santiago supplementary materials

19
www.sciencemag.org/cgi/content/full/science.1242468/DC1 Supplementary Materials for Molecular Mechanism for Plant Steroid Receptor Activation by Somatic Embryogenesis Co-Receptor Kinases Julia Santiago, Christine Henzler, Michael Hothorn* *To whom correspondence should be addressed. E-mail: [email protected] Published 8 August 2013 on Science Express DOI: 10.1126/science.1242468 This PDF file includes: Materials and Methods Figs. S1 to S6 Table S1 References

Upload: others

Post on 12-Sep-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Santiago Supplementary Materials

www.sciencemag.org/cgi/content/full/science.1242468/DC1

Supplementary Materials for

Molecular Mechanism for Plant Steroid Receptor Activation by Somatic

Embryogenesis Co-Receptor Kinases

Julia Santiago, Christine Henzler, Michael Hothorn*

*To whom correspondence should be addressed. E-mail: [email protected]

Published 8 August 2013 on Science Express

DOI: 10.1126/science.1242468

This PDF file includes:

Materials and Methods

Figs. S1 to S6

Table S1

References

Page 2: Santiago Supplementary Materials
Page 3: Santiago Supplementary Materials

μΜ

Μ

μ

μ

Page 4: Santiago Supplementary Materials
Page 5: Santiago Supplementary Materials

°

Page 6: Santiago Supplementary Materials
Page 7: Santiago Supplementary Materials

Fig. S1.The wild-type BRI1 and SERK1 ectodomains interact upon brassinolide binding. (A) UVabsorbance traces from analytical size-exclusion chromatography experiments. BL-boundBRI1 wild-type elutes as a monomer (black dotted line), as does the isolated SERK1LRR domain (blue dotted line). The BRI1 wild-type – BL – SERK1 complex elutes as anapparent heterodimer (red line), while a mixture of BRI1 wild-type and SERK1 in theabsence of BL yields two isolated peaks that correspond to the monomeric BRI1 andSERK1 ectodomains, respectively (black line). Void (V0) and total volume (Vt) areshown, together with elution volumes for molecular mass standards (A, Thyroglobulin,669,000 Da; B, Ferritin, 440,00 Da, C, Aldolase, 158,000 Da; D, Conalbumin, 75,000Da; E, Ovalbumin, 44,000 Da; F, Carbonic anhydrase, 29,000 Da). The calculatedmolecular mass for the BRI1 wild-type and SERK1 elution peaks are ~125 and ~35 kDa,respectively. Purified BRI1 wild-type and SERK1 are ~110 and ~30 kDa. (B)SDS-PAGE analysis of elution fractions from the size-exclusion chromatographyexperiments shown in (A).

7

A

0 5 10 15 20 25

050

100

150

200

elution volume (ml)

A 280

(a.u

.)

V0 VtA B C D E F

BRI1 wild-typeSERK1BRI1 wild-type - SERK1 -BL BRI1 wild-type - SERK1 +BL

peak1

peak2

B

marker

comple

x

BRI1 wild

-type

250

130100

70

55

3525

15

SERK1

peak

1pe

ak2

BRI1 wild-type

SERK1

Page 8: Santiago Supplementary Materials

Fig. S2Crystal lattice interactions of the bri1sud1 and SERK1 ectodomains. (A) Orientation of 12bri1sud1 – BL – SERK1 complexes in the unit cell of the P65 crystal structure (a=b=~70 Åand c=874 Å). Cα-traces of BRI1 molecules A and B are shown in dark- and light-blue,respectively, the corresponding SERK1 ectodomains are depicted in yellow and red(chains C, D). Two bri1sud1 – BL – SERK1 complexes form a crystallographic dimer inthe asymmetric unit. (B) Crystal packing brings two BRI1 ectodomain superhelices into ahead-to-head arrangement. The lattice propagates by establishing contacts between theC-termini of two SERK1 LRR domains and the corresponding C-termini of the BRI1ectodomains. This figure has been prepared with the supercell.py script as implementedin the program PYMOL (http://pymol.sourceforge.org).

