short range correlations (hard nuclear processes) · 1. outstanding problems in src studies -...

64
Short Range Correlations (Hard Nuclear Processes)

Upload: dobao

Post on 20-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Short Range Correlations� (Hard Nuclear Processes)�

Page 2: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

3. Probing the deuteron at small distances�

4. Probing multi-nucleon SRCs in medium to heavy nuclei�

I. Short Range Correlation Studies�1. Outstanding Problems in SRC studies �

2. Choosing the probe reaction �

Page 3: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

3. Extracting J/Psi-N interaction near the threshold �

II. Hard Photodisintegration of few-body systems�1. Probing the mechanism of hard QCD hadronic interaction �

2. Probing Non-nucleonic degrees of freedom/hidden color�

Page 4: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

1. Outstanding Problems in SRC studies �

- Nuclear Forces at Short Distances: �NN repulsive core  

-  Direct Observation of the dominance of high momentum � protons in neutron rich heavy nuclei �

-  Direct Observation of 3N SRCs�

-  Non-Nucleonic Content of 2N SRCs�

Page 5: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Nuclear Forces at Short Distances: � NN repulsive core  

Jastrow 1951 assumed the existence of the hard core to explain the angular distribution of pp cross section at 340 MeV (r0=0.6fm)�

r0  =  0.4fm  

Stability Theorem: Nuclei will Collapse without �Repulsive interaction 1950s Weisskopf, Blatt �

Page 6: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

V 2N = V 2NEM

+ V 2N! + V 2N

R

V 2NR

= V c + V l2L2 + V tS12 + V lsL · S + vls2(L · S)2

V i = Vint,R + Vcore

Vcore =

!

1 + er!r0

a

"

!1

60’s  

Modern NN Potentials�

Page 7: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0.2 0.4 0.6 0.8

5000

10 000

15 000

Page 8: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance
Page 9: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Page 10: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0

V C(r) [MeV]

r [fm]

-50

0

50

100

0.0 0.5 1.0 1.5 2.0

1S03S1OPEP

Lattice Calculations�

Page 11: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0.2 0.4 0.6 0.8

5000

10 000

15 000

Pauli  Blocking  

Contradicts Neutron Star Observations: �will predict masses not more than 0.1 - 0.6 Solar mass �

QCD  

Page 12: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0.2 0.4 0.6 0.8

5000

10 000

15 000

Perturbative QCD �

Hidden Color�

Intrinsic strangeness/charm�

r  

Vc,  MeV  

~80%  hidden  color     Brodsky,Ji,  Lepage,  PRL  83  

Page 13: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Probing the Deuteron at Short Distances�

d = pn + �� + NN⇤ + hc · · ·

hc = Nc,Nc

The NN core can be due to the orthogonality of �

h Nc,Nc | N,N i = 0

Page 14: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

O.Hen  et  al  Phys.  ReV  .C  2014  

Page 15: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

10-4

10-3

10-2

10-1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1p , GeV/c

Deut

erum

wav

e fun

ction

fm3/2

10-4

10-3

10-2

10-1

1

10

10 2

10 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1p , GeV/c

n(p)

GeV

-3

Page 16: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Probing Polarized Structure of the Deuteron at x > 1 �

- Tensor Polarized Deuteron = Compact Deuteron �

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 4

0 50 100 150 200 250 300 350 400 450 500

pnt Mev/C

Gev-3

(l11+l1-1+l10)/3

(l11+l1-1-2l10)/3@ ParisBonn A

pnz=0

Fig.6

Page 17: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

for large k > kFermi nA(k) ⇡ aNN (A)nNN (k)

E.  Piasetzky,  MS,  L.  Frankfurt,        M.  Strikman,J.Watson  PRL  ,  2006  

TheoreTcal  analysis  of  BNL  Data  

Direct  Measurement  at  JLab   R.Subdei,  et  al    Science  ,  2008  

Missing Momentum [GeV/c]0.3 0.4 0.5 0.6

SRC P

air Fr

action

(%)

10

210

C(e,e’p) ] /212C(e,e’pp) /12pp/2N from [

C(e,e’p)12C(e,e’pn) /12np/2N from

C(p,2p)12C(p,2pn) /12np/2N from

C(e,e’pn) ] /212C(e,e’pp) /12pp/np from [

pn  

pp  

Factor of 20�

Expected 4�(Wigner counting)�

Ppn/px

= 0.92+0.08�0.18

-  Direct Observation of the dominance of high momentum � protons in neutron rich heavy nuclei �

p+A ! p+ p+ n+X

e+A ! e0 + p+ (p/n) +X

Page 18: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

�(1)(k1, · · · , kc, · · · ,�kc, · · · , kA) ⇡UNN (kc)

k2cFA(k1, · · ·0 · · ·0 , · · · , kA)

nA(k) ⇡ aNN (A)nNN (k)

