s. ramesh development of nanocomposite polymer electrolytes (ncpes) in electric double layer...

39
S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

Upload: dulce-ainsworth

Post on 14-Jan-2016

244 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

S. Ramesh

Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors

(EDLCs) Application

1

Page 2: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

UNIVERSITY OF MALAYA, MALAYSIA

2

Page 3: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

OVERVIEW

1) Introduction2) Problem Statement3) Literature Review4) Methodology5) Results and Discussion6) Conclusions

3

Page 4: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

INTRODUCTION

4

Page 5: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

5

Page 6: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

6Applications of Polymer Electrolytes

Page 7: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

7

BiopolymerIonic liquids

Polymer blendingMixed salt systemMixed solvent

systemIonic liquidsPlasticizersFillers

FillersPolymer blending

Page 8: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

8

Page 9: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

LITERATURE REVIEW

9

Page 10: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

10

Advantages of PVA

Page 11: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

11

Advantages of Ionic Liquids

Page 12: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

12

• Graphite fibre• Aromatic polyamide• Cellulosic rigid rods

(whiskers)

• Inert metal oxide• Molecular sieves and zeolites • Ferroelectric materials• Rare earth oxide • Solid superacid • Carbon• Nano–clay • Heteropolyacid

• Lithium–nitrogen (Li2N)

• Lithium aluminate (LiAlO2)• Lithium containing ceramics• Titanium carbides (TiCx)

• Titanium carbonitrides (TiCxNy)

Active

Page 13: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

13

Enhance interfacial stability

Advantages of Fillers

Reduce Tg

Enhance thermal stability

Increase cationic

diffusivity

Improve physical

properties

Improve morphological

properties

Lower interfacial resistance

Decrease the crystallinity

Reduce water

retention

Improve long–term stability

Page 14: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

•Conducting polymers•Metal oxide •Carbon

12

Page 15: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

ELECTRIC DOUBLE LAYER CAPACITORS (EDLCS)

15

Page 16: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

16

Disadvantages of ACCNT

Page 17: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

17

Page 18: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

MATERIALS 18

MATERIAL ROLE

Poly (vinyl alcohol) (PVA) Polymer

1–butyl–3–methylimidazolium bromide (BmImBr)

Ionic liquid

Silica (SiO2) (70nm)Titania (TiO2) (40–50nm)Zirconia (ZrO2) (<100nm) Alumina (Al2O3) (<100nm)

Fillers

Distilled water Solvent

Page 19: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

METHODOLOGY

19

Page 20: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

A) SAMPLE PREPARATION20

PVA+ BmImBr+ SiO2/TiO2/ZrO2/Al2O3

Stir and heat at 80 °C Cast on Petri dish

Formation of free standing polymer electrolyte

EISDSCLSV

SiO2TiO2ZrO2Al2O3

Page 21: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

B) ELECTRODE PREPARATION21

80 wt.% of activated carbon5 wt.% of carbon black5 wt.% of carbon nanotubes (CNTs) 10 wt.% of poly(vinylidene fluoride) (PVdF) 1–methyl–2–pyrrolidone solvent

Stir for several hours

Dip coating process

Page 22: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

C) EDLC FABRICATION & CHARACTERIZATION

Configuration: electrode/polymer electrolyte/electrode

22

Figure 1: The fabricated EDLC using the highest conducting ionic liquid–added polymer electrolyte from each system.

Cyclic Voltammetry (CV)Galvanostatic Charge–Discharge (GCD)

Page 23: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

RESULTS AND DISCUSSION

23

Page 24: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

24Ambient Temperature–Ionic Conductivity Studies

Figure 2: The logarithm of ionic conductivity of polymer electrolyte at different mass fraction of (a) SiO2 and (b) ZrO2.

Page 25: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

25

Figure 3: The logarithm of ionic conductivity of polymer electrolyte at different mass fraction of (a) TiO2 and (b) Al2O3.