8

70 70

874

CC C

C

N

N

N

N

A B

Page 9: Santiago Supplementary Materials

Fig. S3SERK1 ectodomain residues participate in the specific recognition of the steroidhormone. (A) The LIGPLOT (41) diagram summarizes key interactions betweenbrassinolide (yellow lines) and hormone binding pocket residues that originate from theBRI1 LRR core (shown in blue), from the BRI1 island domain (in green) and from theSERK1 N-terminal capping domain (shown in orange). His62SERK1 establishes hydrogenbonds with both the 2α and 3α hydroxyl groups of BL, which are known to be critical forbioactivity. Semicircles with radiating lines indicate non-polar interactions. Chemicalstructures of (B) brassinolide and (C) BL 2,3-acetonide are included for comparison.

9

3.072.41

3.30

3.00

2

3

N

ND1

H62

Y597

N

S647

Y642N705

Y599

K601

M657

T729

I563T646

P648

F681

I540

I706

F61

A

B

C

D

A

H

H

CH3

CH3

CH3

OH

OH

OH

OH

CH3

CH3

H3C

HH

H O

O

3

2

B

H

H

CH3

CH3

CH3

OH

OH

CH3

CH3

H3C

HH

H O

O

O

O 3

2

C

Page 10: Santiago Supplementary Materials

Fig. S4BRI1 – SERK1 complex interface residues are conserved among known SERK-family members and in other LRR receptor kinases. Structure-basedsequence alignment of the known BRI1 interacting SERK-family members Arabidopsis thaliana SERK1 (Uniprot (http://www.uniprot.org) identifier:Q94AG2), A. thaliana SERK2 (Uniprot identifier: Q9XIC7), A. thaliana SERK3/BAK1 (Uniprot identifier: Q94F62), A. thaliana SERK4 (Uniprotidentifier: Q9SKG5) and Oryza sativa subsp. japonica BAK1 (Uniprot identifier: Q7XV05) (9–11, 42, 43). Based on the SERK1 interface residues inthe bri1sud1 – BL – SERK1 complex, we identified other, putative, BRI1-interacting receptor kinases (in grey): Selaginella moellendorffii SERKx(Uniprot identifier: D8RKF6), Capsella rubella SERKx (44) (GenBank identifier: EOA30137.1), Vitis vinifera SERKx (Uniprot identifier: D7STF5),Glycine max (Uniprot identifier: I1KR51), Nicotiana benthamiana SERKx (Uniprot identifier: E3VXE7), Medicago truncatula SERKx (Uniprotidentifier: G7ILB9). The alignment includes a secondary structure assignment calculated with the program DSSP (45) and colored according to Fig. 1C.The N- and C-terminal caps and the five LRRs in SERK1 are indicated in red and blue, respectively. Cysteine residues in the N- and C-terminal cappingdomains are highlighted in green. Note that most SERK proteins have the C-terminal disulfide bond replaced by a proline-rich region. N-glycosylationsites observed in SERK1 crystals are marked with a yellow star. The position of the serk3 elg point-mutation (corresponds to Asp123 in SERK1) isindicated in cyan, SERK-residues interacting with BRI1 in the bri1sud1 – BL – SERK1 complex are highlighted in orange.