VT

Vc

-150

-100

-50

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5r,fm

V, MeV

Theoretical Interpretation  

Page 19: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

   

   

   

VNN (r) � Vc(r) + Vt(r) · S12(r) + VLS · �L�S

S12 = 3(�1 · r̂)(�2 · r̂)� �1�2 S12|pp� = 0

S12|nn� = 0

S12|pn⇥ �= 0

Isospin  1  states  

Isospin  0  states  

S12|pn� = 0

3He

Explana'on  lies  in  the  dominance  of  the  tensor    part  in  the  NN    interac'on  

M.S,    Abrahamyan,  Frankfurt,Strikman  PRC,2005  

Page 20: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

   

   

   

VNN (r) � Vc(r) + Vt(r) · S12(r) + VLS · �L�S

S12 = 3(�1 · r̂)(�2 · r̂)� �1�2 S12|pp� = 0

S12|nn� = 0

S12|pn⇥ �= 0

Isospin  1  states  

Isospin  0  states  

S12|pn� = 0Sciavilla,  Wiringa,  Pieper,  Carlson    PRL,2007  

0 1 2 3 4 5q (fm-1)

10-1

100

101

102

103

104

105

l NN(q

,Q=0

) (fm

6 )

AV18/UIX 4HeAV6’ 4HeAV4’ 4HeAV18 2H

Explana'on  lies  in  the  dominance  of  the  tensor    part  in  the  NN    interac'on  

Page 21: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Dominance of pn short range correlations� as compared to pp and nn SRCS �-  Dominance of NN Tensor as compared � to the NN Central Forces at <= 1fm �

-  Two New Properties of High Momentum Component�

- Energetic Protons in Neutron Rich Nuclei �

2006-2008s�

Page 22: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

at p > kF

nA(p) ⇠ aNN (A) · nNN (p)

-- Dominance of pn Correlations � (neglecting pp and nn SRCs)  nNN (p) ⇡ npn(p) ⇡ n(d)(p)

(1)  

(2)  

a2(A) ⌘ aNN (A) ⇡ apn(A)

nA(p) ⇠ apn(A) · nd(p)

Page 23: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Define momentum distribution of proton & neutron  nA(p) =

Z

AnAp (p) +

A� Z

AnAn (p)RnAp/n(p)d

3p = 1

(3)  

- Define  Ip =

Z

A

600Z

kF

nAp (p)d

3p In =A� Z

A

600Z

kF

nAn (p)d

3p

- and observe that in the limit of no pp and nn SRCs  Ip = In

- Neglecting CM motion of SRCs   Z

AnAp (p) ⇡

A� Z

AnAn (p)

Page 24: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

First Property: Approximate Scaling Relation  

- for ⇠ kF � 600 MeV/c region:

xp · nAp (p) ⇡ xn · nA

n (p)

where xp = ZA and xn = A�Z

A .

-­‐if  contribuTons  by  pp  and  nn  SRCs  are  neglected  and    the  pn  SRC  is  assumed  at  rest     MS,arXiv:1210.3280  

Phys.  Rev.  C  2014  

Page 25: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Realistic 3He Wave Function: Faddeev Equation  

10-4

10-3

10-2

10-1

11010 210 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1p , GeV/c

x n(p)

, GeV

-3

00.20.40.60.8

11.21.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1p , GeV/c

Ratio

xpnp

xnnn

1/2 nd

.

MS,PRC  2014  

Page 26: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Be9 Variational Monte Carlo Calculation: � Robert Wiringa 2013  

0 1 2 3 4 5 6 7 8 9 1010-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

k (fm-1)

l(k)

9Be(c) - AV18/UIX

lp

ln

hap://www.phy.anl.gov/theory/research/momenta/  

Page 27: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0 2 4 6 8 1010-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

k (fm-1)

l(k)

10Be - AV18/UIX

lp

ln

B10 Variational Monte Carlo Calculation: � Robert Wiringa  

Page 28: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Second Property:  

xp · nAp (p) ⇡ xn · nA

n (p)

