prediction of soc breakthrough in granular activated

21
Prediction of SOC breakthrough in Granular Activated Carbon(GAC) Adsorption Irene Slavik (2,3) , Wolfgang Uhl (1,3) (1) Norwegian Institute for Water Research (NIVA) Team Systems Engineering and Technology (2) Wahnbachtalsperrenverband (3) Technische Universität Dresden Chair of Water Supply Engineering

Upload: others

Post on 02-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Prediction of SOC breakthrough in Granular Activated

Prediction of SOC breakthrough in Granular Activated Carbon(GAC) Adsorption

Irene Slavik (2,3), Wolfgang Uhl (1,3)

(1) Norwegian Institute for Water Research (NIVA) Team Systems Engineering and Technology

(2) Wahnbachtalsperrenverband (3) Technische Universität Dresden Chair of Water Supply Engineering

Page 2: Prediction of SOC breakthrough in Granular Activated

Motivation

Raw water resources

Synthetic Organic Compounds

Removal of SOCs during

drinking water treatment

by activated carbon filtration?

Water treatment

Prediction of break-

through behavior of

SOCs during granular

activated carbon

filtration?

Page 3: Prediction of SOC breakthrough in Granular Activated

Water treatment using GAC

Page 4: Prediction of SOC breakthrough in Granular Activated

Breakthrough

Breakthrough prediction

1. Equilibrium

2. Kinetics c/c0

time

Page 5: Prediction of SOC breakthrough in Granular Activated

Predicting breakthrough: equilibrium

50

100

150

200

250

300

350

0 10 20 30 40 50

concentration c in mg/L

So

lid

ph

as

e c

on

ce

ntr

ati

on

q in

mg

/g

ncKq

Page 6: Prediction of SOC breakthrough in Granular Activated

Predicting breakthrough: kinetics

SFF cckn

qqkn SSKS

Filmdiffusion to the grain surface

Surface diffusion inside the grain

Page 7: Prediction of SOC breakthrough in Granular Activated

Two ways to predict breakthrough of new substances

Simulation

Equilibrium (Freundlich-parameters) Kinetics

Models:

• Polanyi-theory

• LSER

• normalized

Freundlich-

equation

Lab-scale filter test

• e.g. rapid small scale column tests (RSSCTs) Experiment: Model:

c/c0

t

c/c0

t

Page 8: Prediction of SOC breakthrough in Granular Activated

Objectives

Appropriate prediction of

breakthrough behavior possible?

c/c0

time

Page 9: Prediction of SOC breakthrough in Granular Activated

Approach

Simulation

Equilibrium (Freundlich-parameters) Kinetics

Model: Experiment: Models:

• Polanyi-theory

• LSER

• normalized

Freundlich-

equation

Prediction of breakthrough behavior

Lab-scale filter test

• e.g. rapid small scale column tests (RSSCTs)

Page 10: Prediction of SOC breakthrough in Granular Activated

Isotherm Freundlich coefficients from SOC’s properties

Models

• Polanyi-theory

• LSER

• normalized Freundlich-equation

to derive Freundlich-parameters

Data

• Literature data

• Own isotherm measurements

prediction of breakthrough

- Freundlich-parameters from models

- Kinetic models

Page 11: Prediction of SOC breakthrough in Granular Activated

Compounds investigated

Group of compounds

Alipha-X Ar / Ar-X Poly-FG Ar-Sul Amines Phenols Pesticides

All

Number of compounds

26 24 51 14 15 35 7 112

Page 12: Prediction of SOC breakthrough in Granular Activated

Correlation of isotherm data using the

Polanyi-model

m

eqeq

adsV

cSRTAV

qV

)/ln(lnlnln 0

S

V

TRAVK

m

lnexp0

mV

TRAn

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

0 50 100 150 200 250 300 350 400

Vo

lum

e a

ds

orb

ed

in

cm

3 g

-1

Normalised adsorption potential in J cm-3

Amines obtained by [86]

EDTA, DDT and DDE

Atrazin and diuron obtained by [77]

polyfunctional organic compounds

Page 13: Prediction of SOC breakthrough in Granular Activated

Correlation of isotherm data using the

normalized Freundlich-equation

polyfunctional organic compounds

*

*

n

eq

eqS

cKq

*

1*

nSKK

*nn

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,E-07 1,E-06 1,E-05 1,E-04 1,E-03 1,E-02 1,E-01 1,E+00 1,E+01

Am

ou

nt

of

so

lute

ad

so

rbe

d i

n m

g g

-1

Normalised concentration

DDT and DDE

Atrazin and diuron obtained by [77] and EDTA

Amines obtained by [86]

