session 1 - fundamentals ad

Upload: enrique-rueda

Post on 01-Nov-2015

237 views

Category:

Documents


0 download

DESCRIPTION

Digestion anaerobia

TRANSCRIPT

  • Session 1

    Anaerobic digestion of sewage sludge

    Jaime L. Garca de las Heras

  • 2A - FUNDAMENTALS

  • 3The anaerobic process

  • 4The anaerobic process

    A complex system Simultaneous biochemical transformations by bacteria Set of chemical compounds degraded by different groups

    of microorganisms Reactants => Products / metabolites

    Substrates for other microorganisms Some of them are inhibitors

    => Pool of microorganisms living in their substrates

    A liquid environment where physico-chemical transformations occur physico-chemical variables affect the biochemical processes

  • 5Bacterial growth in a substrate

    Substrate

    Biomass

    Products

    GROWTH

    DECAY

    Substrate : S Biomass (bacterial population) : X

  • 6Insoluble organics

    Soluble organics

    CH4CO2

    Volatile acidsH2

    Hydrolysis

    Acid formation

    Methanogenesis

  • 7Stoichiometry

  • 8Mass balanceChemical reactions* (100% mass)

    Reactants => Products + Energyaerobic Glucose + O2 => CO2 + Energy anaerobicGlucose => Butirate + Propionate + Acetate + H2

    Mass distributionSubstrate depleted=> Biomass growth + Energy*

  • 9Aerobic processExternal electron acceptor (O2)

  • 10

    Anaerobic processNo external electron acceptor

    CH3CH2COOH => CH3COOH + H2

    Electrons

    Scheme chemical reaction Process

    Electron acceptor

    H+ in VFA H+ + e- ==> H2

    +1 0 Anaerobic oxidation of VFA

    Electron donor

    C in VFA and LCFA C ==> CH3COOH + e-

    -2n/(2+n) 0 Anaerobic oxidation of VFA

  • 11

    Oxidation state of Carbon

    Entalpy of reactionRespiration quotientEnergy produced/Oxigen consumedTheoretical CODCOD/VS ratioSpecific methane potentialMethane content (%) in biogas

  • 12

    Estados de oxidacin (1) El estado de oxidacin (EO) de un elemento en un compuesto se mide

    mediante el n de valencia o n de oxidacin (NO): NO: n de electrones ganados por el elemento (elemento se reduce: EO

    negativo) o perdidos (elemento se oxida: EO positivo) al pasar a formar parte del compuesto /Babor pg 456/

    En compuestos hidrogenados el EO del H es+1. En compuestos oxigenados el EO del O es -2

    N => NH3 N + 3 e- => N-3 , EON = -3N => NO3 N => N+5 + 5 e- EON = +5

    En los compuestos orgnicos ... el EO de los elementos es fijo, salvo para el C H+1,, O-2,, N-3,, P+5

    Conocidos los EO de los elementos del compuesto, el estado de oxidacin del C se obtiene por restaPropionato C3H6O2 ,, EOC = - (6*1 2*2)/3 = - 2/3

  • 13

    Estados de oxidacin (2)

    Theoretical Oxigen Demand (ThOD) es similar pero en peso de Oxgeno.

    Ejemplo: Hidrgeno

    Oxidado H0 => H+ + 1 e-Oxidante O 0 + 2 e- => O -2--------------------------------------

    2 H0 + O 0 => H2O

    Cada electrn cedido equivale a 8 g de ThOD demandados

    ThOD del H0 = +8 g de ThOD / mol H

  • 14

    Theoretical Oxigen Demand

    /Ref ASM3 IWA 2000/

    Element or charge Z State of reference Equivalent ThOD C Carbon CO2 + 32 g ThOD (mol C) -1 H Hydrogen H2O +8 g ThOD (mol H) -1 O Oxygen O2 -16 g ThOD (mol O) -1 N Nitrogen NH4+ -24 g ThOD (mol N) -1 P Phosphorous PO43- +40 g ThOD (mol P) -1 - Negative charge Zero charge +8 g ThOD (mol (-)) -1 + Positive charge Zero charge -8 g ThOD (mol (+)) -1

