seong hee park - indico.korea.ac.kr · fundamental level. lhc, ilc, photon collider major driving...

80
2018. 07. 02 Seong Hee Park KUASS 2018

Upload: others

Post on 18-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

2018. 07. 02

Seong Hee Park

KUASS 2018

Page 2: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Contents

1. Historical review

2. Types of Accelerators

3. Applications of Accelerators

4. Accelerators in Korea

Page 3: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Why Accelerators?

Particle accelerators are devices producing beams of energetic particles, such as, ions, protons, neutrons, electrons, positrons, molecules, ...

Accelerators represent a fundamental tool in science & technology

Electron Microscopy • Resolution Wavelength of the radiation or particles. • Shorter wavelength is required for better, higher resolution.

Optical microscope – the wavelength of light (the radiation)

Resolving smaller objects requires higher momentum particles

Particle microscope – de Broglie wavelength

p

h= h = 4.1×10−15 eVs (Planck’s constant)

p : momentum of a particlede Broglie wavelength

Quarks or leptons can be sensed by high-energy particles!Higher energy and smaller particles can sense more precisely!

Page 4: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Why Accelerators?

Ex. 2. Calculate de Broglie wavelength of an electron with a 1 GeV/c

momentum.

Ex. 1. Compare the wavelength between an electron with a 1 keV/c

momentum and a photon with a 1 keV energy.

p = 1 keV/c electron – = h/p ~ 3.88 x 10-11 m

E = 1 keV photon – = hc/E ~ 1.23x10-9 m

hcEph =ref.

= 1.24 x10-15 m

Energy of Photon :

Energy of Relativistic Particle : TcmcmEptl +== 2

0

2

02

0cmpptl =

This implies electron microscopes have ~ 32 times better resolution than X-rays

Size : nucleus ~10-14 m; protons ~ 10-15 m; quarks ~ 10-18 m.

1 GeV electron can sense nucleus Higher energy is needed for quarks.

Page 5: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Why Accelerators?

In the Special Relativity theory, Einstein provedthe Equivalence between Mass and Energy:

Particles from accelerators, colliding one another counter-propagating or colliding with particles in a fixed target, can create such a situation.

2

0cmE =

It means that a particle with mass m0 can be generated if its equivalent energy is concentrated in a point.

Particle

Particle

Detector

Particle

Detector

Target

2

0 cEm =

Particle Colliders may recreate the situation of the universe in its first moment just after the Big Bang.

From CERN web site

LHC

ALICE

ATLASLHCb

CMS

SPS

How Universe was created? Where we came from?

Page 6: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

How to Accelerate Particles?

Charged particles : Electric fields : DC or RF

Neutral particles : Spallation or scattering

Cathode AnodeE

- --

-- -

HVVDC

RF

Page 7: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Types of Accelerators

✓ DC Accelerators• Crockroft Walton, Van de Graaff generator, Tandem

✓ Quasi-DC Accelerators• IBA Dynamitron

✓ RF Accelerators• Wiederoe linac/Alvarez linac• RFQ• Re-entrant RF cavity• RF pillbox cavity• RF ellipse cavity with nose cones ….

✓ Circular Accelerators• Microtron• Rhodotron• Cyclotron• Synchrotron….

✓ Novel Accelerators using Laser

Page 8: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Cathode Ray Tubes

Late 1800s

Multiple Gaps

Cockcroft-Walton (1920)Time Varying Fields linear accelerators

Ising (1924) and Wideroe (1928)

Cyclotron

Lawrence (1930)

Van de Graff

Graff (1930)

Alvarez Linac

Alvarez (1946)

Synchrotron

Oliphant (1943)

Synchrocyclotron

McMillan & Veksler (1944)

Strong Focusing

Courant and Snyder (1952)

Electrostatic Field Based

Time Varying Field (RF) Based

Laser Acceleration

Dawson and Tajima (1979)

1900

1910

1920

1930

1940

1950

1960

1970

1980

Betatron

Kerst (1940)

Non RF high gradient

** Laser-plasma accelerators ready

for applications

Historical Timeline

Page 9: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Livingston Curve

Page 10: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Livingston Curve

Page 11: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

DC Accelerators

Cockcroft-Walton accelerator (BNL) , < 1MV

Cavendish Lab. in Cambridge

Electrostatic Field Based

H + Li → 2 He : 1st Nuclear Transformation

Page 12: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

DC Accelerators

Electrostatic Field Based

Van de Graaff Accelerator Operated at 2.75 MV at MIT

~4.6 m dia.

~1.8 m dia.

+ +- -

Motor driven pulley

Belt of insulating material

Pulley

Glass rod

supporting sphere

Hollow Metal Sphere

Charged through the needle

Diagram of First Generator

Page 13: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

DC Accelerators

Electrostatic Field Based

Tandem Van de Graaff Accelerator,1~25 MV, Daresbury, UK

The potential in clouds just before they are discharged by lightning is about 200 MV.