Using  DefiniTon:    

where y = |1� 2xp| = |xn � xp|- aNN (A, 0) corresponds to the probability of pn SRC in symmetric nuclei

- aNN (A, 1) = 0 according to our approximation of neglecting pp/nn SRCs

nA(p) =Z

AnAp (p) +

A� Z

AnAn (p)

ApproximaTons:     nA(p) ⇠ aNN (A) · nNN (p)

nNN (p) ⇡ npn(p) ⇡ n(d)(p)

One  Obtains:  ⇡ 1

2aNN (A, y)nd(p)

MS,arXiv:1210.3280  Phys.  Rev.  C  2014  

And:   Ip = In Ip + In = 2IN = apn(A)

600Z

0

nd(p)d3p

Page 29: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Second Property: Fractional Dependence of � High Momentum Component  

aNN (A, y) ⇡ aNN (A, 0) · f(y) with  f(0) = 1 and f(1) = 0

f(|xp

� x

n

|) = 1�nP

j=1b

i

|xp

� x

x

|i withnP

j=1b

i

= 0

In  the  limit    nP

j=1b

i

|xp

� x

x

|i ⌧ 1 Momentum  distribuTons    of  p  &  n  are  inverse    proporTonal  to  their  fracTons    

nA

p/n

(p) ⇡ 12xp/n

a2(A, y) · nd

(p)

xp/n = Z/NA

Page 30: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Observations: High Momentum Fractions  

Pp/n

(A, y) = 12xp/n

a2(A, y)1R

kF

nd

(p)d3p

 A        Pp(%)      Pn(%)  12            20            20  27            23            22  56            27            23  197        31            20  

O.  Hen,  M.S.  L.  Weinstein,  et.al.          Science,    2014  

Requires  dominance  of  pn  SRCs  in  heavy  neutron  reach  nuclei  

MS,arXiv:1210.3280  Phys.  Rev.  C  2014  

Page 31: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Is the total kinetic energy inversion possible?  

Checking for He3 �

Epkin = 14 MeV (p= 157 MeV/c)

Enkin = 19 MeV (p= 182 MeV/c)

Energetic Neutron �Energetic Neutron �(Neff & Horiuchi) �Ep

kin = 13.97 MeV

Enkin = 18.74 MeV

Page 32: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

VMC Estimates: Robert Wiringa  Table 1: Kinetic energies (in MeV) of proton and neutron

A y Epkin En

kin Epkin � En

kin8He 0.50 30.13 18.60 11.536He 0.33 27.66 19.06 8.609Li 0.33 31.39 24.91 6.483He 0.33 14.71 19.35 -4.643H 0.33 19.61 14.96 4.658Li 0.25 28.95 23.98 4.9710Be 0.2 30.20 25.95 4.257Li 0.14 26.88 24.54 2.349Be 0.11 29.82 27.09 2.7311B 0.09 33.40 31.75 1.65

MS,arXiv:1210.3280  Phys.  Rev.  C  2014  

Heavy Nuclei ?  

Page 33: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Three Nucleon Short Range Correlations: �

Factorization of 2N SRC distribution in nuclei�

0

3

6 3He

0

3

6 4He

(mA/A

)/(m D

/2)

0

3

6

0.8 1 1.2 1.4 1.6 1.8x

9Be

12C

63Cu

1 1.2 1.4 1.6 1.8 2x

197Au

Egiyan,  et  al  PRC  2004  Fomin  et  al    PRL  2011  

Page 34: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Three Nucleon Short Range Correlations: �

Subedi  et  al    Science  2006  

pm

rp 3r2p

pmr2p rp 3

q q(a) (b)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55pn(GeV/c)

cosa

5.9 GeV/c, 988.0 GeV/c, 989.0 GeV/c, 985.9 GeV/c, 947.5 GeV/c, 94

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

!cos -1.00 -0.98 -0.96 -0.94 -0.92 -0.90

Co

un

ts

0

10

20

30

40

!p

p

Tang    et  al    PRL  2002  

p+A ! p+ p+ n+X e+A ! e0 + pf + pb +X

Page 35: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Three Nucleon Short Range Correlations: �

Factorization of 3N SRC distribution in nuclei?�

Egiyan,  et  al  PRL  2006  Fomin  et  al    PRL  2011  

For 2 < x < 3 R ⇡ a3(A1)a3(A2)

0

1

2

3

4

5

1 1.5 2 2.5 3x

(mHe

4/4)/(m H

e3/3)

R(4He/3He)

CLASE02-019

Page 36: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

- Three Nucleon Short Range Correlations: � New Signatures of 3N SRCs�

r2pr2p

q q

rp

p

rp

p

3

3

mm(a) (b)

20406080100120140160180 200

400

600

10-5

10-4

10-3

10-2

10-1

11010 2

20406080100120140160180 200

400

600

10-4

10-3

10-2

10-1

1

10

D(p

i,ER

,pR

), G

eV-5

D(p

i,ER

,pR

), G

eV-5

Or, Deg.