10

310αN-terminal cap

signal peptide

*AtSERK1 MESSYV----V-FILL--SLILLPNHSLWLASANLEGDALHTLRVTLV--DP-NNVLQSWDPTLVNPCTWFHVTCNNENSVIRVDLGNAELSGHLVPELGVLKNLQYLELYSNNAtSERK2 MGRKKFEAFGF-VCLI--SLLLLFN-SLWLASSNMEGDALHSLRANLV--DP-NNVLQSWDPTLVNPCTWFHVTCNNENSVIRVDLGNADLSGQLVPQLGQLKNLQYLELYSNNAtSERK3 MERR-----LMIPCFF--WLILVLD-LVLRVSGNAEGDALSALKNSLA--DP-NKVLQSWDATLVTPCTWFHVTCNSDNSVTRVDLGNANLSGQLVMQLGQLPNLQYLELYSNNAtSERK4 MTSSKMEQRSL-LCFL--YLLLLFN-FTLRVAGNAEGDALTQLKNSLSSGDPANNVLQSWDATLVTPCTWFHVTCNPENKVTRVDLGNAKLSGKLVPELGQLLNLQYLELYSNNOsBAK1 MAEARLLRRRR-LCLAVPFVWVVAV-AVSRVGANTEGDALYSLRQSLK--DA-NNVLQSWDPTLVNPCTWFHVTCNPDNSVIRVDLGNAQLSGALVPQLGQLKNLQYLELYSNNSmSERKx MEQDAAA--VL-LLLL--CLFCLLG-VQPSLVCVSPVSALFAFKQSLV--DP-QNAMSGWDKNAVDPCSWIHVSCS-EQNVSRVELPGLQLSGQLSPRLADLANLQYLMLQNNNCrSERKx MEQR-----SL-LCFV--WLILLLV-FTLRAAGNTEGDALIVLKNNLSPADPANNVLQSWDATLVTPCTWFHVTCNNENKVTRVDLGNAELSGKLVPELGQLLNLQYLELYSNNVvSERKx MEAI------F-LC--------LIS-LVLRVSGISEGDALYALKSSLV--DP-KDVLQSWDTSSGNPCIWFHVTCNGDGNVIRVDLGNGSLSGQLDSRVGQLTKLEYLGLYNNNGmSERKx MERMISSFMSL-FFIL--WIFVVLD-LVLKVYGHAEGDALIVLKNSMI--DP-NNALHNWDASLVSPCTWFHVTCS-ENSVIRVELGNANLSGKLVPELGQLPNLQYLELYSNNNbSERKx MDQSVLL---I-CVFL--CLTGLLL-SSSPVAGNAEGDALYAQKTNLG--DP-NTVLQSWDQTLVNPCTWFHVTCNNENSVTRVDLGNANLTGQLVPQLGQLQKLQYLELYSNNMtSERKx MERVSSAS-KV-SFLF--WAILVLH-LLLNASSNVESDTLIALKSNLN--DP-NSVFQSWNATNVNPCEWFHVTCNDDKSVILIDLENANLSGTLISKFGDLSNLQYLELSSNN

Asn104

C-terminal cap

AtSERK1 ITGPIPSNLGNLTNLVSLDLYLNSFSGPIPESLGKLSKLRFLRLNNNSLTGSIPMSLTNITTLQVLDLSNNRLSGSVPDNGSFSLFTPISFANNLDLCG-PVT---S-HPCPGSAtSERK2 ITGPVPSDLGNLTNLVSLDLYLNSFTGPIPDSLGKLFKLRFLRLNNNSLTGPIPMSLTNIMTLQVLDLSNNRLSGSVPDNGSFSLFTPISFANNLDLCG-PVT---S-RPCPGSAtSERK3 ITGTIPEQLGNLTELVSLDLYLNNLSGPIPSTLGRLKKLRFLRLNNNSLSGEIPRSLTAVLTLQVLDLSNNPLTGDIPVNGSFSLFTPISFANTKLTPL-PAS---PPPPISPTAtSERK4 ITGEIPEELGDLVELVSLDLYANSISGPIPSSLGKLGKLRFLRLNNNSLSGEIPMTLTSV-QLQVLDISNNRLSGDIPVNGSFSLFTPISFANNSLTDL-PEP---PPTSTSPTOsBAK1 ISGTIPNELGNLTNLVSLDLYLNNFTGFIPETLGQLYKLRFLRLNNNSLSGSIPKSLTNITTLQVLDLSNNNLSGEVPSTGSFSLFTPISFANNKDLCG-PGT---T-KPCPGASmSERKx LSGPIPPEFGNWSRIISVDLSNNNLSDPIPSTLGKLQTLQYLRLNNNSLSGAFPVSVATIRALDFLDVSFNNLSGNVPNATTANL----NVKGNPLLCG-SKT--SRI--CPGDCrSERKx ITGEIPEELGGLRELVSLDLYANNINGPIPSSLGQLEKLRFLRLNNNSLSGGIPMELTAV-QLQVLDISNNRLSGDIPVNGSFSLFTPISFKNNKLTSL-P---------EPPPVvSERKx ISGKIPEELGNLENLMSLDLYFNNLSGPIPGTLGKLRKLHFLRLNNNILMGTIPMSLTAVSSLEILDLSNNKLTGDIPVNGSFSLFTPISFGNNRLSNNSPKRTLDSPSPISPNGmSERKx ITGEIPVELGNLTNLVSLDLYMNKITGPIPDELANLNQLQSLRLNDNSLLGNIPVGLTTINSLQVLDLSNNNLTGDVPVNGSFSIFTPISFNNNPFLNK-T-------IPVTPANbSERKx ISGRIPNELGNLTELVSLDLYLNNLNGPIPDTLGKLQKLRFLRLNNNSLIGLIPMSLTTILALQVLDLSSNHLTGPVPVNGSFSLFTPISFANNQLEVP-PA--------SPPPMtSERKx ITGKIPEELGNLTNLVSLDLYLNHLSGTILNTLGNLHKLCFLRLNNNSLTGVIPISLSNVATLQVLDLSNNNLEGDIPVNGSFLLFTSSSYQNNPRLKQ-P----------KII

