projecting uncertainty through nonlinear odes

36
Projecting uncertainty through nonlinear ODEs Youdong Lin 1 , Mark Stadherr 1 , George Corliss 2 , Scott Ferson 3 1 University of Notre Dame 2 Marquette University 3 Applied Biomathematics

Upload: zulema

Post on 11-Feb-2016

24 views

Category:

Documents


1 download

DESCRIPTION

Projecting uncertainty through nonlinear ODEs. Youdong Lin 1 , Mark Stadherr 1 , George Corliss 2 , Scott Ferson 3 1 University of Notre Dame 2 Marquette University 3 Applied Biomathematics. Uncertainty. Artifactual uncertainty Too few polynomial terms Numerical instability - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Projecting uncertainty through nonlinear ODEs

Projecting uncertainty through nonlinear ODEs

Youdong Lin1, Mark Stadherr1, George Corliss2, Scott Ferson3

1University of Notre Dame2Marquette University

3Applied Biomathematics

Page 2: Projecting uncertainty through nonlinear ODEs

Uncertainty

• Artifactual uncertainty– Too few polynomial terms– Numerical instability– Can be reduced by a better analysis

• Authentic uncertainty– Genuine unpredictability due to input uncertainty– Cannot be reduced by a better analysis

Page 3: Projecting uncertainty through nonlinear ODEs

Uncertainty propagation

• We want the predition to ‘break down’ if that’s what should happen

• But we don’t want artifactual uncertainty– Wrapping effect– Dependence problem– Repeated parameters

Page 4: Projecting uncertainty through nonlinear ODEs

Problem• Nonlinear ordinary differential equation (ODE)

dx/dt = f(x, )

with uncertain and initial state x0

• Information about and x0 comes as– Interval ranges– Probability distribution– Something in between

Page 5: Projecting uncertainty through nonlinear ODEs

Model Initial states (range)Parameters (range)

Notre Dame

List of constants plus remainder

Page 6: Projecting uncertainty through nonlinear ODEs

Inside VSPODE

• Interval Taylor series (à la VNODE)– Dependence on time

• Taylor model– Dependence of parameters

(Comparable to COSY)

Page 7: Projecting uncertainty through nonlinear ODEs

Representing uncertainty

• Cumulative distribution function (CDF)– Gives the probability that a random variable is

smaller than or equal to any specified value

F is the CDF of , if F(z) = Prob( z)

We write: ~ F

Page 8: Projecting uncertainty through nonlinear ODEs

Example: uniform

0

1

1.0 2.0 3.0 0.0

Cum

ulat

ive

prob

abili

ty

Prob( 2.5) = 0.75

Page 9: Projecting uncertainty through nonlinear ODEs

Another example: normal

0

1

1.0 2.0 3.0 0.0

Cum

ulat

ive

prob

abili

ty Prob( 2.5) = 0.90

Page 10: Projecting uncertainty through nonlinear ODEs

P-box (probability box)

0

1

1.0 2.0 3.0 0.0 X

Cum

ulat

ive

prob

abili

ty

Interval bounds on an CDF

Page 11: Projecting uncertainty through nonlinear ODEs

Marriage of two approaches

Point value Interval

Distribution P-box

Page 12: Projecting uncertainty through nonlinear ODEs

Probability bounds analysis

• All standard mathematical operations– Arithmetic (+, , ×, ÷, ^, min, max)– Transformations (exp, ln, sin, tan, abs, sqrt, etc.)– Other operations (and, or, ≤, envelope, etc.)

• Quicker than Monte Carlo

• Guaranteed (automatically verified)

Page 13: Projecting uncertainty through nonlinear ODEs

Probability bounds arithmeticP-box for random variable A P-box for random variable B

What are the bounds on the distribution of the sum of A+B?

