signals and systems chapter 2

46
Signals and Systems Chapter 2 Biomedical Engineering Dr. Mohamed Bingabr University of Central Oklahoma

Upload: brilliant

Post on 06-Jan-2016

65 views

Category:

Documents


2 download

DESCRIPTION

Signals and Systems Chapter 2. Dr. Mohamed Bingabr University of Central Oklahoma. Biomedical Engineering. Outline. Signals Systems The Fourier Transform Properties of the Fourier Transform Transfer Function Circular Symmetry and the Hankel Transform. Introduction. Signal Type - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Signals and Systems Chapter  2

Signals and SystemsChapter 2

Biomedical EngineeringDr. Mohamed Bingabr

University of Central Oklahoma

Page 2: Signals and Systems Chapter  2

Outline

β€’ Signalsβ€’ Systemsβ€’ The Fourier Transformβ€’ Properties of the Fourier Transformβ€’ Transfer Functionβ€’ Circular Symmetry and the Hankel Transform

Page 3: Signals and Systems Chapter  2

Introduction

Signal Type- Continuous Signal: x-ray attenuation- Discrete Signal: times of arrival of photons in a

radioactive decay process in PET- Mixed signal: CT scan signal g(l,ΞΈk)

System Type- Continuous-continuous system

- Continuous input Continuous output- Continuous-discrete system

- Continuous input Discrete output

Page 4: Signals and Systems Chapter  2

Signals

function

image

(x,y) : is a pixel locationf : is pixel intensity

2-D continuous signal is defined as f(x,y)

Page 5: Signals and Systems Chapter  2

Point Impulse

1-D point impulse (delta, Dirac, impulse function)

𝛿 (π‘₯ )=0 ,π‘₯β‰  0 ,

βˆ«βˆ’ ∞

∞

𝑓 (π‘₯)𝛿 (π‘₯ )𝑑π‘₯= 𝑓 (0 ) .

2-D point impulse𝛿 (π‘₯ , 𝑦 )=0 ,(π‘₯ , 𝑦 )β‰ (0 , 0)

βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝑓 (π‘₯ , 𝑦)𝛿 (π‘₯ , 𝑦 )𝑑π‘₯𝑑𝑦= 𝑓 (0 , 0 ) .

Point impulse is used in the characterization of image resolution and sampling

𝛿 (π‘₯ )

π‘₯

Page 6: Signals and Systems Chapter  2

Point Impulse Properties

1- Sifting property

βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝑓 (π‘₯ , 𝑦)𝛿 (π‘₯βˆ’πœ‰ , π‘¦βˆ’πœ‚ )𝑑π‘₯𝑑𝑦= 𝑓 (πœ‰ ,πœ‚ ) .

We can interpret the product of a function with a point impulse as another point impulse whose volume is equal to the value of the function at the location of the point impulse.

2- Scaling property 𝛿 (π‘Žπ‘₯ ,𝑏𝑦 )= 1|π‘Žπ‘|

𝛿(π‘₯ , 𝑦 )

2- Even function 𝛿 (βˆ’π‘₯ ,βˆ’ 𝑦 )=𝛿(π‘₯ , 𝑦 )

Page 7: Signals and Systems Chapter  2

Line Impulse

This is a line whose unite normal is oriented at an angle ΞΈ relative to the x-axis and is at distance l from the origin in the direction of the unit normal.

The line impulse associated with line

𝛿𝑙 (π‘₯ , 𝑦 )=𝛿𝑙 (π‘₯π‘π‘œπ‘  πœƒ ,+𝑦 π‘ π‘–π‘›πœƒβˆ’ 𝑙 )

Line also used to assist image resolution

𝐿 (𝑙 ,πœƒ )={(π‘₯ , 𝑦 )∨π‘₯π‘π‘œπ‘ πœƒ+π‘¦π‘ π‘–π‘›πœƒ=𝑙}

Page 8: Signals and Systems Chapter  2

Comb and Sampling Functions

2-D comb function

𝛿𝑠 (π‘₯ , 𝑦 ;βˆ† π‘₯ , βˆ† 𝑦 )= βˆ‘π‘š=βˆ’ ∞

∞

βˆ‘π‘›=βˆ’ ∞

∞

𝛿(π‘₯βˆ’π‘šβˆ† π‘₯ , π‘¦βˆ’π‘›βˆ† 𝑦 )

Used in medical imaging production (sampling CT image 1024 x 1024), manipulation, and storage.

