precise analytic treatment of kerr and kerr-(anti) de

45
HAL Id: hal-00690077 https://hal.archives-ouvertes.fr/hal-00690077 Submitted on 21 Apr 2012 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitational lenses G V Kraniotis To cite this version: G V Kraniotis. Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitational lenses. Classical and Quantum Gravity, IOP Publishing, 2011, 28 (8), pp.85021. 10.1088/0264- 9381/28/8/085021. hal-00690077

Upload: others

Post on 27-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Precise analytic treatment of Kerr and Kerr-(anti) de

HAL Id: hal-00690077https://hal.archives-ouvertes.fr/hal-00690077

Submitted on 21 Apr 2012

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Precise analytic treatment of Kerr and Kerr-(anti) deSitter black holes as gravitational lenses

G V Kraniotis

To cite this version:G V Kraniotis. Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitationallenses. Classical and Quantum Gravity, IOP Publishing, 2011, 28 (8), pp.85021. 10.1088/0264-9381/28/8/085021. hal-00690077

Page 2: Precise analytic treatment of Kerr and Kerr-(anti) de

Precise analytic treatment of Kerr and

Kerr-(anti) de Sitter

black holes as gravitational lenses.

G. V. Kraniotis∗

The University of Ioannina, Department of Physics,Section of Theoretical Physics, GR-451 10 Ioannina, Greece.

February 3, 2011

Abstract

The null geodesic equations that describe motion of photons in Kerrspacetime are solved exactly in the presence of the cosmological constantΛ. The exact solution for the deflection angle for generic light orbits (i.e.non-polar, non-equatorial) is calculated in terms of the generalized hyper-geometric functions of Appell and Lauricella.

We then consider the more involved issue in which the black holeacts as a ‘gravitational lens’. The constructed Kerr black hole gravita-tional lens geometry consists of an observer and a source located far awayand placed at arbitrary inclination with respect to black hole’s equatorialplane. The resulting lens equations are solved elegantly in terms of Appell-Lauricella hypergeometric functions and the Weierstraß elliptic function.We then, systematically, apply our closed form solutions for calculatingthe image and source positions of generic photon orbits that solve thelens equations and reach an observer located at various values of the po-lar angle for various values of the Kerr parameter and the first integralsof motion. In this framework, the magnification factors for generic or-bits are calculated in closed analytic form for the first time. The exerciseis repeated with the appropriate modifications for the case of non-zerocosmological constant.

1 Introduction

The issue of the bending of light (and the associated phenomenon of gravita-tional lensing) from the gravitational field of a celectial body (planet, star, blackhole, galaxy) has been a very active and fruitful area of research for fundamentalphysics [1],[2].

∗Email: [email protected].

1

Confidential: not for distribution. Submitted to IOP Publishing for peer review 3 February 2011

Page 3: Precise analytic treatment of Kerr and Kerr-(anti) de

Despite the importance of the gravitational bending of light, in unravellingthe nature of the gravitational field and its cosmological implications not manyexact analytic results for the deflection angle of light orbits from the gravita-tional field of important astrophysical objects are known in the literature.

Recently, progress has been achieved [5] in obtaining the closed form (strong-field) solution for the deflection angle of an equatorial light ray in the Kerrgravitational field (spinning black hole, rotating mass). Thus, going beyond thecorresponding calculation for the static gravitational field of a Schwarzschildblack hole [3],[4]. More specifically, the closed form solution for the gravitationalbending of light for an equatorial photon orbit in Kerr spacetime was derivedand expressed elegantly in terms of Lauricella’s hypergeometric function FD [6].It was then applied, to calculate the deflection angle for various values of theimpact parameter and the spin of the galactic centre black hole Sgr A*. Theresults exhibited clearly, the strong dependence of the gravitational bendingof light, on the spin of the black hole for small values of impact parameter(frame dragging effects) [5]. In addition, in [5], the exact solution for (unstable)spherical bound polar and non-polar photonic orbits was derived. However, theclosed form analytic solution for the important class of generic (i.e. non-polarand non-equatorial) unbound light orbits were left out of the discussion in [5].

One of the unsolved related important problems so far was the full analytictreatment of the Kerr and Kerr-de Sitter black holes as gravitational lenses. Theclosed form solution of this problem is imperative since the Kerr black hole actsas a very strong gravitational lens and we may probe general relativity, throughthe phenomenon of the bending of light induced by the space time curvature ofa spinning black hole, at the strong gravitational field regime.

It is therefore the purpose of the present paper to calculate the exact so-lution for the deflection angle for a generic photon orbit in the asymptoticallyflat Kerr spacetime therefore generalizing the results in [5] and solve in closedanalytic form the more involved problem of treating the rotating black hole as agravitational lens. The constructed Kerr black hole gravitational lens geometryconsists of an observer and a source located far away and placed at arbitraryinclination with respect to black hole’s equatorial plane.

More specifically, we solve for the first time in closed analytic form, theresulting lens equations in Kerr geometry, in terms of the Weierstraß ellipticfunction ℘(z), equation (90), and in terms of generalized hypergeometric func-tions of Appell-Lauricella equations (94), (87), (63), (104).

In addition, we calculate for the first time exactly the resulting magnifi-cation factors for generic light orbits in terms of the hypergeometric functionsof Appell and Lauricella [6]. Our closed form solutions for the source and im-age potitions of the lens equations and the corresponding magnification factorsrepresent an important progress step in the extraction of the phenomenologicaland astrophysical implications of spinning black holes.

The resulting theory should be of interest for the galactic centre studies giventhe strong experimental evidence we have from observation of stellar orbits (inparticular from the orbits of the S-stars in the central arcsecond of Milky-Way)and flares, that the Sagittarius A∗ region, at the galactic centre of Milky-Way,

2

Page 4: Precise analytic treatment of Kerr and Kerr-(anti) de

harbours a supermassive rotating black hole with mass of 4 million solar masses[7], [8].

Previous efforts on the issue of gravitational lensing from a Kerr black holewere concentrated on various approximations as well as on numerical techniquesusing formal integrals [10],[11].