    H2O

    S Sulfur SO4-2 +48 g ThOD/mol S

  • 15

    Calculation of Chemical Oxygen Demand ratio (1)ThOD/VS

    ThODcompuesto = (Mi ThODi)

    Mi moles del elemento i en el compuestoThOD i ThOD del elemento i MW Peso molecular del compuesto

    COD/VS = ThODcompuesto/MW

  • Exercise

    Calculation of Chemical Oxygen Demand ratio(ThOD/VS) for Glucose (C6H12O6)

    16

  • 17

    Calculation of Chemical Oxygen Demand ratio (2)COD/VS

  • 18

    Calculation of Chemical Oxygen Demand ratio (3)COD/VS

    CnHaOb + (...)O2 => (...)CO2 + (...) H2OCOD/VS = 8 (4n+a-2b) / (12n+a+16b)

    CnHaObNd + (...)O2 => (...)CO2 + (...) H2OCOD/VS = 8 (4n+a-2b-3d) / (12n+a+16b+14d)

    Cn Ha Ob Nd + x H2O => y CH4 + z CO2 + d NO3

  • 19

    Calculation of Specific Biological Methane Potential (1) Theoretical BMP (Nl CH4/ gVS)

    /Buswell/

    a + 2x = 4yb + x = 2zn = y + z

    Cn Ha Ob + x H2O => y CH4 + z CO2

  • 20

    Calculation of Specific Biological Methane Potential (2) Theoretical BMP

    CnHaObNd + [n-(a/4)-(b/2)+(3d/4)] H2O =>=> [n+(a/4)-(b/2)-(3d/4)]/2 CH4 + [n-(a/4)+(b/2)+(3d/4)]/2 CO2

    %CH4 = 100 {[n+(a/4)-(b/2)-(3d/4)]/2 }/n

    %CO2 = 100 {[n-(a/4)+(b/2)+(3d/4)]/2 }/n

    /Buswell/

    Cn Ha Ob Nd + x H2O => y CH4 + z CO2 + d NH4

  • 21

    Stoichiometric 0.35 Nm3CH4 / kg CODremoved

    Buswell

    C oxidation stateThODCH4 = 132 + 48 = 64 gCOD/molCH41 mol 22,4 liters of gas22,4 l gas / 64 g = 0,35 l CH4/g CODremoved

  • 22

    CnHaObNd

    Specific Biological Methane PotentialTh SBMP (Nl CH4/g VSrem) = 0.35COD/VS*

    %CH4 Buswell => 100 {[n+(a/4)-(b/2)-(3d/4)]/2 }/ n

    from ThOD* =>COD/VS MW/64 1/n 100 ??

    Exercise

  • 23

  • 24

    Name Sugars Amnoacids LCFatty acidsFormula C6H12O6 C4H6.1O1.2N

    x C16O2H32COD / VS 1,07 1,53 2,88C ox. st. 0,00 -0,18 -1,75ThSBMP 0.37 0.53 1.01

    Nm3/kg VS

    =0.35 COD/VS

  • 25

    Calculation of biogas potential %CH4

  • 26

    More oxidation degree (state) Less COD

    y = -1,064x + 1,1867R2 = 0,8996-2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