310 310 310 310

D123NSERK3 elg

* *

Asn150 Asn184

310

LRR1 LRR2

LRR2 LRR3 LRR4 LRR5

Page 11: Santiago Supplementary Materials

Fig. S5Details of the BRI1 – SERK1 complex interface. (A) Side and (B) front view of the BRI1– SERK1 interface with the BRI1 LRR domain in blue (in surface representation), theSERK1 ectodomain in orange (ribbon diagram) and BL in yellow (in bondsrepresentation). Interface residues are highlighted as sticks. Arg73SERK1 contacts Thr750in the BRI1 C-terminal cap (bri1102), Asp75SERK1 establishes a hydrogen bond withThr729, as does the main-chain oxygen of Gly77 with Thr726. Non-polar contacts aremediated by Tyr97SERK1, Tyr101SERK1, Tyr125SERK1 and Phe145SERK1 and by Met727 andMet745 in BRI1. Asp123SERK1 is centrally located in the complex interface and takes partin a hydrogen-bonding network that involves Glu99SERK1, Ser121SERK1, Tyr125SERK1,Arg147SERK1 and Glu749 in the BRI1 C-terminal cap.

11

LRR4

R73D75 G77

T726

T729 M727

Q747

E99Y97

Y101

Y125

M745

E749

F145R147

S121T750

D123

LRR3

LRR2

N-cap

LRR1

N-cap

R73

D75

G77

T726

T750

T729

Y97

E99Y101

E749

M745

Y125D123

S121

R147

F145

A

B

Page 12: Santiago Supplementary Materials

Fig. S6Conserved surface patches in the SERK1 ectodomain may mediate interaction with otherreceptor kinases. (A) Ribbon diagram of the SERK1 ectodomain colored as in Fig. 1Cand shown in the same orientation as the molecular surfaces in (B) Surface diagram ofthe SERK1 ectodomain with the bri1sud1 – interacting residues shown in blue (left panel),and with the surface colored according to SERK-family sequence conservation (rightpanel, compare fig. S4).

12

N

C

A B

100 %0

B

100 %0

N

C

Page 13: Santiago Supplementary Materials

α, β, γ °

σ

°

Page 14: Santiago Supplementary Materials

References

1. J. Li, J. Chory, A putative leucine-rich repeat receptor kinase involved in brassinosteroid

signal transduction. Cell 90, 929–938 (1997). doi:10.1016/S0092-8674(00)80357-8

Medline

2. M. Ogawa, H. Shinohara, Y. Sakagami, Y. Matsubayashi, Arabidopsis CLV3 peptide directly

binds CLV1 ectodomain. Science 319, 294 (2008). doi:10.1126/science.1150083

3. L. Gómez-Gómez, T. Boller, FLS2: An LRR receptor-like kinase involved in the perception of

the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

doi:10.1016/S1097-2765(00)80265-8 Medline

4. Z.-Y. Wang, M.-Y. Bai, E. Oh, J.-Y. Zhu, Brassinosteroid signaling network and regulation of

photomorphogenesis. Annu. Rev. Genet. 46, 701–724 (2012). doi:10.1146/annurev-genet-

102209-163450 Medline

5. Z. He, Z. Y. Wang, J. Li, Q. Zhu, C. Lamb, P. Ronald, J. Chory, Perception of brassinosteroids

by the extracellular domain of the receptor kinase BRI1. Science 288, 2360–2363 (2000).

doi:10.1126/science.288.5475.2360

6. T. Kinoshita, A. Caño-Delgado, H. Seto, S. Hiranuma, S. Fujioka, S. Yoshida, J. Chory,

Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1.