Page 26: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

26Temperature Dependent–Ionic Conductivity Studies

Figure 4: Arrhenius plot of filler–free polymer electrolyte and filler–doped NCPEs.

Page 27: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

27

Sample Activation energy, Ea (eV)

Log A Pre–exponential constant, A

Filler–free system

0.2751 –2.8442 1.43×10-3

Si system 0.2119 –1.8396 0.0145

Zr system 0.1431 –0.7513 0.18

Ti system 0.1413 –0.7307 0.19

Al system 0.1280 –0.4834 0.33

Page 28: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

28

Differential Scanning Calorimetry (DSC)

Figure 5: Glass transition temperature (Tg) of polymer electrolytes.

Tg

Page 29: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

29

Tm

Figure 6: Crystalline melting temperature (Tm) of polymer electrolytes.

Page 30: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

30

Heat of Fusion (Jg-1)

Relative crystallinity

(%)

Filler–free system

719.7 100

Si system 358.7 50

Zr system 287.6 0.40

Ti system 217.1 0.30

Al system 203.3 0.28

%100

m

mc H

HX

Tc

Figure 7 : Crystallization temperature (Tc) of polymer electrolytes.

Page 31: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

31Linear Sweep Voltammetry (LSV)

Figure 8: LSV response of the most conducting polymer electrolyte from each system.

Filler–free system Si system

Zr system Ti system Al system

1.2 V2.2 V

2.0 V

2.3 V2.2 V

Page 32: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

32Cyclic Voltammetry (CV)

sm

iCsp

Filler–free system

sA

iCsp

0.15 F g-1

1.74 mF cm-2

Figure 9: Cyclic voltammogram of EDCL containing the most conducting polymer electrolyte from (a) filler–free system and (b) Si system.

(a)

Page 33: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

33

Figure 10: Cyclic voltammogram of EDCL containing the most conducting polymer electrolyte from (a) Zr system, (b) Ti system and (c) Al system.

Page 34: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

34Galvanostatic Charge–Discharge Analysis

(GCD)

dtdVm

ICsp

3600

1000

2

2

dVC

E sp

10002

m

dVIP

100c

d

t

t

Si system

Figure 11: Galvanostatic charge–discharge performances of EDLC containing (a) Si system and (b) Zr system over first 5 cycles.

(a) (b)

Page 35: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

35

Ti system Al system4.34 F g-1 8.62 F g-1

Figure 12: Galvanostatic charge–discharge performances of EDLC containing (a) Ti system and (b) Al system over first 5 cycles.

(a) (b)

Page 36: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

36

System Specific discharge

capacitance, Csp

(F g-1)

Coulombic efficiency, η

(%)

Energy density, E (W h kg-1)

Power density, P (W kg-1)

Si system 2.58 86 0.18 34.94

Zr system 4.16 40 0.36 36.76

Ti system 4.34 76 0.42 38.41Al system 8.62 81 0.95 41.15

Page 37: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

CONCLUSIONS

• Addition of nano–sized fillersIncreases the ionic conductivityFollows Arrhenius rules for the conduction mechanismReduces the Tg and crystallinityImproves the electrochemical stability window Enhances the electrochemical properties of EDLCs

(i.e. capacitance)• Alumina–based polymer electrolyte is a good choice as

separator in EDLC

37

Page 38: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

38

Miss Liew Chiam Wen

Madam Lim Jing Yi

Miss Shanti Rajantharan

Mr. Mohammad

Hassan Khanmirzaei

Mr. Vikneswaran Rajamuthy

Mr. Ng Hon Ming

Mr. Mohd Zieauddin bin Kufian

Madam Rajammal

Mr. Ramis Rao Mr. Lu Soon Chien

Miss Nurul Nadiah

Supervision

Dr. Yugal Kishor

Mahipal

Miss Chong Mee Yoke

Page 39: S. Ramesh Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application 1

39WELCOME TO MALAYSIA

Alumina–based polymer electrolyte