remote sensing, land surface modelling and data assimilation

53
Remote Sensing, Remote Sensing, Land Surface Modelling Land Surface Modelling and Data Assimilation and Data Assimilation Christoph Rüdiger, Jeffrey Christoph Rüdiger, Jeffrey Walker Walker The University of Melbourne The University of Melbourne Jetse Kalma Jetse Kalma The University of Newcastle The University of Newcastle Garry Willgoose Garry Willgoose The university of Leeds The university of Leeds

Upload: sylvester-stewart

Post on 02-Jan-2016

47 views

Category:

Documents


3 download

DESCRIPTION

Remote Sensing, Land Surface Modelling and Data Assimilation. Christoph Rüdiger, Jeffrey Walker The University of Melbourne Jetse Kalma The University of Newcastle Garry Willgoose The university of Leeds. Overview. Remote Sensing Data Assimilation Land Surface Modelling - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Remote Sensing,  Land Surface Modelling and Data Assimilation

Remote Sensing, Remote Sensing, Land Surface Modelling Land Surface Modelling and Data Assimilationand Data Assimilation

Christoph Rüdiger, Jeffrey WalkerChristoph Rüdiger, Jeffrey WalkerThe University of MelbourneThe University of Melbourne

Jetse KalmaJetse KalmaThe University of NewcastleThe University of Newcastle

Garry WillgooseGarry WillgooseThe university of LeedsThe university of Leeds

Page 2: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Overview

• Remote Sensing• Data Assimilation• Land Surface Modelling• Combining the Options

Page 3: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Remote Sensing

Page 4: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Remote Sensing

• Remote Sensing defined:• Measurement of energy reflections or

emissions of different spectra from a distance

• Modes of Remote Sensing in Hydrology:• Ground-based• air-borne • space-borne platforms

Page 5: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

• Visual Band (~400nm – 700nm)• Infrared Band (~0.7μm – 1000μm)• Microwave Band (~1cm – 30cm)• Radio Band (>30cm)

• Gravitational Measurements

Observed Wavelengths- Spectral Resolution -

Page 6: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

What Can Be Measured(some examples)

• Subsurface• Surface soil moisture, soil

temperature, gravitational effects

• Surface• Vegetation cover, vegetation density,

evapotranspiration, temperature, sea level, elevation, fires

• Atmosphere• Cloud cover, aerosols, wind,

temperature

Page 7: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Remote Sensing- Spatial Resolution -

Study Catchment

Page 8: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Current Missions

• Visual Band (~400nm – 700nm) • Modis, Landsat …

• Infrared Band (~0.7μm – 1000μm)• Landsat, GOES

• Microwave Band (~1cm – 30cm)• TRMM, AMSR-E

• Radio Band (>30cm)• TRMM

• Gravitational Measurements• Grace

Page 9: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Limitations of Individual Bands

• Atmospheric interference (infrared).

• Radio interference (microwave).• Surface conditions, vegetation,

cloud and aerosol effects (all).• Penetration depth (all).• Other effects?

Rüdiger et al., in review

Page 10: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Summary of Remote Sensing

• Advantages:• Observation of large areas• Observations of remote areas• Large quantity of environmental states can

be observed

• Limitations:• Either low resolution or low rate of repeat

overpasses• Influence of surface and atmospheric

conditions have to be filtered• Average values of observed states, need for

downscaling

Page 11: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Data Assimilation

Page 12: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Data Assimilation Defined

Definition 1: using data to force a model ie. precipitation and evapotranspiration to force a LSMAnalogy: passenger giving instructions to a blindfolded driver on the autostrada at peak hour

Page 13: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Analogy 1

Initial state

Up

date

Up

date

Up

date

Up

date

Up

date

Up

date

Page 14: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Data Assimilation Defined

Definition 1: using data to force a model ie. precipitation and evapotranspiration to force a LSM

Definition 2: using state observations to make a correction to the forecast model state ie. surface soil moisture obs. to correct forecastsAnalogy: driver can see through his blindfold for 1/10th second every 30 seconds

Analogy: passenger giving instructions to a blindfolded driver on the autostrada at peak hour

Page 15: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Analogy 2In

itia

l st

ate

Avail. Info ForecastAvail. Info

Forecast

Fore

cast

Avail.

Info

Page 16: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

What is the Usefulness of Data Assimilation

• Organises data (model acts as interpolator)

• Complements data (fills in unobserved regions)

• Supplments data (provides unobserved quantities)

• Quality controls data• Calibrates data

Page 17: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Some Methods of Data Assimilation

1. Direct Insertion2. Statistical Correction3. Optimal Interpolation (OI)4. Variational over Space and Time

(4DVAR)5. Sequential Data Assimilation (eg.