Page 14: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Mechanism of DC Accelerators

The Simplest Scheme

1. Connecting several accelerating structures in succession, each is charged by HV PS.

HVVqW −=

Energy gain

Cathode Anode

HVV

E

- --

-- -

with high voltage power supply,VHV ~ 10 kV max.

10 kV 10 kV 10 kV 10 kV

2. Charging up several high voltage capacitors & discharging those capacitors all in series

Cockcroft – Walton Accelerator ( up to a few MeV)

3. Deposit charge on a moving belt that carries the charge to a large sphere

Van de Graaft (~ 10 MeV : Limited by size & expense)

Mechanical Energy → Electric Potential Energy

Page 15: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

AC, RF Accelerators

Time Varying Field (RF) Based

Wideroe’s accelerator – DTL (Drift Tube Linac)

D D D D DA A A A A

Drift tubes: to shield the particle being accelerated from the reversed electric field during an anti-peak preventing it from being decelerated.

D : Drift tube

Page 16: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

RF Accelerators

Time Varying Field (RF) Based

Alvarez Linac – DTL – 1st practical linac – 32 MeV at Berkeley

By loading the cylindrical structure by disks, vP can be reduced down to match the speed of the particle for an efficient acceleration

KEK

Pillbox-like Cavities – Disk-loaded structure

Original CERN linac, 1958

Page 17: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Mechanism of RF Accelerators

Synchronism:

PARTICLEv

PvTW:

t

Ez

SW:

( ) ( )tErE C

TM

z cos0 0

010 ==

particle

RF

particle

RF

sKIN

v

vPRqE

4

4sin

0

=

Transit time factor

ssKIN eLPrqE cos1 2

0

−−=

ssKIN

eLPrqE

cos1

20

−−=

constant Impedance

constant Gradient

2 RFL

=For a cavity with the length

Page 18: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Circular Accelerators

Time Varying Field (RF) Based

Ernest Lawrence. 1928 - Cyclotron

Lorentz Force = Centripetal Force

Veksler, 1944 - Microtron

Synchronicity condition(energy gain per turn)

B

magnet

RFcavity

magneticshield

Electronsource

qvBr

vm=

2

0

0m

qB

r

v

==

5 ,

4 ,

3 ,

2 , 0000

0

=

𝑭 = 𝑞𝒗 × 𝑩 =𝑚𝑣2

𝑅ො𝒓

Page 19: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Circular Accelerators

Time Varying Field (RF) Based

Synchrotron

Discovery of Synchrotron radiation in 1946

RF cavity

•It is possible to modify the principle of a cyclotron by replace the electrodesby a much smaller RF cavity.

•The magnetic field is then usually made by smaller magnets:

𝒑 = 𝒆 ∙ 𝑩 ∙ 𝝆

𝑐 = 𝑓𝑅𝐹 ∙ 𝜆𝑅𝐹

𝐶0 = ℎ ∙ 𝜆𝑅𝐹

: 𝑝[𝐺𝑒𝑉/𝑐] = 0.3𝐵[𝑇]𝜌[𝑚]

Page 20: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

From DC to AC, and High Frequency RF

In actual accelerators we often deal with a single frequency:

Electrostatic Accelerators

Induction, Betatrons

Radio Frequency (RF) accelerators

Laser-plasma accelerator

Present dominant technology

L-band ~ 1.3 GHz, S-band ~ 3 GHz, C-band ~ 5 GHz, X-band ~ 11GHz, ….

𝐸 = 𝐸0𝑒𝑖 𝜔𝑡−𝑘𝑠

𝜔

2𝜋≈ 0

𝜔

2𝜋≈ 10~103 Hz

𝜔

2𝜋≈ 106~1011 Hz

𝜔

2𝜋≈ 1012~1018 Hz

Page 21: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Energy = acceleration field strength x channel length

Current ~ input power x efficiency

Conventional RF acceleration

Laser - Plasma acceleration

Acceleration by a RF field in an acceleration tube

Acceleration field strength limited by a vacuum discharge: < 100 MV/m

Long channel (km) and high input power (GW)

Acceleration by ES field formed in a plasma due to space charge

separation induced by a laser field

Acceleration field: ~100 GV/m

Channel length limited by a sheath length (μm)

Low input power (100 W)

Low current, But, COMPACT & Ultrashort pulse

Laser-Plasma Acceleration vs RF Acceleration

Page 22: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Mechanism of Laser-plasma accelerator: Electron

10

-10

0

-20 -10 100

0

-1

1

Ex

[arb

. u

nit

]

y[m

m]

x-ct [mm]

Laser PulseTrapped Electron

Electron

Plasma

Laser

Controlled injectionionization injectiondensity gradient injection colliding pulse injection

Page 23: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Mechanism of Laser-plasma accelerator: Electron

Page 24: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Courtesy by Kitae Lee at KAERI

Pre-pulse(contrast ratio: 10-5~-6: >1012W/cm2)

Generation of preplasmaionization: multiphoton, tunneling, collisional

Interaction of main pulse with preplasma (>1018W/cm2)