π‘π‘œπ‘šπ‘(π‘₯)=βˆ‘βˆ’βˆž

∞

𝛿(π‘₯βˆ’π‘›)

π‘π‘œπ‘šπ‘(π‘₯ , 𝑦)= βˆ‘π‘š=βˆ’ ∞

∞

βˆ‘π‘›=βˆ’ ∞

∞

𝛿(π‘₯βˆ’π‘š , π‘¦βˆ’π‘›)

Sampling function

Page 9: Signals and Systems Chapter  2

1-D Rect and Sinc Functions

Rect function is used in medical imaging for sectioning.

π‘Ÿπ‘’π‘π‘‘ (π‘₯ )={ 1 ,     for  | π‘₯∨¿12

0 ,              for  |π‘₯∨¿ 12

𝑠𝑖𝑛𝑐 (π‘₯ )= π‘ π‘–π‘›πœ‹ π‘₯πœ‹ π‘₯

Sinc function is used in medical imaging for reconstruction.

Page 10: Signals and Systems Chapter  2

2-D Rect and Sinc Functions

π‘Ÿπ‘’π‘π‘‘ (π‘₯ , 𝑦 )={ 1 ,     for  | π‘₯∨¿12

andβˆ¨π‘¦βˆ¨ΒΏ12

0 ,              for  |π‘₯∨¿ 12

and|𝑦|> 12

π‘Ÿπ‘’π‘π‘‘ (π‘₯ , 𝑦 )=π‘Ÿπ‘’π‘π‘‘ (π‘₯)π‘Ÿπ‘’π‘π‘‘(𝑦 )

𝑠𝑖𝑛𝑐(π‘₯ , 𝑦 )={ 1 ,                              for  π‘₯=𝑦=0sin (πœ‹ π‘₯ ) sin (πœ‹ 𝑦 )

πœ‹ 2π‘₯𝑦,               otherwise .

𝑠𝑖𝑛𝑐 (π‘₯ , 𝑦 )=𝑠𝑖𝑛𝑐 (π‘₯ )𝑠𝑖𝑛𝑐 (𝑦 )

Page 11: Signals and Systems Chapter  2

Exponential and Sinusoidal Signals

𝑒(π‘₯ , 𝑦 )=𝑒 𝑗2 πœ‹ (𝑒 0π‘₯+𝑣0𝑦 )

𝑒 (π‘₯ , 𝑦 )=π‘π‘œπ‘  [ 2πœ‹ (𝑒0 π‘₯+𝑣0 𝑦 ) ]+ 𝑗𝑠𝑖𝑛 [2πœ‹ (𝑒0π‘₯+𝑣0 𝑦 ) ]

x and y have distance units.

u0 and v0 are the fundamental frequencies and their units are the inverse of the units of x and y.

π‘π‘œπ‘  [2πœ‹ (𝑒0π‘₯+𝑣0 𝑦 ) ]=0.5𝑒 𝑗2 πœ‹ (𝑒 0π‘₯+𝑣0 𝑦 )+0.5π‘’βˆ’ 𝑗2 πœ‹ (𝑒0π‘₯+𝑣0 𝑦 )

Page 12: Signals and Systems Chapter  2

Separable and Periodic Signals

β€’ A signal f(x, y) is separable if f(x, y)= f1(x) f2(y)

β€’ Separable signal model signal variations independently in the x and y direction.

β€’ Decomposing a signal to its components f1(x) and f2(y) might simplify signal processing.

Periodicity

A signal f(x, y) is periodic if f(x, y)= f(x+X, y) = f(x, y+Y)

X and Y are the signal periods in the x and y direction, respectively.

Page 13: Signals and Systems Chapter  2

Systems

A continuous system is defined as a transformer Ο¨ of an input continuous signal f(x,y) to an output continuous signal g(x,y).