The material of this work is organized as follows: in section 2, we present thenull geodesics in a Kerr spacetime with a cosmological constant. In section 3 wedescribe the Kerr-lens geometry and relate the first integrals of motion to theobserver’s image plane coordinates. In section 4 we derive a formal expressionfor the magnification using the Jacobian that relates observer’s image plane co-ordinates to the source position. This expression involves derivatives of the lensequations in Kerr geometry and in our contribution we shall calculate in closedform these derivatives in terms of the generalized hypergeometric functions ofAppell-Lauricella. In section 5, we derive constraints from the condition that aphoton escapes to infinity and it is not caught in a (unstable) spherical orbit.These constraints on the Carter’s constant and impact factor define a regionusually called the shadow of the rotating black hole. For values of the initialconditions inside the region enclosed by the boundary of the shadow and theline with null value for Carter’s constant there is no lensing effect since thephotons cannot escape and reach an observer. We also discuss constraints aris-ing from the polar motion. In section 7, we derive for the first time the closedform solution for the angular integrals involved in the gravitational Kerr lens,in terms of the generalized hypergeometric functions of Appell-Lauricella. Thefull exact solution for a light ray which originates from source’s polar positionand involves m−polar inversions before reaching the polar coordinate of theobserver is derived: equations (67),(63). In section 7, we perform the analyticcomputation of the radial integrals involved in the Kerr-lens in terms of the hy-pergeometric functions of Appell and Lauricella. In the same section, we derivethe closed form solution for the source polar position in terms of the Weierstraßelliptic function ℘(z, g2, g3) that implements the constraint that arises from thefirst lens equation (4). In sections 8, 8.3, we apply our exact solutions for thecalculation of the source and image positions for various values of the spin ofthe black hole and the first integrals of motion, for an equatorial observer andan observer located at a polar angle of π/3 respectively. We exhibit the imagepositions on the observer’s image plane. In Appendix A, we collect the defini-tion and the integral representation of Lauricella’s multivariable hypergeometricfunction FD. In addition in appendix A, we prove in the form of Propositions,some mathematical results concerning the transformation properties of the func-tion FD which are used in the main text. Finally, in Appendix B we integrateexactly, the null geodesic equations for the time coordinate for the Kerr blackhole in terms of the hypergeometric functions of Appell-Lauricella.

3

Page 5: Precise analytic treatment of Kerr and Kerr-(anti) de

2 Null geodesics in a Kerr-(anti) de Sitter blackhole.

Taking into account the contribution from the cosmological constant Λ, thegeneralization of the Kerr solution [12], is described by the Kerr-de Sitter metricelement which in Boyer-Lindquist (BL) coordinates is given by [13]-[14]:

ds2 =∆r

Ξ2ρ2(cdt − a sin2 θdφ)2 − ρ2

∆rdr2 − ρ2

∆θdθ2

−∆θ sin2 θ

Ξ2ρ2(acdt − (r2 + a2)dφ)2 (1)

∆θ := 1 +a2Λ3

cos2 θ, Ξ := 1 +a2Λ3

, ρ2 = r2 + a2 cos2 θ (2)

∆r :=(

1 − Λ3

r2

)(r2 + a2

)− 2

GM

c2r (3)

We denote by a the rotation (Kerr) parameter and M denotes the mass ofthe spinning black hole.

The relevant null geodesic differential equations for the calculation of thegravitational lensing effects (lens-equation) and for the calculation of the deflec-tion angle are [5]:

∫ r dr

±√

R=∫ θ dθ

±√

Θ(4)

∆φ =∫

dφ =∫ θ

− Ξ2

±∆θ sin2 θ

(a sin2 θ − Φ)dθ2√

Θ+∫ r aΞ2

±∆r[(r2 + a2)− aΦ]

dr2√

R(5)

where

R :=Ξ2[(r2 + a2) − aΦ

]2 − ∆r

[Ξ2 (Φ − a)2 + Q

](6)

and

Θ :=

[Q + (Φ − a)2Ξ2]∆θ −Ξ2(a sin2 θ − Φ)2

sin2 θ

(7)

We also derive the equation related to time-delay:

ct =∫ r Ξ2(r2 + a2)

[(r2 + a2) − Φa

]

±∆r

√R

dr −∫ θ aΞ2(a sin2 θ − Φ)

±∆θ

√Θ

dθ (8)

The parameters Φ,Q are associated to the first integrals of motion [5]. Theformer is the impact parameter and the latter is related to the hidden firstintegral (due to the separation of variables in the corresponding Hamilton-Jacobipartial differential equation (PDE)).

4

Page 6: Precise analytic treatment of Kerr and Kerr-(anti) de

Figure 1: The Kerr black hole gravitational lens geometry. The reference frameis chosen so that, as seen from infinity, the black hole is rotating around thez-axis.

3 The Kerr black hole as a gravitational lens.

3.1 Observer’s image plane

Assume without loss of generality that the observer’s position is at (rO , θO, 0).Likewise, for the source we have (rS , θS, φS) . We also assume in this sectionthat Λ = 0. In the observer’s reference frame, an incoming light ray is describedby a parametric curve x(r), y(r), z(r), where r2 = x2+y2+z2. For large r this theusual radial BL coordinate. At the location of the observer, the tangent vector tothe parametric curve is given by: (dx/dr)|rO x+(dy/dr)|rO y+(dz/dr)|rO z. Thisvector describes a straight line which intersects the (α, β) plane or observer’simage plane as it is usually called [9]-[11] at (αi, βi) see fig.1.

The point (αi, βi) is the point (−βi cos θO , αi, βi cos θO) in the (x, y, z) sys-tem. Our purpose now is to relate the αi, βi variables to the first integrals ofmotion Φ,Q. For this we need to use the equation of straight line in space.A straight line can be defined from a point P1(x1, y1, z1) on it and a vectorε(ε1,ε2,ε3) parallel to it. The analytic equations of straight line are then:

x − x1

ε1=

y − y1

ε2=

z − z1

ε3(9)

Applying (9) we derive the equations:

−βi cos θO − rO sin θO

rO cos θOdθdr |r=r0 + sin θO

=αi

rO sin θOdφdr |r=rO

=βi cos θO − rO cos θO

cos θO − rO sin θOdθdr |r=rO

(10)

5

Page 7: Precise analytic treatment of Kerr and Kerr-(anti) de

Solving for αi, βi we obtain the equations:

αi = −r2O sin θO

dr|r=rO (11)

βi = r2O

dr|r=rO (12)