Ponderomotive acceleration of electrons

Charge separation → ES field

1 Acceleration of ions at front side

Transport of hot electrons

Formation of Debye sheath

Strong ES field

2 Ionization and Acceleration of ions at rear side

Solid (foil target)

< 50mmContamination layer

(water, oil vapor, hydrocarbon)

Proton X-Vx phase space

Forward from front

Backward from front

Forward from rear

P. Mora, PRL 90, 185002 (2003)

Mechanism of Laser-plasma accelerator: Ions

Page 25: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Laser Ionizations

IonElon

[eV]

IApp

[W/cm2]

H+ 13.6 1.4×1014

He+ 24.6 1.5×1015

He2+ 54.4 8.8×1015

N+ 14.5 1.8×1014

N2+ 29.6 7.7×1014

N3+ 47.4 2.3×1015

N4+ 77.5 9.0×1015

N5+ 97.9 1.5×1016

N6+ 552.1 1.0×1019

N7+ 667.0 1.6×1019

Atomic potential with laser field IonElon

[eV]

IApp

[W/cm2]

Al+ 6.0 5.1×1012

Al2+ 18.8 1.3×1014

Al3+ 28.4 2.9×1014

Al4+ 120.0 5.2×1016

Al5+ 153.7 8.9×1016

Al6+ 190.5 1.5×1017

Al7+ 241.4 2.8×1017

Al8+ 284.6 4.1×1017

Al9+ 330.2 5.9×1017

Al10+ 398.6 1.0×1018

Al11+ 442.1 1.3×1018

Al12+ 2086.0 5.3×1020

Al13+ 2304.1 6.7×1020

𝐼𝐴𝑝𝑝[W/cm2] = 4 × 109𝐸𝑖𝑜𝑛4 [eV]

𝑍2

Page 26: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator technologies

✓ Power Sources for Accelerators• High voltage Modulator• RF high power sources

✓ Accelerating structures• NC cavity/ SC cavity, RFQ, DTL, ....

✓ Injection/Extraction• Kicker, Septum, Switching, Transfer beamline

✓ Charged Particle sources• Thermionic/Photocathode gun, ion sources, LWFA

✓Magnets• Permanent magnets, NC EM magnets, SC EM magnet

✓ Beam diagnostics• Fast, high SNR, broad dynamic range

✓ Cooling Systems• Cryogenic system and related components

✓ Control system

✓ More Compact✓ Higher Efficiency✓ Higher Quality✓ Tunability✓ Easy Controllable✓ Robust

Electrons : v/c = 0.55

Protons : v/c= 0.015

Au1+ : v/c= 0.001

Page 27: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

R&Ds in Europe : From EuCARD-2 to ARIES

✓ New proposal for the call H2020 INFRAIA-01-2016-2017 in 2016

✓ Requested : total budget 24.8 M€, 10 M€ EC (42% funding rate).

✓ 18 Workpackages (MGT, 7 Network Activities, 5 Transnational Access ,5 Joint Researches).

✓ 42 partners from 18 EU countries (+CERN & ESS); coordination by CERN.

Accelerator

Research and

Innovation for

European

Science & Society

European

Coordinated

Accelerator

Research and

Development – 2

✓ >300 participants ✓ 40 beneficiaries (Laboratories, Universities &

Industries) from 12 Europe (+ CERN & Russia)✓ 4 years duration (01.05.2013 - 30.04.2017)✓ 13 Workpackages : advanced accelerator R&Ds✓ Producing 62 Deliverables and 86 Milestones✓ 23.5 M€ total cost, 8 M€ EC contribution (1/3)

http://eucard2.web.cern.ch/

Page 28: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator technologies

Controls & Operation, maintanence Electronic Devices

BNCT

PAL-XFEL LinacRF Klystron/Moduator

ATLAS detector

Page 29: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator technologies

Undulator Sextupole & Dipole

Cryomodule

RF Cavities

Cryogenic Test

Page 30: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator technologies

RF gun RF cavity & Coupler ANSYS

CST

RF cold test (Network analyzer)

LaB6 Cathode

Page 31: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

ref. https://www.researchgate.net/publication/259875539

Role of Superconductor in the energy reach of Accelerators• As a function of magnetic field, B, & bending radius, R, by the dipole.• As a function of Accelerating gradient in RF cavities

Accelerator technologies

Accelerator Gradient

SLC 20 MeV/m SLAC (1988-1997)

ILC 70-85 MeV/m SLAC, KEK

TESLA 25-35 MeV/m DESY

CLIC 150 MeV/m CERN

Laser Acc 1-100 GeV/m

Magnets RF cavities

Page 32: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Applications of Accelerators

✓ R&D✓ Energy & Environment✓ Health & Medicine✓ Industrial Applications✓ Material characterization✓ Prospects

ref. http://www.accelerators-for-society.org/

Accelerators are used for Society!

Page 33: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

✓ R&Da. Fundamental physics

• High Energy Physics : Structure of matter at the most fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies.