Linear Systems

g(x, y)= Ο¨ [f(x, y)]

Ο¨ [βˆ‘π‘˜=1

𝐾

π‘€π‘˜ 𝑓 π‘˜(π‘₯ , 𝑦)]=βˆ‘π‘˜=1

𝐾

π‘€π‘˜Ο¨ [ 𝑓 π‘˜(π‘₯ , 𝑦) ]

Page 14: Signals and Systems Chapter  2

Impulse Response

If we know the system response to an impulse

then with linearity we can know the system response to any input.

h (π‘₯ , 𝑦 ; πœ‰ ,πœ‚ )=Ο¨ [π›Ώπœ‰πœ‚ (π‘₯ , 𝑦 ) ]

is the system impulse response function or known as point spread function (PSF).

System output g() for any input f().

𝑔 (π‘₯ , 𝑦 )=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝑓 (πœ‰ ,πœ‚ ) h (π‘₯ , 𝑦 ;πœ‰ ,πœ‚ )π‘‘πœ‰ π‘‘πœ‚

Page 15: Signals and Systems Chapter  2

Impulse Response

System output g() for any input f().

𝑔 (π‘₯ , 𝑦 )=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝑓 (πœ‰ ,πœ‚ ) h (π‘₯ , 𝑦 ;πœ‰ ,πœ‚ )π‘‘πœ‰ π‘‘πœ‚

Page 16: Signals and Systems Chapter  2

Shift Invariance System

A system is shift invariant if an arbitrary translation of the input results in an identical translation in the output.Then with linearity we can know the system response to any input.

𝑓 π‘₯0 𝑦 0(π‘₯ , 𝑦 )= 𝑓 (π‘₯βˆ’π‘₯0 , π‘¦βˆ’ 𝑦0 )Let the input

then the output

Ο¨ []= h()

System response to a shifted impulse

g()= Ο¨ []

Page 17: Signals and Systems Chapter  2

Linear Shift-Invariance (LSI) System

Linear shift-invariant (LSI) System Response

𝑔 (π‘₯ , 𝑦 )=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝑓 (πœ‰ ,πœ‚ ) h (π‘₯βˆ’πœ‰ , π‘¦βˆ’πœ‚ ) π‘‘πœ‰ π‘‘πœ‚

Convolution Integral representation of system response

𝑔 (π‘₯ , 𝑦 )=h (π‘₯ , 𝑦 )βˆ— 𝑓 (π‘₯ , 𝑦)

Example: Consider a continuous system with input-output equation g(x,y) = xyf(x,y). Is the system linear and shift-invariant?

Page 18: Signals and Systems Chapter  2

Connection of LSI Systems

𝑔 (π‘₯ , 𝑦 )=h1 (π‘₯ , 𝑦 )βˆ—h2 (π‘₯ , 𝑦 )βˆ— 𝑓 (π‘₯ , 𝑦 )

𝑔 (π‘₯ , 𝑦 )=[h1 (π‘₯ , 𝑦 )+h2 (π‘₯ , 𝑦 )]βˆ— 𝑓 (π‘₯ , 𝑦)

Cascade

Parallel

Page 19: Signals and Systems Chapter  2

Connection of LSI Systems

Example: Consider two LSI systems connected in cascade, with Gaussian PSFs of the form:

h1 (π‘₯ , 𝑦 )= 1

2πœ‹ 𝜎12 𝑒

βˆ’ (π‘₯2+𝑦2 ) /2𝜎 12

h2 (π‘₯ , 𝑦 )= 1

2πœ‹ 𝜎 22 𝑒

βˆ’ (π‘₯2+𝑦2 ) /2𝜎22

where Οƒ1 and Οƒ2 are two positive constants.What is the PSF of the system?

h (π‘₯ , 𝑦 )= 1

2πœ‹ (𝜎12+𝜎2

2 )π‘’βˆ’ (π‘₯2+𝑦2 ) /2 (𝜎1

2+𝜎22 )

Page 20: Signals and Systems Chapter  2

Separable Systems

A 2-D LSI system with PSF h(x, y) is a separable system if there are two 1-D systems with PSFs h1(x) and h2(y), such that h(x,y) = h1(x)h2(y)

h (π‘₯ , 𝑦 )= 1

2πœ‹ 𝜎 2 π‘’βˆ’ (π‘₯2+𝑦 2) /2𝜎2

h1 (π‘₯ )= 1

√2πœ‹ πœŽπ‘’βˆ’π‘₯2 /2𝜎 2

This PSF is separable

h2 (𝑦 )= 1

√2πœ‹ πœŽπ‘’βˆ’ 𝑦2 /2𝜎 2

Page 21: Signals and Systems Chapter  2

Separable Systems

In practice it is easier and faster to execute two consecutive 1-D operations than a single 2-D operation.