Now we have from the null geodesics that:

dr|r=rO =

Θ(θO)1/2

R(rO)1/2(13)

and

dr|r=rO =

Φ2√

R(rO)1

sin2(θO)+

2aGM rO

c2 − a2Φ

r2O

[1 + a2

r2O− 2GM

rOc2

] 12√

R(rO)(14)

Using eqns(13),(14) and assuming large observer’s distance rO(i.e. rO −→∞) we derive simplified expressions relating the coordinates (αi, βi) on the ob-server’s image plane to the integrals of motion

Φ ' −αi sin θO (15)Q ' β2

i + (α2i − a2) cos2(θO) (16)

We can also express the position of the source on the observer’s sky in termsof its coordinates (rS , θS , φS) and the observer coordinates. Indeed, the equationfor a straight line can be determined by two points P1(x1, y1, z1), P2(x2, y2, z2):

x − x1

x2 − x1=

y − y1

y2 − y1=

z − z1

z2 − z1(17)

Thus applying the above formula for the straight line connecting the observerand the source yields the equations:

αS =rOrS sin θS sin φS

rO − rS(cos θS cos θO + sin θO sin θS cosφS)

βS =−rOrS(sin θO cos θS − sin θS cosφS cos θO)rO − rS(cos θS cos θO + sin θO sin θS cosφS)

(18)

4 Magnification factors and positions of images.

In the following sections, we shall perform a detailed novel calculation of thelens effect for the deflection of light produced by the gravitational field of arotating (Kerr) black hole and a cosmological Kerr black hole (i.e. for non-zerocosmological constant Λ).

6

Page 8: Precise analytic treatment of Kerr and Kerr-(anti) de

The flux of an image of an infinitesimal source is the product of its surfacebrightness and the solid angle ∆ω it subtends on the sky. Since the formerquantity is unchanged during light deflection, the ratio of the flux of a sufficientlysmall image to that of its corresponding source in the absence of the lens, is givenby

µ =∆ω

(∆ω)0=

1|J |

(19)

where 0-subscripts denote undeflected quantities [2] and J is the Jacobian of thetransformation (xS, yS) → (xi, yi) 1. Writting xS = xS(xi, yi), yS = yS(xi, yi)we can find expressions for the partial derivatives appearing in the Jacobianby differentiating equations (4) and (5). Indeed, the Jacobian is given by theexpression:

J = xw − zy (20)

where we defined: x := ∂xS

∂xi, y := ∂xS

∂yi, z := ∂yS

∂xi, w := ∂yS

∂yi. Writting equations

(4) and (5) as follows:

R1(xi, yi) − A1(xi, yi, xS , yS , m) = 0∆φ(xS , yS , n) − R2(xi, yi) − A2(xi, yi, xS , yS , m) = 0 (21)

we set up the following system of equations:

β1 = −α1x − α2z (22)β2 = −α1y − α2w (23)

−β3 = α3x + α4z (24)−β4 = α3y + α4w (25)

where α1 =∂A1

∂xS, α2 =

∂A1

∂yS, α3 = − ∂φs

∂xS− ∂A2

∂xS, α4 = −∂φs

∂yS− ∂A2

∂yS,

β1 =∂R1

∂xi−

∂A1

∂xi, β2 =

∂R1

∂yi−

∂A1

∂yi, β3 =

∂R2

∂xi+

∂A2

∂xi, β4 =

∂R2

∂yi+

∂A2

∂yi.

Solving for x, y, z, w we obtain:

µ =1|J |

=∣∣∣∣α1α4 − α2α3

β1β4 − β2β3

∣∣∣∣ (26)

The parameters n = 0, 1, 2, . . . and m = 0, 1, 2, . . . are the number of wind-ings around the z axis and the number of turning points in the polar coordinateθ respectively. We shall discuss the latter in detail in the section that follows.

1Recall in the small angles approxiamation: αi ≈ rO xi, βi ≈ rO yi. Also we define:

xS := αSrO

, yS := βSrO

.

7

Page 9: Precise analytic treatment of Kerr and Kerr-(anti) de

5 The boundary of the shadow of the rotatingblack hole and constraints on the parameter

space.

The condition for a photon to escape to infinity , which is also the condition forthe spherical photon orbits in Kerr spacetime [5], is given by the vanishing of thequartic polynomial R(r) and its first derivative (also in this case d2R

dr2 |r=rf>

0). Implementing these two conditions, expressions for the parameter Φ andCarter’s constant Q are obtained [5], [15]:

Φ =a2 GM

c2 + a2r − 3GMc2 r2 + r3

a(

GMc2 − r

) , Q = −r3(−4a2 GM

c2 + r(−3GM

c2 + r)2)

a2(

GMc2 − r

)2(27)

The perturbed, from the radius r = rinst, of unstable spherical null orbitsin Kerr spacetime, and thus escaped photon, will be detected on the observer’simage plane, at the coordinates :

xi =a2(r + GM

c2 ) + r2(r − 3GMc2 )

rO sin θOa(r − GM

c2

) ,

yi =±√−r3[r(r − 3GM

c2 )2 − 4a2 GMc2 ] − 2a2r(2a2 GM

c2 + r3 − 3r G2M2

c4 )zO − a4(r − GMc2 )2z2

O

rO sin θOa(r − GM

c2

)

(28)

Equations (28) were derived by plugging into equations (15),(16) the values ofthe parameters Q, Φ that correspond to the conditions for the photon to escapeto infinity, equations (27). A photon will be detected when the argument of thesquare root in eqn.(28) is positive. In Eqn(28), zO := cos2 θO .