• Nuclear Physics : Study of atomic nuclei-heavy, dense cores of atom. RHIC, LHC, FAIR (GSI), Spiral2 at GANIL “Journey to the beginning of the Universe”

“Explores Matter at the Dawn of Time”b. Materials science

• Beams of photons, neutrons & ions are essential tools to study materials at the atomic level. Diffraction/Spectroscopy “How does the antibiotic amphotericin work?” - n “Superabsorbent polymers”, Diaper - SR

c. Solid state and condensed matter physics• Crystallography, …

d. Biological and chemical science• 3D structure of Protein can be seen by X-rays. Protein Modelling.

e. Drug Developments

ref. http://www.accelerators-for-society.org/ and therein

LHC

Page 34: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

R&D : Colliders

✓ High energy physics demands higher collision energy.

To make two electrons of 1 GeV for colliding is equivalent to make a 1 TeV electron for hitting a proton at rest!

𝐸𝐶𝑀 = 2𝑚 𝐸 +𝑚

𝐸 𝐸 𝐸𝑚

𝐸𝐶𝑀 = 2𝐸For 𝐸 ≫ 𝑚𝑐2,

Incident to Target Colliding each other

✓ Why?e++e− → B+B−

ParticlesRest Mass Energy

[MeV]

Kinetic Energy

[MeV]

e+, e

- 0.511 5290

B+, B

- 5279 11.5

Page 35: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

R&D : Colliders

✓ How?Circular Collider: Synchrotron

PETRA, TRISTAN,

LEP, Spps, Tevatron

PEPII

KEKB

Linear Collider : Linac

electron linac positron linac

100 GeV

Page 36: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

R&D : Colliders

• Tevatron : - FNAL (Fermi National Accelerator Lab)

- proton-antiproton : 500 GeV, ECM = 1 TeV

- circumference 6.3km, 4.2 Tesla SC magnets

- started in 1983/ shutdown in 2009

- 1995: discover Top Quark

Tevatron

Main Injector

LEP

• LEP : - CERN

- electron-positron : 100 GeV → 209 GeV

- circumference 27km

- started in 1989/ finished in 2000

- 1989: Z bosons/1995: W bosons

- 2000: closed to upgrade to LHC

→ LHC

• LHC : (same tunnel of LEP)- hadrons : 8 TeV → 14 TeV

- started in 2008/operational

- 2012: discovered Higgs particle/ Bs0 → μ+μ−

http://home.web.cern.ch/

Page 37: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

R&D : Colliders

Supersymmetric particles

Mass of particles responsible for weak nuclear force

Mass of proton and neutron

Mass of quarks, mass of muon

Transitions between nuclear states; nuclear reactions

Mass of electron

Transitions between inner-shell atomic states

Transitions between atomic states

1 TeV

1 GeV

1 MeV

1 keV

1 meV

1 eV

Transitions between rotational/vibrational states

am

fm

pm

nm

mm

mm

X-rayEUV

-ray

Far IR

UV/Vis/IR

Microwave

• Energy in the atomic/subatomic level : eV: the amount gained by an electron accelerated

across a 1 Volt potential difference

Page 38: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation SourcesP

ea

k B

rillian

ce

Ave

rag

e B

rill

ian

ce

FIR/IR/VIS/UV:

▪ FEL Oscillators

Deep UV:

▪ FEL Oscillators :

▪ High Gain High Harmonics

▪ SASE FEL (Single pass, High gain FEL)

▪ Compton Backscattering Photon Source

X-rays:

▪ Undulator/Wiggler radiation

▪ High Gain High Harmonics (HGHG)

▪ Cascade High Gain High Harmonics

▪ SASE FELs (XFEL)

▪ Compton Backscattering Photon Source

-rays:

▪ Bremsstralung

▪ Compton Backscattering Photon Source

Page 39: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation Sources

▪ FEL radiation is very efficient with a bunched beam at the right point.

▪ Optical Klystron : Modulator + Buncher + Radiator

Before interaction Interaction with EM

field in an undulator

Different Path length in a

Strong half-period Wiggler

-15 -10 -5 0 5 10 15

Phase j

-0.004

-0.002

0

0.002

0.004

¶�E 0

-15 -10 -5 0 5 10 15

Phase j

-0.004

-0.002

0

0.002

0.004

¶�E 0

-15 -10 -5 0 5 10 15

Phase j

-0.004

-0.002

0

0.002

0.004

¶�E 0

Initial distribution Energy Modulation Density Modulation

e/E

e

z

e/E

e

z

e/E

e

z

① ② ③

-15 -10 -5 0 5 10 15Phase j

-0.004

-0.002

0

0.002

0.004

¶�E 0

e/E

e

zAmplification

Coherent radiation

Modulator Buncher Radiator

Optical

beam

envelope

Cavity

Mirror

FEL Oscillator

Page 40: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation Sources

▪ Amplification can occur only in one pass ! No mirrors are needed.