𝑀 (π‘₯ , 𝑦 )=βˆ«βˆ’ ∞

∞

𝑓 (πœ‰ , 𝑦 ) h1 (π‘₯βˆ’πœ‰ )π‘‘πœ‰

g (π‘₯ , 𝑦 )=βˆ«βˆ’ ∞

∞

𝑀 (π‘₯ ,πœ‚ ) h2 (π‘¦βˆ’πœ‚ )π‘‘πœ‚

For every y

For every x

Page 22: Signals and Systems Chapter  2

Stable Systems

A system is a bounded-input bounded-output (BIBO) stable system if

For bounded input

for every (x, y)

The output is bounded

and

βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

ΒΏ h (π‘₯ , 𝑦 )βˆ¨π‘‘π‘₯𝑑𝑦<∞

Page 23: Signals and Systems Chapter  2

1-D Fourier Transform (time)

∫

dtetxfX ftj 2)()2(

1-N

0n

2

)()(n

N

kj

enxkX

Continuous 1-D Fourier Transform

Discrete 1-D Fourier Transform

x(n) = [125 145 148 140 110]X(k) = [668 -29.2 - j38 7.7 - j12.96 7.7 - j12.96 -29.2 - j38]

|X(k)| = [668 47.9 15.1 15.1 47.9] Phase = [0 -127.5 -59.3 59.3 127.5]

Ts = 0.25 secfs = 1/Ts = 4 Hzfmax = fs/2 = 2 Hz Sig length (T) = (N-1)*Ts=1 sec fres = 1/T = 1 Hz

Page 24: Signals and Systems Chapter  2

1-D Fourier Transform

1-D inverse Fourier transform

𝐹 (𝑒 )=β„±1𝐷 ( 𝑓 ) (𝑒)=βˆ«βˆ’ ∞

∞

𝑓 (π‘₯ )π‘’βˆ’ 𝑗2 πœ‹π‘’π‘₯𝑑π‘₯

𝑓 (π‘₯ )=β„± 1π·βˆ’1 (𝐹 ) (π‘₯ )=∫

βˆ’ ∞

∞

𝐹 (𝑒 )𝑒 𝑗 2πœ‹π‘’π‘₯𝑑𝑒

1-D Fourier transform

Example:

What is the Fourier transform of the π‘Ÿπ‘’π‘π‘‘ (π‘₯ )={ 1 ,     for  | π‘₯∨¿

12

0 ,              for  |π‘₯∨¿ 12

u is the spatial frequency

Page 25: Signals and Systems Chapter  2

Fourier Transform

The 2-D Fourier transform of f(x, y)

u and v are the spatial frequencies

𝐹 (𝑒 ,𝑣 )=β„± 2𝐷 ( 𝑓 ) (𝑒 ,𝑣 )=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝑓 (π‘₯ , 𝑦 )π‘’βˆ’ 𝑗 2πœ‹ (𝑒π‘₯+𝑣𝑦 )𝑑π‘₯𝑑𝑦

The 2-D inverse Fourier transform of F(u, v)

𝑓 (π‘₯ , 𝑦)=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝐹 (𝑒 ,𝑣 )𝑒 𝑗2πœ‹ (𝑒π‘₯+𝑣𝑦 )𝑑𝑒𝑑𝑣

Page 26: Signals and Systems Chapter  2

Fourier Transform

Magnitude (magnitude spectrum) of FT

|𝐹 (𝑒 ,𝑣 )|=βˆšπΉπ‘…2 (𝑒 ,𝑣 )+𝐹 𝐼

2 (𝑒 ,𝑣 )

∠𝐹 (𝑒 ,𝑣 )=π‘‘π‘Žπ‘›βˆ’1( 𝐹 𝐼(𝑒 ,𝑣 )𝐹𝑅 (𝑒 ,𝑣))

Angle (phase spectrum) of the FT

𝐹 (𝑒 ,𝑣)=|𝐹 (𝑒 ,𝑣)|𝑒 𝑗 ∠𝐹 (𝑒 ,𝑣 )

Example: What is the Fourier transform of the point impulse ?