    COD / VS

    C

    o

    x

    i

    d

    a

    t

    i

    o

    n

    s

    t

    a

    t

    e

    Carbohidrates

    Proteins

    Fats

  • 27

    Mayor grado (estado) de oxidacin del C Less methane content in biogas

    Porcentaje de metano en el biogas

    Sugars

    Acetate

    Carbohydrates

    Biomass

    Proteins/Aminoacids

    PropionateWaste*

    ButyrateValerate

    Lipids

    Fatty Acids

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -2 -1.5 -1 -0.5 0

    Estado de Oxidacin del Carbono

    %

    C

    H

    4

  • 28

    % CH4 en el biogs vs relacin DQO/SV

    Porcentaje de metano en el biogas

    F

    a

    t

    t

    y

    A

    c

    i

    d

    s

    L

    i

    p

    i

    d

    s

    V

    a

    l

    e

    r

    a

    t

    e

    B

    u

    t

    y

    r

    a

    t

    e

    W

    a

    s

    t

    e

    *

    P

    r

    o

    p

    i

    o

    n

    a

    t

    e

    P

    r

    o

    t

    e

    i

    n

    s

    /

    A

    m

    i

    n

    o

    a

    c

    i

    d

    s

    B

    i

    o

    m

    a

    s

    s

    C

    a

    r

    b

    o

    h

    y

    d

    r

    a

    t

    e

    s

    A

    c

    e

    t

    a

    t

    e

    S

    u

    g

    a

    r

    s

    0

    10

    20

    30

    40

    50

    60

    70

    80

    1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

    ThOD/SV

    %

    C

    H

    4

  • Produccin de metano vs relacin DQO/SV

    29

  • 30

    Reaction kinetics

  • 31

    Kinetic expressions

    Disintegration First order in Xcomposites Hydrolysys First order in particulate polymers The others:

    Km Monod Activation Inhibition Xbiomass Monod: S/(Ks+S) Activation: So/(Ko+So) Inhibition: Ki/(Ki+Si)

    (Valerate, butirate Km Monod Competition)

    Decay First order in Biomass

  • 32

    Factors affecting kinetics

    Temperature pH Inhibition

  • 33

    experimental

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 10 20 30 40 50

    Temperature ( C)

    (

    r

    a

    t

    T

    )

    /

    (

    O

    p

    t

    i

    m

    u

    m

    r

    )

  • 34

    Influence of Temperature on Km, Ks, Kdecay

    /van Lier 1997/

  • 35

    Arrhenius + decrease

    )TT(Krr opopT = for TTop (2.22)

    )TT(CoT oerr

    =

    Tmax: Temperature at which there is no microbial growth Top: Temperature of optimum growth K: Coefficient rop: Optimum reaction rate (at Top)

    Traditional Arrhenius

    rT mesfila (To=308)rT=rTo*e**C(T-T0)

    0

    2

    4

    6

    8

    10

    0 10 20 30 40 50

    T-273

    r

    T

    rT vs T (TTop)

  • 36

    20 25 30 35 40 45 50 55 60 65 70

    Temperatura (C)

    k

    m

    (

    T

    )

    k m (35C)

    k m (55C)

    22 )15.328(01.0)C55(

    )15.308(01.0)C35( )(

    += TmTmm ekekTk

    (van Lier et al., 1997)

  • 37

    Influence of pH

    Factor to correct reaction rate

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    5 5,5 6 6,5 7 7,5 8 8,5 9

    pHUL = 7,5pHLL = 6,5

    )pHpH()pHpH(

    )pHpH(5.0

    LLUL

    ULLL

    101011021I

    +++=

  • 38

    Influence of inhibition

    Non Competitive - Constant concentration of Inhibitor

    Substrate concentration

    Spec

    ific

    grow

    th r

    ate

    ( )

    Inhibitor concentration = I1)

    KI1()