▪ Energy modulator → Density modulation → Coherent radiation up to saturation

▪ need longer undulator:

~ 100 m (SLAC)

▪ need higher electron energy:

15 GeV for 1A radiation

▪ need high quality:

low emittance

high peak current

Log (Prad)

Distance

Saturation

SASE FEL

Page 41: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation Sources

Compton Backscattering -ray/X-ray sources

Photon Energy (MeV)Int

ens

ity [a.u

.]10 20

Quasi-monochromatic -rays

Electronbeam

Laserlight

Collision point

~-1

E max.~ Ee

1.33 MeV

1.17 MeV Compton -rays

< 1%

Tunable

E [eV]≈ 15.3·(Ee [MeV])2·Elaser[eV]

~-1

Target

(W, Cu, Ta )

Target(Diamond, Si)

Bremsstrahlung radiation

CoherentBremsstrahlung

60Co 60Ni

Radiation decaycharacteristic -rays

27Co60

28Ni60

1.17 MeV

0.31 MeV

1.33 MeV

Radioactive materials

Electrons

Bremsstrahlungradiation

Bremsstrahlung

Page 42: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation Sources

Compton Backscattering -ray/X-ray sources

Page 43: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation Sources

-rays

Nuclear waste

High level

Low level

ref. JAEA

Classification between High level and Low level Radiation waste

Page 44: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerator-based Light/Radiation Sources

ref. JAEA

Nuclear Resonance Fluorescence : (,) reaction

Peak of 235U

Measured Spectrum for 235U

Peak of 239Pu

Measured Spectrum for 239Pu

s/s

mE -E0

G

Radiative width

Natural ~ 0.1 eV

Doppler Broadening ~ 20 eV

0.001% @2 MeV

NRF 10-5 ~ 10-6 DE/E

Page 45: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Nuclear reaction

T1/2Q

(MeV) Peak s(mb)

DecayRadiation measured

9Be(,n)8Be 1.6712C(,n)11C 20.5m 18.7 13.1 + 511 keV39K(,n)38K 7.6m 13.7 11 + 2162 keV

63Cu(,n)62Cu 9.7m 10.9 75 + 1172 keV 63Cu(,2n)61Cu 3.3h 19.7 12 + 282 keV 63Cu(,3n)60Cu 24m 31.4 - + 1332 keV 64Zn(,n)63Zn 38.1m 11.9 123 + 669 keV 65Cu (,n)64Cu 12.7 h 9.9 65 + 1345 keV

107Ag(,n)106Ag 24m 9.5 155 +

141Pr (,n)140Pr 3.4m 9.4 335 +

204Pb(,n)203Pb 52h 8.4 - 279 keV 206Pb(,2n)204mPb 67m 14.8 80 374 keV

Table. (,n) reactions

Page 46: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Typical nuclear waste

FP: Fission Product; TRU: Transuranic

Page 47: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

▪ Beam parameters

Q = 2.53 pC, Ek = 2.96 MeV, εn = 0.4 μm

Dbeam@sample ~ 3 mm

▪Andor EMCCD

Gain : 280, Exposure time : 10 μs (min)

Binning : 2, Integrated 20 shots

▪ Integrate between -15˚ ~ 15˚

blue line : Sum of Gaussian fit

red dot : experimental data

Electron Diffraction

Page 48: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

✓ Energy & Environmenta. Cleaning flue gases of thermal power plants

• Electron beams are used to control emission of sulphur & nitrogen oxides. Small electron accelerators

b. Oil and gas exploration• Looking for oil using neutrons: Small accelerators/n generator Oil or Gas plays a crucial role in our everyday life :

Electricity, Goods & products. • Unclogging oil pipelines• Increasing the efficiency of oil extraction

c. Biofuel production• Enhancing the efficient by e-beam pre-treating of bio-fuel

d. Nuclear energy with less risk & less waste

ref. Reviews of Accelerator Science and Technology Vol. 4Editors: A. W Chao (SLAC, USA), W. Chou (Fermilab)

ref. http://www.accelerators-for-society.org/ and therein

Drilling for oil (Paul Lowry)

Page 49: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

✓ Health & Medicinea. Treating cancer

• 50% of all patients with cancer will undergo radiation therapy external radiotherapy, brachytherapy, radioisotope therapy

• X-ray therapy : electron accelerators• Electron beam therapy• Hadron beam therapy : p, n, ion• Cancer research : Early detection Cost reduction

b. Medical imaging• Radioisotopes used in PET-CT scanning are produced using

accelerators. • Proton Computerized Tomography (CT) scan (pCT)• Magnetic Resonance Imaging (MRI) : Accelerator Technology• Increasing the efficiency of oil extraction

c. Medical Materials Produced with Accelerators• Heart valves, Hydrogels• radioactive isotopes

ref. http://www.accelerators-for-society.org/ and therein

Proton (PSI)

John Prior, CHUV, SwitzerlandPETPET-CTCT

TRIUMF

Page 50: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Absorbed dose along penetration depth

Penetration length inside the human body (cm)

Page 51: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Properties of particles used for therapy

mo is the electron rest mass, and 1 amu is approximately 1835 mo

Ref. “Nuclear Particles in Cancer Treatment”, JF Fowler

Particle Charge Mass lifetime

photon - hn -

e -1 1 mo stable

p -1 276 mo 2 x 10-8 s

n 0 1835 mo 12 min

p +1 1832 mo stable

a +2 4 amu stable

C +6 12 amu stable

Ne +10 20 amu stable

Ar +18 40 amu stable

Page 52: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

High Energy Electron Beam Therapy

INFN/Asimmetrie, p.21.