With the aid of equations (15) and (16) we derive:

α2i + β2

i = Φ2 + Q + a2zO (29)

Apart from the constraints expressed by equations (27) we also derive con-straints for the motion of light from the allowed polar region:θmin ≤ θS , θO ≤θmax. Indeed using the variable zj := cos2 θj , we have zm ≥ zO where zm is thepositive root of:

−a2z2m + (a2 −Q− Φ2)zm + Q = 0

Let us see how this can be understood. Defining: zm := zO − x we derivethe quadratic equation for x

−a2x2 − x(a2 −Q− Φ2 − 2a2zO) − a2z2O + zO(a2 −Q− Φ2) + Q = 0 (30)

8

Page 10: Precise analytic treatment of Kerr and Kerr-(anti) de

with roots:

x1,2 =−a2 + Q + 2a2zO + Φ2 ∓ 2

√4a2Q + (−a2 + Q + Φ2)2

2a2

=(α2

i + β2i ) − a2wO ∓ 2

√((α2

i + β2i ) − a2wO)2 + 4a2β2

i wO

2a2(31)

where wO := sin2 θO. The ”radius” Φ2 + Q must be greater or equal than theboundary of the photon region defined by Eqs.(27) and the line Q = 0. Theminimum of this value is reached when Q = 0 and a → 1.The actual minimumvalue is (Φ2(r) + Q(r))min = 4. Thus, by Eq.(29) we have that α2

i + β2i ≥ 4,

and since 0 ≤ a2wO ≤ 1, it follows the inequality a2wO − (α2i + β2

i ) < 0 andconsequently, x ≤ 0. Thus we conclude that zm ≥ zO. Similar arguments ensurethat when zS > zO it follows zm ≥ zS [11].

6 Closed form solution for the angular integrals.

Let us perform now the exact computation of the angular integrals which occurin the generic photon orbits in Kerr spacetime thereby generalizing the resultsof [5]. In the case under investigation, we have to take into account the turn-ing points in the polar coordinate. A generic angular polar integral can bewritten:

±∫ θ2

θ1

=∫ max(z1,z2)

min(z1,z2)

+[1 − sign(θ1 θ2)]∫ min(z1,z2)

0

(32)

where:θ1 θ2 := cos θ1 cos θ2 (33)

Indeed, using the variable z := cos2 θ we derive:

−12

dz√z

1√1 − z

= sign(π

2− θ)dθ (34)

This is the result of the fact that in the interval 0 ≤ θ ≤ π2 , cos θ ≥ 0 and

sin θ ≥ 0, while in the interval π2 ≤ θ ≤ π, sin θ ≥ 0, cos θ ≤ 0. The angular

integration in the polar variable includes the terms:∫ θ

= ±∫ θmin / max

θS

±∫ θmax / min

θmin / max

±∫ θmin / max

θmax / min

± · · · ±∫ θO

θmax / min

(35)

The roots zm, z3 (of Θ(θ) = 0 ) are expressed in terms of the integrals ofmotion and the cosmological constant by the expressions:

zm,3 =Q + Φ2Ξ2 − H2 ±

√(Q + Φ2Ξ2 − H2)2 + 4H2Q−2H2

(36)

9

Page 11: Precise analytic treatment of Kerr and Kerr-(anti) de

and

H2 :=a2Λ3

[Q + (Φ − a)2Ξ2] + a2Ξ2 (37)

For Λ = 0, the turning points take the form:

zm =a2 −Q− Φ2 +

√4a2Q + (−a2 + Q + Φ2)2

2a2, (38)

where the subscript “m” stands for “min/max”. The corresponding angles are:

θmin/max = Arccos(±√

zm) (39)

Now for θj and θmin/ max in the same hemisphere:

∫ θmin / max

θj

± 2√

Θ(θ)=

12|a|

∫ zm

zj

dz2√

z(zm − z)(z − z3)≡ I3 (40)

Let us now calculate the elliptic integral in eqn.(40) in closed analytic form.Applying the transformation:

z = zm + ξ2(zj − zm) (41)

our integral is calculated in closed form in terms of Appell’s generalized hyper-geometric function F1 of two variables:

I3 =1

2|a|

2√

(zm − zj)2√

zm(zm − z3)F1

(12,12,12,32,zm − zj

zm,zm − zj

zm − z3

)Γ( 1

2 )Γ(1)Γ(3/2)

(42)

On the other hand using the transformation:

z =uzjzm − zjzm

uzj − zm(43)

we calculate in closed form:

12 |a|

∫ zj

0

dz2√

z(zm − z)(z − z3)

=1|a|

2√

zj

zm

2

√zj − zm

z3 − zjF1

(1,

12,12,32,

zj

zm,zj(zm − z3)zm(zj − z3)

)

=1|a|

2

√zj(zm−z3)zm(zj−z3)

2√

zm − z3F1

(12,12,12,32,

zm

zm − z3

zj(zm − z3)zm(zj − z3)

,zj(zm − z3)zm(zj − z3)

)

(44)

10

Page 12: Precise analytic treatment of Kerr and Kerr-(anti) de

In going from the second line to the third of (44) we made use of the followingidentity of Appell’s first generalised hypergeometric function of two variables:

F1(α, β, β′, γ, x, y) = (1− x)−β(1− y)γ−α−β′F1(γ −α, β, γ −β − β′, γ,

x − y

x − 1, y)

(45)Likewise we derive the closed form solution for the following integral:

12|a|

∫ zj

0

dz

(1 − z) 2√

z(zm − z)(z − z3)

=zj

zm

1|a|

zj − zm

1 − zj

12√

zj(zj − zm)(z3 − zj)×

FD

(1, 1,−1

2,12,32,zj(1 − zm)zm(1 − zj)

,zj

zm,zj(zm − z3)zm(zj − z3)

)

=1|a|

zj

zm

2

√zm

−z3zjFD

(12, 1,

12,12,32, zj ,

zj

zm,zj

z3

)(46)

Producing the last line of equation (46) we used the following formula for theLauricella function FD :

Proposition 1

FD(α, β, β′, β′′, γ, x, y, z) = (1 − y)γ−α−β′(1 − x)−β(1 − z)−β′′

×

FD

(γ − α, β, γ − β − β′ − β′′, β′′, γ,

x − y

x − 1, y,

z − y

z − 1

)

Proof. Applying the transformation:

u =1 − ν

1 − νy(47)

onto the integral:

IRFD =∫ 1

0

uα−1(1 − u)γ−α−1(1 − ux)−β(1 − u y)−β′(1 − uz)−β′′

du (48)

we derive:

(1 − u)γ−α−1 =(

ν(1 − y)1 − νy

)γ−α−1

, (1 − ux)−β =

(1 − x)[1 − ν(x−y)

(x−1) ]

1 − νy

−β

(1 − u y)−β′=

(1 − y)−β′

(1 − νy)−β′ , (1 − uz)−β′′=

((1 − z)[1 − ν(z−y)

z−1 ]1 − νy

)−β′′

(49)

11

Page 13: Precise analytic treatment of Kerr and Kerr-(anti) de

and thus we obtain the result:

IRFD = (1 − y)γ−α(1 − x)−β(1 − y)−β′(1 − z)−β′′

×∫ 1

0

dν νγ−α−1(1 − ν)α−1(1 − ν y)−(γ−β−β′−β′′)(1 − νx − y

x − 1)−β(1 − ν

z − y

z − 1)−β′′

(50)

or

FD(α, β, β′, β′′, γ, x, y, z) = (1 − y)γ−α−β′(1 − x)−β(1 − z)−β′′

×

FD

(γ − α, β, γ − β − β′ − β′′, β′′, γ,

x − y

x − 1, y,

z − y

z − 1

)

Likewise applying (41):

I4 : =Φ

2|a|

∫ zm

zj

dz

(1 − z) 2√

z(zm − z)(z − z3)

2|a|2

√(zm − zj)

zm

12√

(zm − z3)2

(1 − zm)FD

(12, 1,

12,12,32,zj − zm

1 − zm,zm − zj

zm,zm − zj

zm − z3

)

(51)

At this stage it is of convenience that we start making use of the compactnotation of the multivariable Lauricella’s fourth hypergeometric function FD

(see also Appendix A), namely the notation FD(α, β, γ, z) in which we use boldtype to denote the m-tuples of beta parameters and variables of the function,i.e. β = (β1, . . . , βm), z = (z1, . . . , zm).

For this purpose, we define the following tuples of numbers for the betaparameters and the variables of the function FD that will occur in our closed

12

Page 14: Precise analytic treatment of Kerr and Kerr-(anti) de

form solutions in the rest of the main body of the paper:

z1j =

(zj − zm

1 − zm,zm − zj

zm,zm − zj

zm − z3

), j = 1, 2, z1

1 ≡ z1S, z1

2 ≡ z1O,

z1S =

(zS − zm

1 − zm,zm − zS

zm,zm − zS

zm − z3

), z2

S =

(zS(1 − zm)zm(1 − zS)

,zS

zm,zS(zm − z3)zm(zS − z3)

),

z1O =

(zO − zm

1 − zm,zm − zO

zm,zm − zO

zm − z3

), z2

O =

(zO(1 − zm)zm(1 − zO)

,zO

zm,zO(zm − z3)zm(zO − z3)

),

z3S =

(zS(1 − z3)zS − z3

,zS

zm

(zm − z3)(zS − z3)

,zS

zS − z3

),

β13 =

(2,

12,12

), β2

3 =

(1,

32,12

), β3

3 =

(1,

12,32

), β4

3 =

(1,

12,12

), β5

3 =

(2,

−12

,12

),

β63 =

(1,

−12

,32

), β7

3 =

(1,

−12

,12

), β8

3 =

(1,

12,−1

2

), β9

3 =

(12, 1,

12

),

β104 =

(−2, 2,

12,12

), β11

4 =

(−1, 1,

12,12

), βΛ1

4 =

(1, 1,

12,12

),

βΛ24 =

(1, 1,−3

2,12

), βΛ3

4 =

(−1,

12,12, 1

)(52)

and the corresponding 2-tuples for the two-variable Appell’s first hypergeometricfunction F1:

z1SA =

(zm − zS

zm,zm − zS

zm − z3

), z1O

A =

(zm − zO

zm,zm − zO

zm − z3

), ztd

AaO =(

zO

zm,zO

zm

zm − z3

zO − z3

),

z2SA =

(zm

zm − z3

zS(zm − z3)zm(zS − z3)

,zS(zm − z3)zm(zS − z3)

), z2O

A =(

zm

zm − z3

zO(zm − z3)zm(zO − z3)

,zO(zm − z3)zm(zO − z3)

),

ztdAaS =

(zS

zm,zS

zm

zm − z3

zS − z3

), z1/4

AO2=(

zm

zm − z3

(1/4)(zm − z3)zm((1/4) − z3)

,(1/4)(zm − z3)zm((1/4) − z3)

),

z1/4AO1

=

(zm − 1

4

zm,

zm − 14

zm − z3

), βra

A =(

12,12

), βa1

A =(

32,12

), βa2

A =(

12,32

), βa3

A =(−1

2,12

)

(53)

Thus the term I4, in Eq.(51), in the compact form just introduced, is givenby the expression:

I4 =Φ

2|a|2

√(zm − zj)

zm

12√

(zm − z3)2

(1 − zm)FD

(12, β4

3,32, z1

j

)(54)

13

Page 15: Precise analytic treatment of Kerr and Kerr-(anti) de

Let us now compute exactly the term: ±∫ θmax / min

θmin / max, in (35):

±∫ θmax / min

θmin / max

= 2∫ zm

0

(55)

since cos2 θmin / max = zm and θmin θmax = −zm.

Equation (51) for zj = 0, becomes :

Φ2|a|

12√

(zm − z3)2

(1 − zm)FD

(12, 1,

12,12,32,

−zm

1 − zm, 1,

zm

zm − z3

)

=Φ|a|

12√

(zm − z3)1

(1 − zm)π

2F1

(12, 1,

12, 1,

−zm

1 − zm,

zm

zm − z3

)

=Φ|a|

12√

(zm − z3)π

2F1

(12, 1,−1

2, 1,

zm(1 − z3)zm − z3

,zm

zm − z3

)

=Φ|a|

12√

(zm − z3)π

21

1 − z3

(F (

12,12, 1,

zm

zm − z3) − z3F1

(12, 1,

12, 1,

zm(1 − z3)zm − z3

,zm

zm − z3

))

(56)

On the other hand the angular integrals of the form ±∫ θmin / max

θSin equation (5)

are solved in closed analytic form as follows:

±∫ θmin / max

θS

2|a|2

√(zm − zS)

zm

12√

zm − z3

2(1 − zm)

FD

(12, β4

3,32, z1

S

)

+[1− sign(θS θmS)]Φ|a|

zS

zm

zS − zm

1 − zS

12√

zS(zS − zm)(z3 − zS)×

FD

(1, β7

3,32, z2

S

)(57)

14

Page 16: Precise analytic treatment of Kerr and Kerr-(anti) de

An equivalent expression for the above integral is:

±∫ θmin / max

θS

2|a|2

√(zm − zS)

zm

12√

zm − z3

2(1 − zm)

FD

(12, β4

3,32, z1

1

)

+[1 − sign(θS θmS)]Φ|a|

2

√zS

zm

2

√zm − z3

zS − z3

12√

zm − z3×

FD

(12, β8

3,32, z3

S

)

2|a|2

√(zm − zS)

zm

12√

zm − z3

2(1 − zm)

FD

(12, β4

3,32, z1

1

)

+[1 − sign(θS θmS)]Φ|a|

2

√zS

zm

2

√zm − z3

zS − z3

12√

zm − z3×

[−z3

1 − z3FD

(12, β4

3,32, z3

S

)+

11 − z3

F1

(12, βra

A ,32, z2S

A

)]

(58)

In going from equation (57) to equation (58) we made use of the functionalequation of Lauricella’s hypergeometric function FD , Proposition 2 (138), andProposition 3 which are proved in Appendix A.