Page 27: Signals and Systems Chapter  2

Fourier Transform Pairs

Page 28: Signals and Systems Chapter  2

Examples of Fourier Transform

Example: What is the Fourier transform of

Answer:β„± 2𝐷 ( 𝑓 ) (𝑒 ,𝑣 )=𝛿 (π‘’βˆ’π‘’0 ,π‘£βˆ’π‘£0 )

If the spatial frequency u0 and v0 are zero then f(x,y) =1 and the spectrum F(u,v) will be .

Slow signal variation in space produces a spectral content that is primarily concentrated at low frequencies.

Page 29: Signals and Systems Chapter  2

Examples of Fourier Transform

Three images of decreasing spatial variation (from left to right) and the associated magnitude spectra [depicted as log(1 + |F(u, Ο…)|)].

Page 30: Signals and Systems Chapter  2

Examples of Fourier Transform

>> img1 = imread('\\PHYSICSSERVER\MBingabr\BiomedicalImaging\mri.tif');

>> imshow(img1)

>> size(img1)

ans = 256 256

>> FFT_img1 = fftshift(fft2(img1));

>> Abs_FFT_img1 = abs(FFT_img1)

>> surf(Abs_FFT_img1(110:140,110:140))

>> Log_Abs_FFT_img1=log10(1+Abs_FFT_img1);

>> surf(Log_Abs_FFT_img1(110:140,110:140))

Page 31: Signals and Systems Chapter  2

Properties of the Fourier Transform

Linearity

Properties are used in theory and application to simplify calculation.

β„± 2𝐷 (π‘Ž1 𝑓 +π‘Ž2𝑔 ) (𝑒 ,𝑣 )=π‘Ž1𝐹 (𝑒 ,𝑣 )+π‘Ž2𝐺(𝑒 ,𝑣 )

Translation

If F(u,v) is the FT of a signal f(x, y) then the FT of a translated signal

β„± 2𝐷 ( 𝑓 π‘₯0 𝑦0 ) (𝑒 ,𝑣 )=𝐹 (𝑒 ,𝑣 )π‘’βˆ’ 𝑗2 πœ‹(𝑒 π‘₯0+𝑣 𝑦0 )

𝑓 π‘₯0 𝑦 0(π‘₯ , 𝑦 )= 𝑓 (π‘₯βˆ’π‘₯0 , π‘¦βˆ’ 𝑦0 ) is

Page 32: Signals and Systems Chapter  2

Properties of the Fourier Transform

Conjugation and Conjugate Symmetry

If F(u,v) is the FT of a signal f(x, y) then

𝐹 (𝑒 ,𝑣)=πΉβˆ—(βˆ’π‘’ ,βˆ’π‘£)

𝐹𝑅 (𝑒 ,𝑣)=𝐹𝑅(βˆ’π‘’ , βˆ’π‘£ ) 𝐹 𝐼 (𝑒 ,𝑣)=βˆ’πΉ 𝐼 (βˆ’π‘’ ,βˆ’π‘£)

¿𝐹 (𝑒 ,𝑣 )∨¿∨𝐹 (βˆ’π‘’ ,βˆ’π‘£ )∨¿

Page 33: Signals and Systems Chapter  2

Properties of the Fourier Transform

Scaling

If F(u,v) is the FT of a signal f(x, y) and if

𝑓 π‘Žπ‘ (π‘₯ , 𝑦 )= 𝑓 (π‘Žπ‘₯ ,𝑏𝑦 )