Brain tumour dose maps for 100 MeV VHEE and 6 MV VMAT

VHEE : Very High Energy ElectronVMAT : Volumetric Modulated Arc photon Therapy

VHEE

VMAT

Absorbed dose histograms for surrounding organs-at-risk

VHEE therapy plan showed a decrease of dose up to70% in surrounding organs-at-risk

✓ Compactness : to fit into radiotherapy facilities (4− 10 m long)

✓ Reliable dose delivery✓ Large area irradiation (>11 cm2)

Page 53: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Boron Capture Neutron Therapy

Proton Linac for BNCT under development (DawonSys) ✓ 50keV Injector✓ 3 MeV RFQ ✓ 10 MeV DTL

Page 54: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Boron Capture Neutron Therapy

BNCT(Courtesy of Hiroshi MATSUMOTO (KEK))

Page 55: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Epithermal neutrons

Energy [eV]

Ne

utr

on

Flu

x[#

/cm

2s

ec]

106

105

107

108

100 101 102 103 104 105 106 10710-110-210-3

Epithermal neutron

Fast neutron

Thermalneutron

Thermal neutrons: 3~4 cmEpithermal neutrons: ~8 cm

Page 56: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

✓ Industrial ApplicationsOver 30,000 particle accelerators have been built in the last 60 years for industrial applications. These accelerators are used in either the production or preparation of more than US$500B (390B€) worth of products worldwide annually. a. Ion implantation for electronics ($250B)

• for electronics : fast transistors and chips • for hardening surfaces : metals, ceramics and biomaterials

b. Electron Beam Material Processing• Electron Beam Welding (EBW). • Electron Beam Machining (EBM)• Electron Beam Heat Treating (Surface Hardening)

c. Electron Beam Material Irradiation ($90B)• Cross-linking polymers Hydrogels• Hardening materials - X-ray cured carbon composite Reduction of car energy consumption by 50% than steel.

• Treating waste and medical materials : sterilization• Food preservation

ref. http://www.accelerators-for-society.org/ and therein

Ref. Industrial Accelerators and Their Applications,edited by R. W Hamm and M. E Hamm

NASA

Page 57: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

✓Material characterizationa. Cultural heritage, archaeology, dating and authentication

• Accelerator Mass Spectroscopy (AMS) : dating Direct measurement of radiocarbon (14C) concentration

• Ion Beam Analysis : material composition Particle Induced X-ray Emission (PIXE) Ion Beam Induced Luminescence (IBIL)

b. Cargo scanning and security• X-ray radiography • Neutron radiography Non-destructive testing

• Muon radiography Muon radiography consists of exploiting the measurement

of the absorption of cosmic rays passing through a volume to look inside it

ref. http://www.accelerators-for-society.org/ and therein

LABEC (INFN)

Varian

Fukushima Daiichi nuclear complex

Page 58: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

✓ Prospectsa. Clean and safe nuclear power

• ADS (Accelerator driven system) : safer operation of reactors Proton accelerator + Spallation source Non-critical fission core cannot proceed the chain reaction

if the driver (Proton accelerator) is switched off. • Accelerator Transmutation of Waste Accelerator technologies can treat nuclear waste

b. Fusion Energy : Sun “down to earth”• Magnetic confinement fusion : ITER• Inertial confinement fusion

c. Replacing Ageing Research Reactors• Radioisotopes (such as, Tc-99m used for medical imaging

applications) are produced using accelerators, cyclotrons or linacs, replacing research reactors. → More advantageous manufacturing techniques.

ref. http://www.accelerators-for-society.org/ and therein

ADSSun

Page 59: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators for Society

ref. http://www.accelerators-for-society.org/ and therein

Accelerators and Superconductors• Superconducting cavity• Superconducting Magnets• Trains, MRI, …

Accelerators for a Sustainable Future• Clean environments (treatments) • Climate of pollution • Fuel researches : fuel cell, solar cell, hydrogen fuel

Figures of Accelerators in the world• >400 B Euro of end products are produced, sterilized,

examined by industrial accelerators.• >30,000 particle accelerators in industrial processes• >11,000 particle accelerators for medical therapy• ~200 accelerators for researches (1 B Euro/yr)• >75,000 patients treated by hadron therapy• LHC – 27 km in circumference/50~175 m below ground

Accelerators for building a car• E-beam Irradiation• E-beam material processing• Ion Implantation

Page 60: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Applications of Accelerators

Applications vs. Beam Energy and Charge

Page 61: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea

Years Medical Industrial R&Ds Misc.