Now, for a light trajectory that encounters m turning points (m ≥ 1) in thepolar motion we have2:

±∫ θmin/max

θS

±∫ θmax/min

θmin/max

±∫ θmin/max

θmax/min

· · ·︸ ︷︷ ︸

m−1 times

±∫ θO

θmax/min

= (59)

=∫ zm

zS

+[1 − sign(θS θmS)]∫ zS

0

+∫ zm

zO

+[1 − sign(θO θmO)]∫ zO

0

+2(m − 1)∫ zm

0

(60)

where:

θmO := Arccos(sign(yi)√

zm) = Arccos(sign(βi)√

zm), (61)

yi is the possible position of the image and:

θmS :=

θmO, m oddπ − θmO, m even (62)

2Recall the constraints of section 5.

15

Page 17: Precise analytic treatment of Kerr and Kerr-(anti) de

Thus we have that :

A2(xi, yi, xS,yS , m) = 2(m − 1) ×

[Φ|a|

12√

(zm − z3)1

(1 − zm)π

2F1

(12, 1,

12, 1,

−zm

1 − zm,

zm

zm − z3

)]

2|a|2

√(zm − zS)

zm

12√

zm − z3

2(1 − zm)

× FD

(12, β4

3,32, z1

S

)

+ [1 − sign(θS θmS)]Φ|a|

zS

zm

zS − zm

1 − zS

12√

zS(zS − zm)(z3 − zS)×

FD

(1, β7

3,32, z2

S

)+

2|a|2

√(zm − zO)

zm

12√

zm − z3

2(1 − zm)

× FD

(12, β4

3,32, z1

O

)

+ [1 − sign(θO θmO)]Φ|a|

zO

zm

zO − zm

1 − zO

12√

zO(zO − zm)(z3 − zO)×

FD

(1, β7

3,32, z2

O

)

(63)

We now calculate in closed form the angular term A1(xi, yi, xS , yS , m) whichappears in equations (21),(4).

Indeed, the angular integrals of the form ±∫ θmin / max

θS, in equation (4), are

computed in closed-analytic form in terms of Appell’s generalized hypergeomet-ric function of two variables as follows:

±∫ θmin / max

θS

dθ2√

Θ=

12|a|

2√

(zm − zS)2√

zm(zm − z3)F1

(12, βra

A ,32, z1S

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(θS θmS)]1|a|

2

√zS(zm−z3)zm(zS−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2S

A

)

(64)

Also the integral (40) is calculated for zj = 0 in terms of ordinary Gauß’shypergeometric function:

2(m − 1)∫ zm

0

dz2√

z(zm − z)(z − z3)(65)

=2(m − 1)

2|a|2

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)(66)

16

Page 18: Precise analytic treatment of Kerr and Kerr-(anti) de

Thus we obtain,

A1(xi, yi, xS,yS , m) = 2(m − 1)1

2|a|

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)+

12|a|

2√

(zm − zS)2√

zm(zm − z3)F1

(12, βra

A ,32, z1S

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(θS θmS)]1|a|

2

√zS(zm−z3)zm(zS−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2S

A

)+

12|a|

2√

(zm − zO)2√

zm(zm − z3)F1

(12, βra

A ,32, z1O

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(θO θmO)]1|a|

2

√zO(zm−z3)zm(zO−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2O

A

)

(67)

For m = 0 i.e. for no turning points in the polar coordinate the exactsolutions for the angular integrals in equation (4), (5) become

A1(xi, yi, xS , yS) = ±∫ θO

θS

=∫ z2

z1

+(1 − sign(θS θO))∫ z1

0

=∫ zm

z1

−∫ zm

z2

+(1 − sign(θS θO))∫ z1

0

=1

2|a|2√

zm − z1

2√

zm(zm − z3)F1

(12, βra

A ,32, zA1

)2

−1

2|a|

2√

zm − z2

2√

zm(zm − z3)F1

(12, βra

A ,32, zA2

)2

+ [1 − sign(θS θO)]1|a|

2

√z1(zm−z3)zm(z1−z3)

2√

zm − z3× F1

(12, βra

A ,32, zAm3

)

(68)

17

Page 19: Precise analytic treatment of Kerr and Kerr-(anti) de

and

A2(xi, yi, xS , yS) =Φ

2|a|

√(zm − z1)

zm

1√zm − z3

21 − zm

× FD

(12, β4

3,32, zLD1

)

2|a|

√(zm − z2)

zm

1√zm − z3

21 − zm

× FD

(12, β4

3,32, zLD2

)]

+ [1 − sign(θS θO)]Φ|a|

√z1

zm

√zm − z3

z1 − z3

1√zm − z3

× FD

(12, β8

3,32, zLD3

)

(69)

where

zAj =(

zm − zj

zm,zm − zj

zm − z3

), j = 1, 2, zAm3 =

(zm

zm − z3

z1(zm − z3)zm(z1 − z3)

,z1(zm − z3)zm(z1 − z3)

),

zLDj =(

zj − zm

1 − zm,zm − zj

zm,zm − zj

zm − z3

), j = 1, 2,

zLD3 =(

z1(1 − z3)z1 − z3

,z1

zm

zm − z3

z1 − z3,

z1

z1 − z3

)(70)

and z1 := min(zS , zO), z2 := max(zS , zO).Equations (67),(63) for m ≥ 1 turning points and (68),(69) for m = 0 turning

points constitute our exact results for the angular integrals which appear in(21) for the case of vanishing cosmological constant Λ. It is time to turn ourattention to the exact computation of the radial integrals which appear in thelens-equations of the Kerr black hole.