β„± 2𝐷 ( 𝑓 π‘Žπ‘ ) (𝑒 ,𝑣 )= 1

ΒΏπ‘Žπ‘βˆ¨ΒΏπΉ (π‘’π‘Ž ,𝑣𝑏 )ΒΏ

Example

Detectors of many medical imaging systems can be modeled as rect functions of different sizes and locations. Compute the FT of the following

𝑓 (π‘₯ , 𝑦 )=π‘Ÿπ‘’π‘π‘‘( π‘₯βˆ’π‘₯0

βˆ† π‘₯,π‘¦βˆ’ 𝑦0

βˆ† 𝑦 )

Page 34: Signals and Systems Chapter  2

Properties of the Fourier Transform

Rotation

If F(u,v) is the FT of a signal f(x, y) and if

𝑓 πœƒ (π‘₯ , 𝑦 )= 𝑓 (π‘₯π‘π‘œπ‘  πœƒβˆ’ π‘¦π‘ π‘–π‘›πœƒ ,π‘₯π‘ π‘–π‘›πœƒ+π‘¦π‘π‘œπ‘ πœƒ )

β„± 2𝐷 ( 𝑓 πœƒ ) (𝑒 ,𝑣 )=𝐹 (π‘’π‘π‘œπ‘ πœƒβˆ’π‘£ π‘ π‘–π‘›πœƒ ,π‘’π‘ π‘–π‘›πœƒ+𝑣 π‘π‘œπ‘ πœƒ )

If f(x, y) is rotated by an angle , then its FT is rotated by the same angle.

Page 35: Signals and Systems Chapter  2

Properties of the Fourier Transform

ConvolutionThe Fourier transform of the convolution f(x, y) * g(x, y) is

β„± 2𝐷 ( 𝑓 βˆ—π‘”) (𝑒 ,𝑣 )=𝐹 (𝑒 ,𝑣 )𝐺 (𝑒 ,𝑣 )

Example:

Convolution property simplify the difficult task of calculating the convolution in the spatial domain to multiplication in the frequency domain.

𝑓 (π‘₯ , 𝑦 )=𝑠𝑖𝑛𝑐 (π‘ˆπ‘₯ ,𝑉𝑦 ) 𝑔 (π‘₯ , 𝑦 )=𝑠𝑖𝑛𝑐 (𝑉π‘₯ ,π‘ˆπ‘¦ )Find Fourier transform of the convolution f(x, y) * g(x, y)

0 < V U

Page 36: Signals and Systems Chapter  2

Properties of the Fourier Transform

ProductThe Fourier transform of the product f(x, y) g(x, y) is the convolution of their Fourier transforms.

β„± 2𝐷 ( 𝑓 𝑔 ) (𝑒 ,𝑣 )=𝐹 (𝑒 ,𝑣 )βˆ—πΊ (𝑒 ,𝑣 )

Separable Product

If f(x, y)=f1(x)f2(y) then

where

ΒΏβˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝐺 (πœ‰ ,πœ‚ )𝐹 (π‘’βˆ’πœ‰ ,π‘£βˆ’πœ‚ )π‘‘πœ‰ π‘‘πœ‚

𝐹 1 (𝑒)=β„± 1𝐷 ( 𝑓 1 ) (𝑒 )

Page 37: Signals and Systems Chapter  2

Separability of the Fourier TransformThe Fourier transform F(u,v) of a 2-D signal f(x, y) can be calculated using two simpler 1-D Fourier transforms, as follows:

π‘Ÿ (𝑒 , 𝑦 )=βˆ«βˆ’βˆž

∞

𝑓 (π‘₯ , 𝑦 )π‘’βˆ’ 𝑗2 πœ‹π‘’π‘₯𝑑π‘₯ For every y.1)

𝐹 (𝑒 ,𝑣 )=βˆ«βˆ’βˆž

∞

π‘Ÿ (𝑒 , 𝑦 )π‘’βˆ’ 𝑗2 πœ‹π‘£ 𝑦𝑑𝑦 For every x.2)

Page 38: Signals and Systems Chapter  2
Page 39: Signals and Systems Chapter  2

Transfer FunctionThe system’s transfer function (frequency response) H(u, v) is the Fourier transform of the system’s PSF h(x,y).