0

1

0 2 4 6 8 10 12 14Value of random variable B

Cum

ulat

ive

Prob

abili

ty0

1

0 1 2 3 4 5 6Value of random variable A

Cum

ulat

ive

Prob

abili

ty

Page 14: Projecting uncertainty through nonlinear ODEs

Cartesian product

A+Bindependence

A[1,3]p1 = 1/3

A[3,5]p3 = 1/3

A[2,4]p2 = 1/3

B[2,8]q1 = 1/3

B[8,12]q3 = 1/3

B[6,10]q2 = 1/3

A+B[3,11]prob=1/9

A+B[5,13]prob=1/9

A+B[4,12]prob=1/9

A+B[7,13]prob=1/9

A+B[9,15]prob=1/9

A+B[8,14]prob=1/9

A+B[9,15]prob=1/9

A+B[11,17]prob=1/9

A+B[10,16]prob=1/9

Page 15: Projecting uncertainty through nonlinear ODEs

A+B under independence

0 3 6 9 12 180.00

0.25

0.50

0.75

1.00

15

A+B

Cum

ulat

ive

prob

abili

ty

Page 16: Projecting uncertainty through nonlinear ODEs

When independence is untenable

1),()(mininf,0,1)()(maxsup yGxFyGxF

yxzyxz

Suppose X ~ F and Y ~ G. The distribution of X+Y is bounded by

whatever the dependence between X and Y

Similar formulas for operations besides addition

Page 17: Projecting uncertainty through nonlinear ODEs

Example ODE

dx1/dt = 1 x1(1 – x2) dx2/dt = 2 x2(x1–1)

What are the states at t = 10?

x0 = (1.2, 1.1)T

1 [2.99, 3.01]2 [0.99, 1.01]

VSPODE– Constant step size h = 0.1, Order of Taylor model q = 5, – Order of interval Taylor series k = 17, QR factorization

Page 18: Projecting uncertainty through nonlinear ODEs

Calculation of X1

1.916037656181642 10 2

1 + 0.689979149231081 11 2

0 + -4.690741189299572 1

0 22 + -2.275734193378134 1

1 21 +

-0.450416914564394 12 2

0 + -29.788252573360062 10 2

3 + -35.200757076497972 1

1 22 + -12.401600707197074 1

2 21 +

-1.349694561113611 13 2

0 + 6.062509834147210 10 2

4 + -29.503128650484253 1

1 23 + -25.744336555602068 1

2 22 +

-5.563350070358247 13 2

1 + -0.222000132892585 14 2

0 + 218.607042326120308 1

0 25 + 390.260443722081675 1

1 24 +

256.315067368131281 12 2

3 + 86.029720297509172 13 2

2 + 15.322357274648443 1

4 21 + 1.094676837431721 1

5 20 +

[ 1.1477537620811058, 1.1477539164945061 ]where ’s are centered forms of the parameters; 1 = 1 3, 2 = 2 1

Page 19: Projecting uncertainty through nonlinear ODEs

2.99 3 3.010

1

0.99 1 1.010

1

0.99 1 1.010

1

2.99 3 3.010

1

1 2

Pro

babi

lity 1

2

normal

uniform

Page 20: Projecting uncertainty through nonlinear ODEs

2.99 3 3.010

1

0.99 1 1.010

1

0.99 1 1.010

1

2.99 3 3.010

1

1 2

1 2

precise

min, max, mean, var

Page 21: Projecting uncertainty through nonlinear ODEs

Calculation of X1

1.916037656181642 10 2

1 + 0.689979149231081 11 2

0 + -4.690741189299572 1

0 22 + -2.275734193378134 1

1 21 +

-0.450416914564394 12 2

0 + -29.788252573360062 10 2

3 + -35.200757076497972 1

1 22 + -12.401600707197074 1

2 21 +

-1.349694561113611 13 2

0 + 6.062509834147210 10 2

4 + -29.503128650484253 1

1 23 + -25.744336555602068 1

2 22 +

-5.563350070358247 13 2

1 + -0.222000132892585 14 2

0 + 218.607042326120308 1

0 25 + 390.260443722081675 1

1 24 +

256.315067368131281 12 2

3 + 86.029720297509172 13 2

2 + 15.322357274648443 1

4 21 + 1.094676837431721 1

5 20 +

[ 1.1477537620811058, 1.1477539164945061 ]where ’s are centered forms of the parameters; 1 = 1 3, 2 = 2 1