Or, Deg.

E R, M

eV

E R, M

eV

2N-I

3N-I

3N-II

3N-I

2N-I3N-I

3N-II3N-I

(a)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400 450 500ER, MeV

pp/pn

Page 37: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

-  Non-Nucleonic Content of 2N SRCs�

- The relative momenta in the NN system which will be sensitive to the core dynamics can be estimated based on the threshold of inelastic N-Delta transition �

- No non-nuclonic component is observed for pn system up to 650 MeV/c�

pM2

N + p2 �MN > M� �MN

p � 800 MeV/c

Page 38: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

3. Deuteron > 800 MeV/c (core physics)�

4.Observation and systematic studies of 3N SRCs�

- Outstanding Problems in SRC studies�1. Deuteron 500 - 800 MeV/c �

2. Protons in neutron rich nuclei�

Page 39: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

2. Choosing the probe�

� +A ! Nf + ⇡ +Nr +X

� +Ni ! Nf + ⇡at fixed and large ✓cm ⇠ 90

0

d�dt ⇠ f(✓cm)

s7 for E� > 1 GeV

si = s0 · ↵i Reaction chooses ↵i < 1!

Frankfurt,  Liu,  Strikman,  Farrar  PRL  1989  

↵i =Ei�pz

iMN

-  External probe selects a bound nucleon � moving in the probes direction �

Page 40: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

� +A ! n+ ⇡+ +Nr +X

� +A ! p+ ⇡� +Nr +X

� +A ! p+ ⇡0 +Nr +X

Probing proton  

Probing neutron  

Probing proton  

Maria Patsyuk’s talk  

Page 41: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

3. Probing the Deuteron at Small Distances��

� �

⇡ ⇡

NN

N N

Page 42: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

3. Probing multi-nucleon SRCs in medium to heavy� nuclei��

Maria Patsyuk’s talk  

Page 43: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

II. Hard Photodisintegration of few-body systems�1. Probing the mechanism of hard QCD hadronic interaction �

N

N

N

N

qqq- g g g

-Can be Studied in Hard Exclusive NN Scattering Reactions

-Last Experiments were done at early 90’s at AGS, BNL

Page 44: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

N

N

N

N

q qqq- g g g

Page 45: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

s = (k! + pd)2 = 2MdE! + M2

d

t = (k! ! pN )2 = [cos!cm ! 1]s ! M2

d

2

E! = 2 GeV, s = 12 GeV2, t |900" !4 GeV2, Mx = 2 GeV

E! = 12 GeV, s = 41 GeV2, t |900" !18.7 GeV2, Mx = 4.4 GeV

Mx! N

ND

Brodsky, Chertock, 1976

Holt, 1990

Gilman, Gross, 2002

! D, 3He(pp, n)

N,�, ...R

N,�, ...R

(⇤)

Page 46: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

A

B

C

D

f(t

s)

1

s

A ! F (t

s)

1

snA+nB+nC+nD

2!2

d!

dt!

|A|2

s2= F

2(t

s)

1

snA+nB+nC+nD!2

Brodsky, Farrar 1975Matveev, Muradyan, Takhvelidze, 1975

1

s

additional

Page 47: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Exclusive large-momentum-transferscattering

•Dimensional counting rule:

)f( S st)2-n(N- A DCB nnn

CDABdtd +++=

∝σ

N = 1 + 6 + 3 + 3 – 2 = 11

) ( ) ( tt phighnphighpd +→γFor

Notice:

410 GeV/c) 4( / GeV/c) 1( ≈== γγ

σσ EdtdE

dtd

scaling

!d ! pn

Page 48: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0

5

1 0

1 5

2 0

0 1 2 3 4 5

x=0x=0.5x=1.0x=1.5x=2.0

i = Ea = Q2/2mx

W2 < m d2

17

13

86

66

52

50

NNN6

(GeV)

(GeV

2 )

Mx!N

ND

Gilman  &  Gross  2002  

Page 49: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

!

k + qpdp

p

p

p2

1

B

q

A

k 2

k 1

1

Mx

Mx

N

N

N

N

Mmax=w > 2 GeV

w !