𝐻 (𝑒 ,𝑣 )=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

h (π‘₯ , 𝑦 )π‘’βˆ’ 𝑗2 πœ‹(𝑒π‘₯+𝑣𝑦 )𝑑π‘₯ 𝑑𝑦

The inverse Fourier transform of the transfer function H(u, v) is the point spread function h(x,y).

h (π‘₯ , 𝑦 )=βˆ«βˆ’ ∞

∞

βˆ«βˆ’ ∞

∞

𝐻 (𝑒 ,𝑣 )π‘’βˆ’ 𝑗2 πœ‹(𝑒π‘₯+𝑣𝑦 )𝑑𝑒𝑑𝑣

The output G(u, v) of a system in response to input F(u, v) is the product of the input with the transfer function H(u, v) .

𝐺 (𝑒 ,𝑣 )=𝐻 (𝑒 ,𝑣 )𝐹 (𝑒 ,𝑣 )

Page 40: Signals and Systems Chapter  2

Transfer Function

Example: Consider an idealized system whose PSF is h(x,y) = (x-x0, y-y0). What is the transfer function H(u, v) of the system, and what is the system output g(x, y) to an input signal f(x, y).

Page 41: Signals and Systems Chapter  2

Low Pass Filter

𝐻 (𝑒 ,𝑣 )={ 1 ,     for  βˆšπ‘’2+𝑣2≀𝑐

0 ,             for  βˆšπ‘’2+𝑣2>𝑐

𝐺 (𝑒 ,𝑣)={𝐹 (𝑒 ,𝑣 )     for  βˆšπ‘’2+𝑣2≀𝑐

0 ,             for  βˆšπ‘’2+𝑣2>𝑐

c1 > c2

Page 42: Signals and Systems Chapter  2

Circular Symmetry

Often, the performance of a medical imaging system does not depend on the orientation of the patient with respect to the system. The independence arises from the circular symmetry of the PSF.

A 2-D signal f(x, y) is circularly symmetric if

fΞΈ(x, y) = f(x, y) for every ΞΈ.

Page 43: Signals and Systems Chapter  2

Property of Circular Symmetry

β€’ f(x, y) is even in both x and y

β€’ F(u, v) is even in both u and v

β€’ | F(u, v) | = F(u, v)

β€’ F(u, v) = 0

β€’ f(x, y) = f(r) where

β€’ F(u, v) = F(q) where

π‘Ÿ=√π‘₯2+𝑦2

π‘ž=βˆšπ‘’2+𝑣2

f(r) and F(q) are one dimensional signals representing two dimensional signals

Page 44: Signals and Systems Chapter  2

Hankel Transform

The relationship between f(r) and F(q) is determined by Hankel Transform.

𝐹 (π‘ž )=2πœ‹βˆ«0

∞

𝑓 (π‘Ÿ ) 𝐽 π‘œ (2πœ‹π‘žπ‘Ÿ )π‘Ÿπ‘‘π‘Ÿ

where J0(r) is the zero-order Bessel function of the first kind.

𝐽𝑛 (π‘Ÿ )= 1πœ‹βˆ«0

πœ‹

cos (π‘›πœ™βˆ’π‘Ÿπ‘ π‘–π‘›πœ™ ) π‘‘πœ™

𝐽 0 (π‘Ÿ )= 1πœ‹βˆ«0

πœ‹

cos (π‘Ÿπ‘ π‘–π‘›πœ™ )π‘‘πœ™

The nth-order Bessel function

for n = 0, 1, 2, …

𝐹 (π‘ž )=β„‹ { 𝑓 (π‘Ÿ )}

Page 45: Signals and Systems Chapter  2

Hankel Transform

The inverse Hankel transform.

𝑓 (π‘Ÿ )=2πœ‹βˆ«0

∞

𝐹 (π‘ž) 𝐽 π‘œ (2πœ‹π‘žπ‘Ÿ )π‘žπ‘‘π‘ž

unit disk jink function

Page 46: Signals and Systems Chapter  2

sinc and jink functions

ExampleIn some medical imaging systems, only spatial frequencies smaller than q0 can be imaged. What is the function having uniform spatial frequencies within the desk of radius q0 and what is its inverse Fourier transform.