    SK

    1(

    1

    is

    max++

    =

  • 39

    22,

    22

    ooA

    oo SK

    SA += Activacin por oxgeno

    44,

    44

    nhnhA

    nhnh SK

    SA += Activacin por nitrgeno inorgnico

    44,

    44

    hpohpoA

    hpohpo SK

    SA += Activacin por fsforo inorgnico

    22,

    22

    cocoA

    coco SK

    SA += Activacin por carbono inorgnico

  • 40

    22,

    2,2

    ooI

    oIo SK

    KI += Inhibicin por oxgeno

    2,2,

    ,2,,2

    hfahI

    fahIfah SK

    KI += Inhibicin por hidrgeno de la acetognesis de los cidos grasos

    24,2,

    4,2,4,2

    hchI

    chIch SK

    KI += Inhibicin por hidrgeno de la acetognesis de los cidos valrico y butrico

    2,2,

    ,2,,2

    hprohI

    prohIproh SK

    KI += Inhibicin por hidrgeno de la acetognesis del cido propinico

    33,

    3,3

    nhnhI

    nhInh SK

    KI += Inhibicin por amoniaco

    22,,

    2,,

    ,++

    =haahI

    aahIaapH SK

    KI Inhibicin por pH de las transformaciones

    de acidognesis y acetognesis

    22,,

    2,,

    ,++

    =hachI

    achIacpH SK

    KI Inhibicin por pH de la metanognesis

    acetoclstica

    222,,

    22,,

    2,++

    =hhhI

    hhIhpH SK

    KI Inhibicin por pH de la metanognesis

    hidrogenfila

  • 41

    Physicochemical processes

  • 42

    Gas absorption/desorption.Acid/Base

    Precipitation

  • 43

    Importance

    The acid-base systems Buffer capacity => process stability Inhibition due to

    pH (prediction of H+) free form of acids (VFA) = f(pH) soluble gas in liquid phase: soluble free NH3 = f(pH)

    Transfer from gas state to liquid state Gas flow (CO2) Partial Alkalinity (HCO3)

  • 44

    Most common acid / base pairs in A.D.

    Acid Base + H+

    CO2 HCO3- + H+NH4 NH3 + H+HAc Ac- + H+HPro Pro- + H+HBu Bu- + H+HVa Va- + H+

  • 45

    Acidity constant

    Three main acid-base pairs (buffer systems) NH4+ / NH3 pKa = 9.3 CO2 / HCO3- pKa = 6.3 HVFA / VFA- pKa = 4.8

    (SCO2 liq >> SH2CO3)

  • Algebraic expressions as a function of pH

    Ka = Sbase SH+ / Sacid

    Sacid + Sbase = Stotal __________________________________

    Sacid = Stotal SH+ / (Ka + SH+)

    Sbase = Stotal Ka / (Ka + SH+)

    46

    Acid Base + H+

    CO2 HCO3- + H+ NH4 NH3 + H+ HAc Ac- + H+ HPro Pro- + H+ HBu Bu- + H+ HVa Va- + H+

  • 47

    % NH3 & % NH4 VS pH

    0

    20

    40

    60

    80

    100

    6 6,5 7 7,5 8 8,5 9 9,5

    pH

    %

    % NH3 % NH4

  • 48

    % HCO3 & % CO2 VS pH

    0

    20

    40

    60

    80

    100

    4 4,5 5 5,5 6 6,5 7 7,5 8

    pH

    %

    %HCO3 %CO2

  • 49

    % ac - & % HAC VS pH

    0

    20

    40

    60

    80

    100

    3 3,5 4 4,5 5 5,5 6 6,5 7

    pH

    %

    % ac - HAC

  • 50

    0

    20

    40

    60

    80

    100

    6 6,5 7 7,5 8 8,5 9 9,5

    %

    pH

    % NH3 & % NH4 VS pH

    % NH3 % NH4% HCO3 & % CO2 VS pH

    0

    20

    40

    60

    80

    100

    4 4,5 5 5,5 6 6,5 7 7,5 8

    pH

    %

    %HCO3 %CO2

    % ac - & % HAC VS pH

    0

    20

    40

    60

    80

    100

    3 3,5 4 4,5 5 5,5 6 6,5 7

    pH

    %

    % ac - HAC

  • 51

    Acid/Base dynamic equilibrium

    NH4 + NH3 + H+

    dSNH4+/dt=R2-R1 R1=K1SNH4+ R2=K2SNH3SH

    R1

    R2

  • 52

    Liquid to Gas transfer

    If dilute soluble gas concentration (Sliq,i), Henry law applies for equilibrium

    Liquid => gas transfer : two film theory

    : Specific mass transfer rate of gas i (Kg or Kmole/m3d) KLa = (D/d) * (A/V) :Volumetric mass transfer coefficient (d-1)

    Overall mass transfer coefficient (D/d) Specific transfer area (A/V)

    Sliq,i : Soluble gas i concentration in the bulk liquid KH : Henry constant (Mbar-1) pgas,i : Partial pressure of gas i

