The total instantaneous power in the load is the sum of the instantaneous powers in the three phases

      oooo

     p p

    cCN b BN a AN cba

    t t t t t t  I V 

    iviviv p p p p

    120cos120cos120cos120coscoscos2   +-++---+-

    ++++

             

    ☞ Applying the trigonometric identity  B A B A B A   -++ coscos2

    1coscos

    12 4 P i B l d S t

  • 8/19/2019 signals and systems chapter 12

    31/34

    31

    12.4 Power in a Balanced System

    • Let’s examine the instantaneous power observed by the load. 

     

        

       

          

           

    cos3cos2

    12coscos3

    )2(

    240sinsin240coscos240sinsin240coscoscoscos3

    2402cos2402cos2coscos3

     p p p p

    oooo

     p p

    oo

     p p

     I V  I V 

    t where

     I V 

    t t t  I V  p

     

      

     -++

    -

    -++++

    +-+--+-+

    Total instantaneous power in a balanced three-phase system is constant !

    The average power per phase P  p for either Y-connected or ∆-connected load is p/3 or  cos p p p   I V  P  

    and the reactive power per phase is  sin p p p   I V Q  

    The apparent power per phase is  p p p   I V S    , the complex power per phase is*IVS  p p p p p   jQ P    +

    phase voltage and phase current, respectively.The total average/reactive power:

    )3:,3:(

    sin33sin3,cos3cos33

     p L p L p L p L

     L L p p p L L p p pcba

    V V but  I  I load connected V V but  I  I load connected Y 

     I V Q I V Q I V  I V  P  P  P  P  P 

    -D-

    ++       

    The complex power:  Ð+   L L p p p p p   jQ P  IV3Z3II3VS3S2*

  • 8/19/2019 signals and systems chapter 12

    32/34

    32

    12.5 Unbalanced Three-Phase Systems

    •  An unbalanced system is due to unbalanced voltage sources or an

    unbalanced load.

    0)III(I

    ,Z

    VI,

    Z

    VI ,

    Z

    VI

    ++-

    cban

    CN c

     B

     BN b

     A

     AN a

    • To calculate power in an unbalanced three-phase system requires that we find the

    power in each phase.

    • The total power is not simply three times the power in one phase but the sum of

    the powers in the three phases.

    ☞ Unbalanced three-phase Y-connected load

    (1) The source voltages are not equal in magnitude and/or differ in phase by angles are unequal, or (2)

    load impedances are unequal.

    Neutral line can not be removed.

  • 8/19/2019 signals and systems chapter 12

    33/34

    33

    12.5 Unbalanced Three-Phase SystemsExample 7

    Consider the ∆- ∆ system shown below. Take Z1=8+6j ,Z2=4.2-2.2j , Z3=10+0j . (a) Find the phase current I AB, IBC,

    and ICA. (b) Calculate the line currents IaA, IbB, and IcC. 

  • 8/19/2019 signals and systems chapter 12

    34/34

    34

    Problems

    12.8

    12.10

    12.13

    12.18

    12.21

    12.25

    12.31

    12.40

    12.42

    12.54