1970sLinac(Severance)

1st

1980s Ion implanter 1st

Cyclotron (ion, KIRAMS)

1st, RI Ion implanter Domestic Tandem 1st

1990sStorage Ring (e-, PLS)

1st, 3rd Light source

Microtron (e-, KAERI)

1st, FEL (THz)

2000sCyclotron (p, KIRAMS)

DomesticElectron Linac

1st KERI 20 TW e-

Synchrotron (p, NCC)

1st, Proton therapy

SC Linac (e-, KAERI)

1st

APRI 100 TW e-, p,KAERI 10 TW e-, p, ETRI 500 TW p

2010sProton Linac (p, KOMAC)

1st APRI 4 PW e-, p KAERI 30 TW e-, p, n

Linac (p, Gil Hospital)

1st, BNCTXFEL (e-, PAL)UED (e-, KAERI)

1st (World 3rd)1st

KERI 40 TW e-

2020sCyclotron or Synchrotron

Heavy Ion therapy

Heavy Ion Linac(Sn, U, RAON)

1st

Page 62: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea

1. Electron Linac for Radiotherapy• X-ray Therapy, Electron Therapy• 1st Medical Linac at Severance in 1972. • 200 units are in service.

2. Cyclotron for RI Production • Medical RI Production • 1st medical cyclotron (MC50, Scandtronix) at KIRAMS in 1986, • 36 units are now in operation. 10 domestic and 26 imported.• 1st Cyclotron (13 MeV) KIRAMS developed for PET RI in 2002. 7 units• A 30MeV cyclotron by KIRAM installed at ARTI/KAERI in 2010

3. Cyclotron for Proton / Ion Therapy• Proton Therapy, Carbon Therapy• 1st proton cyclotron (IBA) at NCC in 2007. • 2nd proton cyclotron (Sumitomo) at Samsung Medical

Center started the treatment in 2016.• 1st heavy ion therapy accelerator is under development.

13 MeV Linac @ Severance Hospital (1972)

KIRAMS-13

* C

Cyclotron (IBA)

4. Proton Linac for BNCT• Proton linac for BNCT is under development (DawonSys)

Page 63: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea

5. Ion Implanter for Industry• Semiconductor doping, Surface treatment• 1st implanter in semiconductor production line in 1983 • Now about 1,000 units are running• KAERI developed a high current ion implanter for surface treatment of metal

& polymer in 1989

6. Electron Accelerators for e-Beam Processing• Tire, Cable, Sterilization, Power semiconductor• In 1980’s, several electron accelerators were installed for irradiation

of industrial products such as tire, cable and polymers. • >40 accelerators are running at the companies.• KAERI serviced e-beam irradiation for R&Ds from 2006.• In 2000’s, EB Tech produced commercial industrial electron

accelerators of a transformer type cooperated with BINP in Russia• KAPRA developed a 10MeV, 30kW high power linac for industrial e-

beam processing in 2010.

10 MeV SC Linac at KAERI (2004

Ion Implanter at KAERI (1989)

Electron Accelerator at EBTech (2002)

Page 64: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea

7. Electron Linac for Cargo Inspection• Container inspection at port and airport• 3 container inspection systems with 9 MeV electron linac

were installed at Busan port in 2002. • 12 systems are in operation at several ports• KAERI developed cargo inspection systems in 2016.

Container Inspection at Busan port (2002)

Container Inspection (KAERI)

Page 65: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea for R&Ds

1. Tandem Accelerators for Material Analysisand Carbon Dating

• 1st Tandem at KIGAM in 1988.• 3 AMS Tandems were installed for carbon-14 dating.

2. Synchrotron Light Source/XFEL • 2.5GeV Injector (Linac) and Storage Ring, PLS-I, at PAL in 1994• 3 GeV Storage Ring upgrade, PLS-II, at PAL• 10GeV electron linac for XFEL

3. Proton Linac• 100 MeV proton linac at KAERI for material irradiation,

isotope production, neutron generation in 2012. KOMAC

* C

SNU-AMS (1998)

1.7 MV Tandem VDG Accelerator @ KIGAM (1988)

4. Heavy Ion Linac for Rare Isotope Production• RAON is under construction for completion in 2021.• Heavy ion accelerator at KBSI (constructed up to LEBT)

KOMAC at KAERI

PAL-XFEL

Page 66: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea for R&Ds

5. Microtron for FEL/Electron Linac for UED• Microtron-based THz FEL at KAERI in 1999.• Ultrafast electron Diffraction system at KAERI in 2015.