7 Closed form solution for the radial integrals.

We now perform the radial integration assuming Λ = 0.For an observer and a source located far away from the black hole, the

relevant radial integrals can take the form:

∫ r

→ −∫ α

rS

+∫ rO

α

' 2∫ ∞

α

(71)

For instance, in the calculation of the azimuthial coordinate (5) the followingradial integral is involved:

∫ ∞

α

a

∆[(r2 + a2) − aΦ]

dr2√

R(72)

18

Page 20: Precise analytic treatment of Kerr and Kerr-(anti) de

where ∆ := r2 + a2 − 2GM rc2 . In order to calculate the contribution to the

deflection angle from the radial term we need to integrate the above equationfrom the distance of closest approach (e.g., from the maximum positive root ofthe quartic) to infinity. We denote the roots of the quartic polynomial R (eqn(6) for Λ = 0) by α, β, γ, δ : α > β > γ > δ. We manipulate first the terms:

∫ ∞

α

a

∆(r2 + a2)√

Rdr =

∫ ∞

α

adr√R

[1 +

2GMc2 r

r2 + a2 − 2GM

c2r

︸ ︷︷ ︸∆

]=∫ ∞

α

adr√R

+∫ ∞

α

a 2GMrc2 dr

∆√

R

(73)It is enough to proceed with the term 3:

∫ ∞

α

a 2GMc2 r − a2Φ

∆ 2√

Rdr (74)

Expressing the roots of ∆ as r+, r−, which are the radii of the event horizonand the inner or Cauchy horizon respectively, and using partial fractions wederive the expression:

∫ ∞

α

a 2GMc2 r − a2Φ

∆ 2√

Rdr =

∫ ∞

α

Ago+

(r − r+) 2√

Rdr +

∫ ∞

α

Ago−

(r − r−) 2√

Rdr

=∫ ∞

α

Ago+

(r − r+) 2√

(r − α)(r − β)(r − γ)(r − δ)dr

+∫ ∞

α

Ago−

(r − r−) 2√

(r − α)(r − β)(r − γ)(r − δ)dr

(75)

where Ago± are given by the equations

Ago± = ±

(r±a2GMc2 − a2Φ)

r+ − r−(76)

For polar orbits Φ = 0 and the coefficients in (76) reduce to those calculatedin [5].

We organize all roots in ascending order of magnitude as follows4,

αµ > αν > αi > αρ (77)

where αµ = αµ+1, αν = αµ+2, αρ = αµ and αi = αµ−i, i = 1, 2, 3 and we havethat αµ−1 ≥ αµ−2 > αµ−3. By applying the transformation

3The radial term 2R ∞α

adr√R

is cancelled from the angular term: −R

adθ√Θ

.4We have the correspondence αµ+1 = α, αµ+2 = β,αµ−1 = r+ = αµ−2, αµ−3 = γ, αµ = δ.

19

Page 21: Precise analytic treatment of Kerr and Kerr-(anti) de

r =ωzαµ+2 − αµ+1

ωz − 1(78)

or equivalently

z =(

αµ − αµ+2

αµ − αµ+1

)(r − αµ+1

r − αµ+2

)(79)

where

ω :=αµ − αµ+1

αµ − αµ+2(80)

we can bring our radial integrals into the familiar integral representation of Lau-ricella’s FD and Appell’s hypergeometric function F1 of three and two variablesrespectively. Indeed, we derive

∆φgor1

= 2

[∫ 1/ω

0

−Ago+ ω(αµ+1 − αµ+2)

H+

dz2√

z(1 − z)(1 − κ2+z) 2

√1 − µ2z

+∫ 1/ω

0

Ago+ ω2(αµ+1 − αµ+2)

H+

zdz2√

z(1− z)(1 − κ2+z) 2

√1 − µ2z

+∫ 1/ω

0

−Ago− ω(αµ+1 − αµ+2)

H−dz

2√

z(1− z)(1 − κ2−z) 2

√1 − µ2z

+∫ 1/ω

0

Ago− ω2(αµ+1 − αµ+2)

H−zdz

2√

z(1− z)(1 − κ2−z) 2

√1 − µ2z

](81)

where the moduli κ2±, µ2 are

κ2± =

(αµ − αµ+1

αµ − αµ+2

)(αµ+2 − α±

µ−1

αµ+1 − α±µ−1

), µ2 =

(αµ − αµ+1

αµ − αµ+2

)(αµ+2 − αµ−3

αµ+1 − αµ−3

)

(82)Also

H± = 2√

ω(αµ+1 − αµ+2)(αµ+1 − α±µ−1) 2

√αµ+1 − αµ

2√

αµ+1 − αµ−3 (83)

and α±µ−1 = r±. By defining a new variable z′ := ωz we can express the con-

tribution ∆φgor1

,to the deflection angle, from the above radial terms in terms ofLauricella’s hypergeometric function FD

20

Page 22: Precise analytic treatment of Kerr and Kerr-(anti) de

∆φgor1

= 2

[−2Ago

+

√ω(αµ+1 − αµ+2)

H+FD

(12, β9

3,32, zr

+

)

+Ago

+

√ω(αµ+1 − αµ+2)

H+FD

(32, β9

3,52, zr

+

)Γ(3/2)Γ(1)

Γ(5/2)

+−2Ago

−√

ω(αµ+1 − αµ+2)H− FD

(12, β9

3,32, zr

)

+Ago

−√

ω(αµ+1 − αµ+2)H− FD

(32, β9

3,52, zr

)Γ(3/2)Γ(1)

Γ(5/2)

]

(84)

where we defined:

zr± =

(1ω

, κ′2±, µ′2

), (85)

and the variables of the function FD are given in terms of the roots of the quarticand the radii of the event and Cauchy horizons by the expressions

=αµ − αµ+2

αµ − αµ+1=

δ − β

δ − α

κ′2± =

αµ+2 − α±µ−1

αµ+1 − α±µ−1

=β − r±α − r±

(86)

µ′2 =αµ+2 − αµ−3

αµ+1 − αµ−3=

β − γ

α − γ

An equivalent expression is as follows

∆φgor1

= 2

[−2Ago

+

√ω(αµ+1 − αµ+2)

H+FD

(12, β9

3 ,32, zr

+

)

+Ago

+

√ω(αµ+1 − αµ+2)