Nature 433, 167–171 (2005). doi:10.1038/nature03227 Medline

7. J. She, Z. Han, T. W. Kim, J. Wang, W. Cheng, J. Chang, S. Shi, J. Wang, M. Yang, Z. Y.

Wang, J. Chai, Structural insight into brassinosteroid perception by BRI1. Nature 474,

472–476 (2011). doi:10.1038/nature10178 Medline

8. M. Hothorn, Y. Belkhadir, M. Dreux, T. Dabi, J. P. Noel, I. A. Wilson, J. Chory, Structural

basis of steroid hormone perception by the receptor kinase BRI1. Nature 474, 467–471

(2011). doi:10.1038/nature10153 Medline

9. J. Li, J. Wen, K. A. Lease, J. T. Doke, F. E. Tax, J. C. Walker, BAK1, an Arabidopsis LRR

receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling.

Cell 110, 213–222 (2002). doi:10.1016/S0092-8674(02)00812-7 Medline

Page 15: Santiago Supplementary Materials

10. K. H. Nam, J. Li, BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling.

Cell 110, 203–212 (2002). doi:10.1016/S0092-8674(02)00814-0 Medline

11. X. Gou, H. Yin, K. He, J. Du, J. Yi, S. Xu, H. Lin, S. D. Clouse, J. Li, Genetic evidence for

an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid

signaling. PLoS Genet. 8, e1002452 (2012). doi:10.1371/journal.pgen.1002452 Medline

12. R. Karlova, S. Boeren, E. Russinova, J. Aker, J. Vervoort, S. de Vries, The Arabidopsis

SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes

BRASSINOSTEROID-INSENSITIVE1. Plant Cell 18, 626–638 (2006).

doi:10.1105/tpc.105.039412 Medline

13. X. Wang, U. Kota, K. He, K. Blackburn, J. Li, M. B. Goshe, S. C. Huber, S. D. Clouse,

Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts

early events in brassinosteroid signaling. Dev. Cell 15, 220–235 (2008).

doi:10.1016/j.devcel.2008.06.011 Medline

14. Y. Jaillais, M. Hothorn, Y. Belkhadir, T. Dabi, Z. L. Nimchuk, E. M. Meyerowitz, J. Chory,

Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering

membrane release of its kinase inhibitor. Genes Dev. 25, 232–237 (2011).

doi:10.1101/gad.2001911 Medline

15. Y. Belkhadir, Y. Jaillais, P. Epple, E. Balsemão-Pires, J. L. Dangl, J. Chory, Brassinosteroids

modulate the efficiency of plant immune responses to microbe-associated molecular

patterns. Proc. Natl. Acad. Sci. U.S.A. 109, 297–302 (2012).

doi:10.1073/pnas.1112840108 Medline

16. T. Asami, Y. K. Min, N. Nagata, K. Yamagishi, S. Takatsuto, S. Fujioka, N. Murofushi, I.

Yamaguchi, S. Yoshida, Characterization of brassinazole, a triazole-type brassinosteroid

biosynthesis inhibitor. Plant Physiol. 123, 93–100 (2000). doi:10.1104/pp.123.1.93

Medline

17. A. Di Matteo, L. Federici, B. Mattei, G. Salvi, K. A. Johnson, C. Savino, G. De Lorenzo, D.

Tsernoglou, F. Cervone, The crystal structure of polygalacturonase-inhibiting protein

(PGIP), a leucine-rich repeat protein involved in plant defense. Proc. Natl. Acad. Sci.