Kalman Filter)

Page 18: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Continuous or Sequential DA?

• Continuous (ie. variational)• Regression schemes• Adjoint derivation

• In general:• Minimisation of objective function

Time

Sta

te V

alu

eWindow 1 Window 2

1

0

1

00000

2

1

2

1

N

kkkkT

kkk

bbTb

XhZRXhZ

XXXXJ

Page 19: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Continuous or Sequential DA?

• Sequential (ie. Kalman filter)

Predict:

Observe:Correct:

Time

Sta

te V

alu

e

1

11

?

,

kTk

bk

Tk

bkk

Tkkk

Tkk

bkkk

ak

bkkkk

bk

ak

k

bk

kakk

bk

RHHHK

KRKHKIHKI

XHZKXX

Z

UXfX

Page 20: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Extended or Ensemble KF?

Time

Sta

te V

alu

e

EKF

Co

vari

anc

e

Time

Sta

te V

alu

e

EnKF

Co

vari

anc

e

Page 21: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

DA as a Spatial Interpolator

Matric Head

De

pth

TrueProfile

ModelPrediction

ModelUpdate

DirectReplacement

WithObservations

Matric Head

De

pth

TrueProfile

ModelPrediction

StatisticallyOptimal

Model Update

ObservationDepth

ModelModel with 4DDA

Observation

Soil Moisture Soil Moisture

Houser et al., WRR 1998

Page 22: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Summary of Data Assimilation

• Advantages• Variational:

• Computationally inexpensive• Does not need prior knowledge of system states

or errors• No linearisation of model needed• Can obtain model sensitivity values

• Sequential:• Update of states at every observation point• Model size depends on computer not

mathematics• Advantage over variational schemes for

distributed models

Page 23: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Summary of Data Assimilation

• Limitations• Variational:

• Regression scheme can become unstable• Adjoint derivation can be a complex

problem• Long-term forecasts become inaccurate

• Sequential:• Models have to be linearised to certain

extent• Can be computationally infeasible• Error estimates can cause problems

Page 24: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Hydrological Modelling

Page 25: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Hydrological Modelling

• Different models available• Soil moisture models• Land surface models• Atmospheric models• Land surface – atmosphere models • General Circulation models

• Different approaches for modelling:• Lumped• Distributed• Semi-distributed

Page 26: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Difference between model approaches

distributed

semi-distributed or lumped

Page 27: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Semi-distributed model

Kalma et al., 1995

Page 28: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Two Models

Liang et al., 1998

Koster et al., 2000

Page 29: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Drought monitoringDrought monitoring

Flood predictionFlood prediction

Irrigation policiesIrrigation policies

Weather forecastingWeather forecasting

Importance of Land Surface States

(soil moisture, soil temperature, snow)

Page 30: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Importance of Land Surface States

(soil moisture, soil temperature, snow)• Early warning systems

• Flood prediction – infiltration, snow melt

• Socio-economic activities• Agriculture – yield forecasting, management

(pesticides etc), sediment transport• Water management – irrigation

• Policy planning• Drought relief• Global change

• Weather and climate• Evapotranspiration – latent and sensible heat• Albedo

Page 31: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Soil Moisture vs Sea Surface Temp

• Knowledge of soil moisture has a greater impact on the predictability of summertime precipitation over land at mid-latitudes than Sea Surface Temperature (SST).

Koster et al., JHM 2000

Page 32: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Importance of Soil Moisture

Koster et al., JHM 2000

(JJA)

Page 33: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Combining the Efforts

Page 34: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

The Situation

Remote SensingSatellite

Surface SoilMoisture

Soil MoistureSensors

Logger Soil Moisture Model[q , D ( ), ( )] f s(z)

Page 35: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

The Problem With LSMs

• Same forcing and initial conditions but different predictions of soil moisture!

Houser et al., GEWEX NEWS 2001

Page 36: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Why do we need improvement?