* C

RAON (RISP, IBS)

RF gun & solenoid

UED beamline

KBSI

UED System at KAERI

THz FEL at KAERI

Page 67: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in Korea for R&Ds

RAON (IBS)

ISOL to IF1. ISOL→ SCL3→ SCL2 → IF2. ISOL→ SCL3→ KOBRA

IF to re-Acc1. IF → stopped beam

→ SCL3 & 2→ Future upgrade plan

Courtesy of Young Kwan KWON

SCL3

SCL2

KOBRA (low E IF) ISOL IF (high E)

Driver -SCL3 or SCL1 Cyclotron SCL3&2 or SCL1&2

Post acc SCL3 or SCL3&2

Production Mechanism

Direct reactions- (p,d), (3He,n) etc

MNT

p induced U fission pF, U fission

Available RIB energy tens of MeV/u tens of keV/u hundreds of MeV/u

ISOL(Isotope Separator On-Line)IF(In-Flight methods)

Page 68: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

▪ RAON will provide access to unexplored regions of the nuclear chart

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 1200

50

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

80

90

Num

ber

of P

roto

n (

Z)

Number of Neutron (N)

Stable lineN

um

ber

of P

roto

n (

Z)

Number of Neutron (N)

Z=N

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

IFS

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

KOBRA

KOBRA: 40

Ar(30 MeV/u,12 kW) + Be

Num

ber

of P

roto

n (

Z)

Number of Neutron (N)

IFS: 238

U(200 Mev/u, 400 kW) + CN

um

ber

of P

roto

n (

Z)

Number of Neutron (N)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

ISOL

ISOL: p(70 MeV, 70 kW)+UCx

<1 pps

ISOL+IF: 140

Xe(222 MeV/u, 1E+07 pps)+ C

Num

ber

of P

roto

n (

Z)

Number of Neutron (N)

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

ISOL+IF

KOBRA

IF

ISOL

ISOL+IF

RAON

Page 69: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in KU

1. ECR Ion source and APF-IH Linac for AMS (Atomic Mass Spectroscopy)

Slit/FC

Analyzing Magnet

FC

APF-IH Linac

Insulated Accelerating tube

ECR Ion source

Page 70: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in KU

2. Ion Implanter (<200 keV) : DuoPlasmatron + Accelerating Tube

will be transferred from KAERI in fall of 2018

Page 71: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in KU

3. Microtron (7 MeV) : Free Electron Laser & Test beamline

will be transferred from KAERI in Dec., 2018 ~ Jan. 2019

Microtron

Undulator

Page 72: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in KU

원적외선 자유전자레이저 시스템

RF 전원 및 빔라인전원장치 및 제어시스템

THz 빔라인 및 응용실험

Page 73: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Accelerators in KU

First floor

Basement

Page 74: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Livingston Curve : Laser Accelerators

R. Assmann, EuroNNAc2 @ EuCARD2, 3/2017)

Regime of on-going projectAcc. Length: 9 cm vs. 100 m

Page 75: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Aiming for …..

Gantry

Optical Transfer

Laser

Accelerator Laser accelerationEnergy: 250 MeV

Current: ~100 nA

Pulsed

Size: 10 x 10 m2

Gantry Isocentric gantry

Size : Diameter: ~ 1m

Length: ~ 3 m

Weight: <10 ton

Cost

▪ Energy : ~200 MeV

▪ Energy spread: < 1%

▪ Current: 1 ~ 300 nA (6x109 ~ 2x1012 #/s)

▪ Stability

Most serious issue New acceleration technology

Alternative scenario (modulated beam)

No matters

Poor but to overcome with real-time beam diagnosis

Courtesy by Kitae Lee at KAERI

Cancer Therapy : Electrons and/or Ions

Page 76: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Aiming for …..

Courtesy by Kitae Lee at KAERI

Injectors, Compact Light sources,….

Electron

Plasma

Laser

Laser-Plasma Accelerator Compact

Storage Ring

R < 1 m

Synchrotron Radiation

Compact Synchrotron Radiation Source

Undulator Radiation

Injectors for Colliders

Page 77: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Aim or Desire for replacing RF accelerators

• For ERC & FEL• For - collider• For Injector• For UED• For Proton Therapy• For Medical treatments• For compact light source• …….

Aim or Desire for replacing RF accelerators!

Page 78: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Development of intense Laser technology

*D. Strickland and G. Mourou, Opt. Commun. 56, 219-221 (1985)

CPA

K.W.D. Ledingham, et al., Science 300 ,1107 (2003)

ELI

PULSER

**ELI (Extreme Light Infrastructure)

***PULSER 4 PW (CoReLs)

KAERI

Page 79: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Physical conditions to be achieved

D. Umstadter, Relativistic laser-plasma interactions, J. Phys. D: Appl. Phys. 36, R151 (2006)

I ≤ 10 21 W/cm2

105

1010

1015

1020

1025

Intensity (W/cm2)

10-6

10-3

100

103

Energy (MeV)

10-9

Photoionization

Vaporization of molecules

First laser

Room temperature

Uranium atom fully stripped

Relativistic protonsPion productionFusionThermal pressure of Sun’s coreElectron positron plasmaRelativistic electrons

CPA

Coulomb binding energy

Today

Page 80: Seong Hee Park - indico.korea.ac.kr · fundamental level. LHC, ILC, Photon Collider Major driving forces for the accelerator technologies. • Nuclear Physics : Study of atomic nuclei-heavy,

Thank for Attention!