U.S.A. 100, 10124–10128 (2003). doi:10.1073/pnas.1733690100 Medline

Page 16: Santiago Supplementary Materials

18. M. S. Jin, S. E. Kim, J. Y. Heo, M. E. Lee, H. M. Kim, S. G. Paik, H. Lee, J. O. Lee, Crystal

structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated

lipopeptide. Cell 130, 1071–1082 (2007). doi:10.1016/j.cell.2007.09.008 Medline

19. J. Y. Kang, X. Nan, M. S. Jin, S. J. Youn, Y. H. Ryu, S. Mah, S. H. Han, H. Lee, S. G. Paik,

J. O. Lee, Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6

heterodimer. Immunity 31, 873–884 (2009). doi:10.1016/j.immuni.2009.09.018 Medline

20. T. G. Back, R. P. Pharis, Structure-activity studies of brassinosteroids and the search for

novel analogues and mimetics with improved bioactivity. J. Plant Growth Regul. 22,

350–361 (2003). doi:10.1007/s00344-003-0057-0 Medline

21. T. G. Back, L. Janzen, R. P. Pharis, Z. Yan, Synthesis and bioactivity of C-2 and C-3 methyl

ether derivatives of brassinolide. Phytochemistry 59, 627–634 (2002).

doi:10.1016/S0031-9422(02)00019-5 Medline

22. T. Muto, Y. Todoroki, Brassinolide-2,3-acetonide: A brassinolide-induced rice lamina joint

inclination antagonist. Bioorg. Med. Chem. 21, 4413–4419 (2013).

doi:10.1016/j.bmc.2013.04.048 Medline

23. D. M. Friedrichsen, C. A. Joazeiro, J. Li, T. Hunter, J. Chory, Brassinosteroid-insensitive-1 is

a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant

Physiol. 123, 1247–1256 (2000). doi:10.1104/pp.123.4.1247 Medline

24. Z. Y. Wang, H. Seto, S. Fujioka, S. Yoshida, J. Chory, BRI1 is a critical component of a

plasma-membrane receptor for plant steroids. Nature 410, 380–383 (2001).

doi:10.1038/35066597 Medline

25. Y. Jaillais, Y. Belkhadir, E. Balsemão-Pires, J. L. Dangl, J. Chory, Extracellular leucine-rich

repeats as a platform for receptor/coreceptor complex formation. Proc. Natl. Acad. Sci.

U.S.A. 108, 8503–8507 (2011). doi:10.1073/pnas.1103556108 Medline

26. X. Tan, L. I. Calderon-Villalobos, M. Sharon, C. Zheng, C. V. Robinson, M. Estelle, N.

Zheng, Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–

645 (2007). doi:10.1038/nature05731 Medline

27. L. B. Sheard, X. Tan, H. Mao, J. Withers, G. Ben-Nissan, T. R. Hinds, Y. Kobayashi, F. F.

Hsu, M. Sharon, J. Browse, S. Y. He, J. Rizo, G. A. Howe, N. Zheng, Jasmonate

Page 17: Santiago Supplementary Materials

perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–

405 (2010). doi:10.1038/nature09430 Medline

28. D. Chinchilla, C. Zipfel, S. Robatzek, B. Kemmerling, T. Nürnberger, J. D. Jones, G. Felix,

T. Boller, A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant

defence. Nature 448, 497–500 (2007). doi:10.1038/nature05999 Medline

29. B. Schwessinger, M. Roux, Y. Kadota, V. Ntoukakis, J. Sklenar, A. Jones, C. Zipfel,

Phosphorylation-dependent differential regulation of plant growth, cell death, and innate

immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7, e1002046 (2011).

doi:10.1371/journal.pgen.1002046 Medline

30. M. Roux, B. Schwessinger, C. Albrecht, D. Chinchilla, A. Jones, N. Holton, F. G.

Malinovsky, M. Tör, S. de Vries, C. Zipfel, The Arabidopsis leucine-rich repeat receptor-

like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to

hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455 (2011).

doi:10.1105/tpc.111.084301 Medline

31. M. Hothorn, W. Van den Ende, W. Lammens, V. Rybin, K. Scheffzek, Structural insights

into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein.