Koster et al., JHM, 2000

Page 37: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

How Do We Measure Soil Moisture

Page 38: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Case Study – Variational DA

Assimilation of Streamflow and Surface Soil Moisture Observations

Page 39: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Bayesian Regression

Kuczera, 1982

Page 40: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Results from assimilation with "true" forcing (profile mc)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

DateV

WC

[-]

true

Results “Experiment 1”Results from assimilation with "true" forcing (runoff)

0

50

100

150

200

250

300

350

400

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Dis

char

ge

[m^

3/s]

true

Results from assimilation with "true" forcing (runoff)

0

50

100

150

200

250

300

350

400

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Dis

char

ge

[m^

3/s]

truedeg

Discharge Soil Moisture

Results from assimilation with "true" forcing (profile mc)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

DateV

WC

[-]

truedeg

Results from assimilation with "true" forcing (profile mc)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

DateV

WC

[-] true

degassim

Results from assimilation with "true" forcing (runoff)

0

50

100

150

200

250

300

350

400

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Dis

char

ge

[m^

3/s]

truedegassim

Page 41: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Results “Experiment 1”Results from assimilation with "true" forcing (runoff)

0

50

100

150

200

250

300

350

400

01/08/03 02/08/03 03/08/03

Date

Dis

char

ge

[m^

3/s]

true

deg

assim

Page 42: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Assimilation with "wrong" forcing data (profile mc)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Vo

lum

etri

c M

ois

ture

Co

nte

nt

[-]

true

Results “Experiment 2”

Assimilation with "wrong" forcing data (runoff)

0

100

200

300

400

500

600

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Dis

char

ge

[m^

3/s]

true

Assimilation with "wrong" forcing data (runoff)

0

100

200

300

400

500

600

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Dis

char

ge

[m^

3/s]

true

deg

Assimilation with "wrong" forcing data (runoff)

0

100

200

300

400

500

600

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Dis

char

ge

[m^

3/s]

true

deg

assim

Discharge Soil Moisture

Assimilation with "wrong" forcing data (profile mc)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Vo

lum

etri

c M

ois

ture

Co

nte

nt

[-]

true

degr.

Assimilation with "wrong" forcing data (profile mc)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

01/08/03 08/08/03 15/08/03 22/08/03 29/08/03

Date

Vo

lum

etri

c M

ois

ture

Co

nte

nt

[-]

true

degr.

assim

Page 43: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Results Experiment 2 cont’d

Root Zone Soil Moisture Surface Soil Moisture

Page 44: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Summary of Variational Approach

• Retrieval of initial states possible to high accuracy.

• Only few iterations necessary.• Limitations when additional errors

are involved.• Long forecasting window will lead

to less accurate results.• First estimate of initial states can

be important

Page 45: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Case Study – Sequential DA

Assimilation of Surface Soil Moisture

Page 46: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Direct Insertion Every Hour

Day 1

No Update0 cm

1

4

10 cm

True

Day 3

-600 0-100

0

Matric Head (cm)

De

pth

(cm

)

Day 5 Day 7

Page 47: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Kalman Filter Update Every Hour

Hour 1

No Update

0 cm1 cm

4 cm

10 cm

True

Hour 4

-600 0-100

0

Matric Head (cm)

De

pth

(cm

)

Hour 8 Hour 12

Page 48: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Effects of Extreme Events

0

60

250 500

So

il M

ois

ture

(%

v/v)

Day of Simulation

Depth 30 - 60 cm

Depth 10 - 30 cm

TrueOpen LoopOriginal KFModified KF

Depth 1 - 10 cm

Page 49: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Number of Observations• All observations

0

60

Aug/27 Sep/7 Sep/19

Connector TDROpen LoopKalman-Filter

Soi

l Moi

stur

e (%

v/v)

1997

Depth 0-520 mm

0

60

Aug/27 Sep/7 Sep/19

Connector TDROpen LoopKalman-Filter

Soi

l Moi

stur

e (%

v/v)

1997

Depth 0-520 mm

• Single Observation

Page 50: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Summary of Sequential DA

• Require a statistical assimilation scheme (ie. a scheme which can potentially alter the entire profile).

• Simulation results may be degraded slightly if simulation and observation values are already close.

• The updating interval is relatively unimportant when using a calibrated model with accurate forcing.

Page 51: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Final Words

• Other assimilation work• Complete the global SMMR assimilation – Ni et al.• SMMR/AMSR assimilation Australia – Walker et al.• Continental snow assimilation – Sun et al.• TRMM assimilation – Entin et al.• G-LDAS – Rodell et al.

• Runoff assimilation – Rüdiger et al.

• Evapotranspiration assimilation – Pipunic et al.

Page 52: Remote Sensing,  Land Surface Modelling and Data Assimilation

Christoph Rüdiger & Jeffrey Walker

Ciao di Rocco

Page 53: Remote Sensing,  Land Surface Modelling and Data Assimilation

Thankyou!Thankyou!