!

2E!mN

E! ! 2.5 GeV

NN -amplitude

pQCD

Frankfurt,  Miller,  MS,  Striman  Phys.  Rev.  Lea.  2000  

Page 50: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance
Page 51: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

0.10.20.30.40.50.60.70.80.9

1

2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5Ea , GeV

s11dm

/dt (

kb-G

eV20

)

00.20.40.60.8

11.21.41.61.8

2

20 40 60 80 100 120 140Ocm , deg

dm/d1

cm(n

b/sr

)

a + d A p + n

a + d A p + n, Ea=2.4 GeV

10-3

10-2

10-1

1

10

0 20 40 60 80 100 120 140 160 180

�c.m.

s10d�/dt

pn ! pn

� + d ! p+ n

Page 52: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Break up of pn from the deuteron Break up of pp from Helium 3

d2p

n

p

n

p

n

p

p

He3

p

Brodsky,    Frankfurt,  Gilman,  Hiller,  Miller    Piasetzky,  M.S.,    Strikman  Phys.  Lea.  B  2004  

Frankfurt,Miller,M.S.  Strikman  Phys.  Lea.  Let.  2000  

Page 53: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Break up of pp from Helium 3�

p

n

p

p

He3

p

Page 54: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

pp

p

n

p

n

! s!13 ! s

!11

Page 55: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

(GeV)aE0 1 2 3 4 50.00

0.05

0.10 ,pp)naHe(3

c.m.°90

X 1/5

X 1/200

b.

)20/dt

(kb Ge

Vmd11 s

0.0

0.2

0.4

0.6

0.8

1.0MainzSLAC NE17SLAC NE8JLab E89-012This workQGSRNAHRM

,p)nad( c.m.°90

)2s (GeV4 6 8 10 12 14 16 18 20 22

a.

s11 d�dt

C.  Grandos,MS,  Phys.  Rev.  C  2009  

Page 56: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Photodisintegration of 3He:

56

� +3 He ! p+ d

D.  Maheswari,MS,  2017    Phys.  Rev.  C  in  press  

I.Pomerantz  ,  et  al        Phys.  Rev.  Lea.  2013  

Page 57: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

What’s Next:

1. Studying Hard Hadronic Processes

Break – up reactions to the deuteron break-up of other 2Baryons

Extraction of hard Baryonic Helicity Amplitudes from Polarized measurement

2. Probing or component of the nucleon

! D, 3He(pp, n)

N,�, ...R

N,�, ...R

(⇤)

� + d ! �+� M. S., and C.GranadosPhys. Rev. C 2011

(ss̄) (cc̄)

Page 58: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Studying cc component in the deuteron

� + d� p + �+c + D�c

d2

p

n

p

d2p

n

p

�+c �+

c

D�c

D�c

Intrinsic Produced

Page 59: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Outlook- (JLAB 4-6 GeV) : Experimentally established adequacy of QCD degrees of freedom in hard break-up of light nuclei - (JLAB 4-6 GeV) : Hard Rescattering Mechanism consistent with major observations of the break-up reaction

- (JLAB 12 GeV ) : Studying Hard Rescattering Mechanism of break up of light nuclei into baryonic resonances (including strangeness production)

Page 60: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

III. Extracting J/Psi-N interaction near the threshold �-Vector meson photoproduction can be used to extract VN scattering cross section �- Experience from coherent vector meson photoproduction� � + d ! V + d0

10-1

1

10

10 2

10 3

10 4

10 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4-t [GeV2]

dm/d

t [n

b/(G

eV)2 ]

Figure 2

10-1

1

10

-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0t (GeV2/c2)

dm/dt

[nb/(

GeV2 /c2 )]

�⇢N = 25mb

Page 61: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

III. Extracting J/Psi-N interaction near the threshold �

v

vv

vv

v

v

vv

v

v

vv

v

v

� + d ! J/ + p+ n Adam  Freese,  MS,  PRC  2013  

Page 62: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance
Page 63: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance

Outlook �

-  Vector Meson Production with deuteron break-up is an � effective tools for extracting VN scattering cross section�

Page 64: Short Range Correlations (Hard Nuclear Processes) · 1. Outstanding Problems in SRC studies - Nuclear Forces at Short Distances: NN repulsive core!- Direct Observation of the dominance