    GAS ) pK - a(Sk igas,Hiliq,LiT, =

    LIQUID

    GASiT,

  • 53

    B REACTOR DESING

  • TYPE OF REACTORS

    54

  • 55

    Reactor types

    CSTR Batch

    Plug flow Contact

  • Completely (Continuous) Stirred Tank Reactor - CSTR Contact Reactor

    Continuous Complete mix

    Concentration change instantly Uniform concentration

    56

  • Anaerobic Filter Upflow sludge reactor

    57

  • Upflow Anaerobic Sludge Bed Reactor - UASB Anaerobic Hybrid Reactor

    58

  • CSTR Anaerobic Digester

    59

  • 60

    DESING CRITERIA

  • 61

    NomenclatureHRT Hydraulic retention time Tiempo de retencin hidrulico Volumetric loading HRT = VR/Q0 (days) OLR BV,COD Organic loading rate Carga orgnica volumtrica Velocidad de carga orgnica Organic loading Organic volumetric loading OLR = Q0S0/VR (Kg Substrate/m3day)

    Qo: Influent flow rate (m3/d) So: Influent substrate concentration

    (kgS/m3) VR: Reactor volume (m3) XBH: Biomass concentration

    (kgBH/m3)

  • 62

    Nomenclature F/M BX,COD Food to microorganism ratio Carga msica (fangos activos) Sludge loading F/M = Q0S0/VRXBH (Kg Substrate/Kg Biomassday) SRT Sludge retention time Cell retention time Tiempo de retencin celular Sludge age SRT = VRXBH/QwXBw (days)

    Qo: Influent flow rate (m3/d) So: Influent substrate concentration

    (kgS/m3) VR: Reactor volume (m3) XBH: Biomass concentration

    (kgBH/m3)

  • 63

    Relationships

    OLR (ds/dt)utilizatoin

    FM K = Km S/(ks+S)

  • 64

    Desing criteria for CSTR

    HRT criteria

    HRTdesign = VR/Qo Qo

  • 65

    Insoluble organics

    Soluble organics

    CH4CO2

    Volatile acidsH2

    Hydrolysis

    Acid formation

    Methanogenesis

    Simple model

    K1

    K2

    K3

  • 66

    A) Hydrolysis as limiting step

    if K1 Efficiency hydrolysis = f(HRT)=> Total methanification of solubilized matter

    Mass balance in Xc:Xc = Xco/(K1 HRT + 1)Efficiency = K1 HRT / (K1 HRT + 1)HRT = f(efficiency )

  • 67

    B) Bacterial wash-out at low HRT

    and HRT < HRTcritical=> Bacterial wash-out

    Mass balance in XBH:HRTcritical = 1/(m Kdecay)

  • 68

    C REACTOR OPERATION

  • 69

    Performance parameters

    Organic matter removal

    Solubilization efficiency Removal of particulate organic matter (%)

    VSS Particulate COD

    (Total) Organic matter removal efficiency (%) VS Total COD (COD)*

    Methanification* = %COD transformed in CH4 Specific Methane production

    Nm3/kg VS fed (related to OM removal efficiency) Stoichiometry Nm3CH4/kg COD removed

    (Acidification = CH4 + VFA produced in %)

  • 70

    Performance parameters

    Effluent quality

    Dissolved COD VFA Soluble hydrolized organics (su, aa, lcfa)

    (Dissolved TOC) Ammonia Phosphorous

  • 71

    Performance ratios

    COD/VS ratio %CH4 in the biogas

    Alkalilnity AI/AP,, AI/AT

    Carbon oxidation stateBuswelCOD-SV.ppt

    Acid/base systems Buffer capacity

  • 72

    Parameters of digester stability

    Parameters of stability

    Acetate Propionate VFA Intermediate Alcalinity Partial Alcalinity AI/AT AI/AP.................. %CH4 pH

    Early warningparameters

  • 73

    Total Alk

    Volatile acids

    %CH4

    pH

    VFA/Total alkalinity

    %CO2

    ppm CO ??

    ppm H2

  • 74