Page 22: Projecting uncertainty through nonlinear ODEs

Results for uniform p-boxesP

roba

bilit

y

1.12 1.14 1.16 1.180

1

0.87 0.88 0.89 0.90

1X1 X2

Page 23: Projecting uncertainty through nonlinear ODEs

1.12 1.14 1.16 1.180

1

0.87 0.88 0.89 0.90

1

0.87 0.88 0.89 0.90

1

1.12 1.14 1.16 1.180

1

Pro

babi

lity

normals

min, max, mean, var

Page 24: Projecting uncertainty through nonlinear ODEs

Still repetitions of uncertainties 1.916037656181642 1

0 21 + 0.689979149231081 1

1 20 +

-4.690741189299572 10 2

2 + -2.275734193378134 11 2

1 + -0.450416914564394 1

2 20 + -29.788252573360062 1

0 23 +

-35.200757076497972 11 2

2 + -12.401600707197074 12 2

1 + -1.349694561113611 1

3 20 + 6.062509834147210 1

0 24 +

-29.503128650484253 11 2

3 + -25.744336555602068 12 2

2 + -5.563350070358247 1

3 21 + -0.222000132892585 1

4 20 +

218.607042326120308 10 2

5 + 390.260443722081675 11 2

4 + 256.315067368131281 1

2 23 + 86.029720297509172 1

3 22 +

15.322357274648443 14 2

1 + 1.094676837431721 15 2

0 + [ 1.1477537620811058, 1.1477539164945061 ]

Page 25: Projecting uncertainty through nonlinear ODEs

Subinterval reconstitution

• Subinterval reconstitution (SIR)– Partition the inputs into subintervals– Apply the function to each subinterval– Form the union of the results

• Still rigorous, but often tighter – The finer the partition, the tighter the union– Many strategies for partitioning

• Apply to each cell in the Cartesian product

Page 26: Projecting uncertainty through nonlinear ODEs

Discretizations

2.99 3 3.010

1

Page 27: Projecting uncertainty through nonlinear ODEs

0.87 0.88 0.89 0.90

1

1.12 1.14 1.160

1

X1 X2

Contraction from SIRP

roba

bilit

y

Best possible bounds reveal the authentic uncertainty

Page 28: Projecting uncertainty through nonlinear ODEs

Precise distributions

• Uniform distributions (iid)

• Can be estimated with Monte Carlo simulation– 5000 replications

• Result is a p-box even though inputs are precise

Page 29: Projecting uncertainty through nonlinear ODEs

Results are (narrow) p-boxes

0

1

1.12 1.13 1.141.15 1.161.170

1

0.876 0.88 0.8840.8880.892

X1 X2

Pro

babi

lity

Page 30: Projecting uncertainty through nonlinear ODEs

Not automatically verified

• Monte Carlo cannot yield validated results– Though can be checked by repeating simulation

• Validated results can be achieved by modeling inputs with (narrow) p-boxes and applying probability bounds analysis

• Converges to narrow p-boxes obtained from infinitely many Monte Carlo replications

Page 31: Projecting uncertainty through nonlinear ODEs

What are these distributions?

time

x

time

x

“bouquet”

“tangle”

Page 32: Projecting uncertainty through nonlinear ODEs

Conclusions

• VSPODE is useful for bounding solutions of parametric nonlinear ODEs

• P-boxes and Risk Calc software are useful when distributions are known imprecisely

• Together, they rigorously propagate uncertainty through a nonlinear ODE

IntervalsDistributionsP-boxes

Initial statesParameters

Page 33: Projecting uncertainty through nonlinear ODEs

To do

• Subinterval reconstitution accounts for the remaining repeated quantities

• Integrate it more intimately into VSPODE– Customize Taylor models for each cell

• Generalize to stochastic case (“tangle”) when inputs are given as intervals or p-boxes

Page 34: Projecting uncertainty through nonlinear ODEs

Acknowledgments

• U.S. Department of Energy (YL, MS)

• NASA and Sandia National Labs (SF)

Page 35: Projecting uncertainty through nonlinear ODEs

More information

Mark Stadtherr ([email protected])

Scott Ferson ([email protected])

Page 36: Projecting uncertainty through nonlinear ODEs

end