Proc. Natl. Acad. Sci. U.S.A. 107, 17427–17432 (2010). doi:10.1073/pnas.1004481107

Medline

32. Y. Hashimoto, S. Zhang, G. W. Blissard, Ao38, a new cell line from eggs of the black witch

moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection

and produces high levels of recombinant proteins. BMC Biotechnol. 10, 50 (2010).

doi:10.1186/1472-6750-10-50 Medline

33. W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially

unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

doi:10.1107/S0021889893005588

34. P. Emsley, K. Cowtan, Coot: Model-building tools for molecular graphics. Acta Crystallogr.

60, 2126–2132 (2004). doi:10.1107/S0907444904019158 Medline

35. P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd,

L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R.

Page 18: Santiago Supplementary Materials

Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart,

PHENIX: A comprehensive Python-based system for macromolecular structure solution.

Acta Crystallogr. 66, 213–221 (2010). doi:10.1107/S0907444909052925 Medline

36. I. W. Davis, A. Leaver-Fay, V. B. Chen, J. N. Block, G. J. Kapral, X. Wang, L. W. Murray,

W. B. Arendall 3rd, J. Snoeyink, J. S. Richardson, D. C. Richardson, MolProbity: All-

atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res.

35, W375–W383 (2007). doi:10.1093/nar/gkm216 Medline

37. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read,

Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

doi:10.1107/S0021889807021206 Medline

38. T. C. Terwilliger, R. W. Grosse-Kunstleve, P. V. Afonine, N. W. Moriarty, P. H. Zwart, L.

W. Hung, R. J. Read, P. D. Adams, Iterative model building, structure refinement and

density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. 64, 61–69

(2008). doi:10.1107/S090744490705024X Medline

39. T. D. Fenn, D. Ringe, G. A. Petsko, POVScript+: A program for model and data

visualization using persistence of vision ray-tracing. J. Appl. Crystallogr. 36, 944–947

(2003). doi:10.1107/S0021889803006721

40. Y. Yin, Z. Y. Wang, S. Mora-Garcia, J. Li, S. Yoshida, T. Asami, J. Chory, BES1

accumulates in the nucleus in response to brassinosteroids to regulate gene expression

and promote stem elongation. Cell 109, 181–191 (2002). doi:10.1016/S0092-

8674(02)00721-3 Medline

41. R. A. Laskowski, M. B. Swindells, LigPlot+: Multiple ligand-protein interaction diagrams

for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011). doi:10.1021/ci200227u

Medline

42. D. Li, L. Wang, M. Wang, Y. Y. Xu, W. Luo, Y. J. Liu, Z. H. Xu, J. Li, K. Chong,

Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high

yield. Plant Biotechnol. J. 7, 791–806 (2009). doi:10.1111/j.1467-7652.2009.00444.x

Medline

Page 19: Santiago Supplementary Materials

43. C. Albrecht, E. Russinova, B. Kemmerling, M. Kwaaitaal, S. C. de Vries, Arabidopsis

SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-

dependent and -independent signaling pathways. Plant Physiol. 148, 611–619 (2008).

doi:10.1104/pp.108.123216 Medline

44. T. Slotte, K. M. Hazzouri, J. A. Agren, D. Koenig, F. Maumus, Y. L. Guo, K. Steige, A. E.

Platts, J. S. Escobar, L. K. Newman, W. Wang, T. Mandáková, E. Vello, L. M. Smith, S.

R. Henz, J. Steffen, S. Takuno, Y. Brandvain, G. Coop, P. Andolfatto, T. T. Hu, M.

Blanchette, R. M. Clark, H. Quesneville, M. Nordborg, B. S. Gaut, M. A. Lysak, J.

Jenkins, J. Grimwood, J. Chapman, S. Prochnik, S. Shu, D. Rokhsar, J. Schmutz, D.

Weigel, S. I. Wright, The Capsella rubella genome and the genomic consequences of

rapid mating system evolution. Nat. Genet. 45, 831–835 (2013). doi:10.1038/ng.2669

Medline

45. W. Kabsch, C. Sander, Dictionary of protein secondary structure: Pattern recognition of

hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

doi:10.1002/bip.360221211 Medline