Page 14: Prediction of SOC breakthrough in Granular Activated

Comparison of adsorption isotherms obtained by theory and experiment

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Ma

ss

so

lute

/mas

s c

arb

on

in

mg

/g

Concentration in mg/L

4-Nitrophenol

Isotherm experimental

Isotherm non-linear regression (FUV = 0.04)

Isotherm Polanyi (FUV = 1.10)

Isotherm modified Freundlich (FUV = 1.00)

Isotherm LSER (FUV = 0.04)

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14

Mass s

olu

te/m

ass c

arb

on

in

mg

/g

Concentration in mg/L

Diuron

Isotherm experimental

Isotherm non-linear regression (FUV = 0.03)

Isotherm Polanyi (FUV = 0.76)

Isotherm modified Freundlich (FUV = 0.36)

Isotherm LSER (FUV = 0.04)

0

100

200

300

400

500

600

0 5 10 15 20 25

Mass s

olu

te/m

ass c

arb

on

in

mg

/g

Concentration in mg/L

2,4,6-Trichlorophenol

Isotherm experimental

Isotherm non-linear regression (FUV = 0.14)

Isotherm Polanyi (FUV = 3.56)

Isotherm modified Freundlich (FUV = 3.39)

Isotherm LSER (FUV = 1.85)

Page 15: Prediction of SOC breakthrough in Granular Activated

Can breakthrough be described using Freundlich coefficients from compound properties?

Models

• Polanyi-theory

• LSER

• normalized Freundlich-equation

to calculate Freundlich-parameters

Data

• Literature data

• Own isotherm measurements

Simulation of breakthrough

using calculated Freundlich-

parameters

Plot of breakthrough

as determined in experiment

Lab-scale filter test

Comparison

Page 16: Prediction of SOC breakthrough in Granular Activated

Breakthrough in SSCT from experiment and predicted using the normalized Freundlich equation

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 5 10 15 20 25 30 35 40

Filterlaufzeit [h]

c/c

0 [

-]

4-MP exp 3-NP exp 3-CP exp 4-NP exp 2,4-DCP exp 2,4,6-TCP exp

4-MP sim 3-NP sim 3-CP sim 4-NP sim 2,4-DCP sim 2,4,6-TCP sim

Phenols

Filter run time [h]

Page 17: Prediction of SOC breakthrough in Granular Activated

Results

Comparison of breakthrough at c/c0 = 0.1

Compound Exp. break-

through

Simulated breakthrough

Polanyi-model

LSER- model

normalized Freundlich-

equation

[h] [h] [Δh] [h] [Δh] [h] [Δh]

4-MP 3-CP 3-NP 4-NP 2,4-DCP 2,4,6-TCP

11 14 16 18 19 28

7 9 13 12 17 26

-36 % -36 % -19 % -33 % -11 % -7 %

9 12 14 12 16 19

-18 % -14 % -13 % -33 % -16 % -32 %

9 10 14 13 16 23

-18 % -29 % -13 % -28 % -16 % -18 %

-24 % -21 % -20 %

Page 18: Prediction of SOC breakthrough in Granular Activated

Results

Comparison of breakthrough at c/c0 = 0.8

Compound Exp. break-

through

Simulated breakthrough

Polanyi-model

LSER- model

normalized Freundlich-

equation

[h] [h] [Δh] [h] [Δh] [h] [Δh]

4-MP 3-CP 3-NP 4-NP 2,4-DCP 2,4,6-TCP

16 18 22 24 29 39

17 19 23 25 31 54

6 % 6 % 5 % 4 % 7 % 38 %

18 22 25 22 29 36

13 % 22 % 14 % -8 % 0 % -8 %

17 18 24 24 28 41

6 % 0 % 9 % 0 % -3 % 5 %

11 % 11 % 4 %

Page 19: Prediction of SOC breakthrough in Granular Activated

Conclusions

• Using the huge dataset and the models helps to

identify non reliable data

• Using Freundlich coefficients derived using

compound properties

breakthrough behavior is best described using

Freundlich coefficients using the normalized

Freundlich equation

- begin of breakthrough (10 %) was predicted

about 22 % too early

- 80 %-breakthrough is predicted well with an average

deviation of 8 %

Page 20: Prediction of SOC breakthrough in Granular Activated

Conclusions

SOC breakthrough prediction using Freundlich-coefficients determined using compound properties is appropriate for a conservative risk assessment

Page 21: Prediction of SOC breakthrough in Granular Activated

Thanks for your

attention!

Slavik, Uhl, Börnick, Worch

Assessment of SOC adsorption prediction in activated

carbon filtration based on Freundlich coefficients

calculated from compound properties

RSC Advances 2016, 6, 19587-19604