H+

(−

1κ′2

+

F1

(12, βra

A ,32, zr

A

)2

+1

κ′2+

FD

(12, β9

3 ,32, zr

+

)2

)

+−2Ago

−√

ω(αµ+1 − αµ+2)H− FD

(12, β9

3,32, zr

)

+Ago

−√

ω(αµ+1 − αµ+2)H−

(− 1

κ′2−

F1

(12, βra

A ,32, zr

A

)2

+1

κ′2−

FD

(12, β9

3 ,32, zr

)2

)]

≡ R2(xi, yi) (87)

21

Page 23: Precise analytic treatment of Kerr and Kerr-(anti) de

where zrA =

(1ω , µ′2). In going from (84) to (87) we used the identity proven in

[5], eqn.(52) in [5].Finally, the term

∫∞α

dr√R

,is calculated in closed form in terms of Appell’sfirst hypergeometric function of two-variables :

∫ ∞

α

dr√R

=1√

(α − γ)(α − δ)Γ(1/2)Γ(3/2)

F1

(12, βra

A ,32, zr

A

)(88)

We exploit further the lens-equations (21). Indeed:

R1(xi, yi) − 2(m − 1)1

2|a|

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)+ · · · =

∫ ξS dξ√4ξ3 − g2ξ − g3

(89)

Inverting:

ξS = ℘

(2(88)

1− 2(m − 1)

12|a|

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)+ · · · + ε

)

(90)while:

−φS = R2(xi, yi) + A2(xi, yi, xS,yS, m) (91)

where ℘(z) denotes the Weierstraß elliptic function (which is also a meromorphicJacobi modular form of weight 2 ) and the Weierstraß invariants are given interms of the initial conditions by:

g2 =112

(α + β)2 −Qα

4, (92)

g3 =1

216(α + β)3 −Q

α2

48−Q

αβ

48(93)

Also α := −a2, β := Q+Φ2, zS = − ξS+ α+β12

−α/4 and ε is a constant of intergration.

22

Page 24: Precise analytic treatment of Kerr and Kerr-(anti) de

To recapitulate our exact solutions of the lens equations (21) are given by:

2∫ ∞

α

1√R

dr = A1(xi, yi, xS , yS , m) ⇔ 2√(α − γ)(α − δ)

Γ(1/2)Γ(3/2)

F1

(12, βra

A ,32, zr

A

)

= 2(m − 1)1

2|a|

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)

+1

2|a|

2√

(zm − zS)2√

zm(zm − z3)F1

(12, βra

A ,32, z1S

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(θS θmS)]1|a|

2

√zS(zm−z3)zm(zS−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2S

A

)

+1

2|a|

2√

(zm − zO)2√

zm(zm − z3)F1

(12, βra

A ,32, z1O

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(θO θmO)]1|a|

2

√zO(zm−z3)zm(zO−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2O

A

),

(94)

−φS = R2(xi, yi) + A2(xi, yi, xS , yS , m) (95)

and equation (90).In the subsequent sections we shall apply our exact solutions for the lens

equations in the Kerr geometry expressed by (94),(90),(95) to particular caseswhich include: a) an equatorial observer: θO = π/2 ⇒ zO = 0 b) a genericobserver located at θO = π/3 ⇒ zO = 1

4 .

8 Positions of images, source and resulting mag-nifications for an equatorial observer in a Kerr

black hole.

In this case (θO = π/2), equations (15),(16), become:

Φ ' −αi sin θO = −αi

Q ' β2i + (α2

i − a2) cos2 θO = β2i (96)

Thus the length of the vector on the observer’s image plane equals to:√

α2i + β2

i =√

Φ2 + Q (97)

Furthermore, we derive the equations:

xS :=αS

rO=

rS sin θS sin φS

rO − rS sin θS cosφS(98)

23

Page 25: Precise analytic treatment of Kerr and Kerr-(anti) de

yS :=βS

rO=

−rS cos θS

rO − rS sin θS cosφS(99)

or equivalently:αS

βS= − tan θS sinφS (100)

8.1 Solution of the lens equation and the computation ofθS, φS, αi, βi.

We now describe how we solve the lens equations (21) using the properties ofthe Weierstraß Jacobi modular form ℘(z) equation (90) and the computationof the radial and angular integrals in terms of Appell-Lauricella hypergeometricfunctions equations (88),(87),(67),(63) respectively.

For a choice of initial conditions a, Φ,Q we determine values for the observerimage plane coordinates αi, βi, see equation (96). Subsequently we determinethe value of zS and therefore of θS that satisfies the equation 5 :

2∫ ∞

α

1√R

dr = A1(xi, yi, xS , yS , m) ⇔ 2√(α − γ)(α − δ)

Γ(1/2)Γ(3/2)

F1

(12, βra

A ,32, zr

A

)=

2(m − 1)1

2|a|

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)+

12|a|

2√

(zm − zS)2√

zm(zm − z3)F1

(12, βra

A ,32, z1S

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+[1− sign(θS θmS)]1|a|

2

√zS(zm−z3)zm(zS−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2S

A

)

+1

2|a|

2√

12√

(zm − z3)F

(12,12, 1,

zm

zm − z3

(101)

using our exact solution for zS in terms of the Weierstraß elliptic functionequation (90). For this we need to know at which regions of the fundamentalperiod parallelogram the Weierstraß function takes real and negative values.Indeed, the function of Weierstraß takes the required values at the points: x =ωl + ω′, l ∈ R of the fundamental region (℘(ω

l + ω′; g2, g3) ∈ R−). Thus asthe parameter l varies we determine the value of zS that satisfies equations(90), (101). The quantities ω, ω′ denote the Weierstraß half-periods. In thecase under investigation ω is a real half-period while ω′ is pure imaginary. Forpositive discriminant ∆c = g3

2−27g23, all three roots e1, e2, e3 of 4z3−g2z−g3 are

real and if the ei are ordered so that e1 > e2 > e3 we can choose the half-periods5Which is the closed form solution of the radial and angular integrals of the first of lens

equations in eqn (21).

24

Page 26: Precise analytic treatment of Kerr and Kerr-(anti) de

asω =

∫ ∞

e1

dt√4t3 − g2t − g3

, ω′ = i∫ e3

−∞

dt√−4t3 + g2t + g3

(102)

The period ratio τ is defined by τ = ω′/ω. An alternative expression for the realhalf-period ω of the Weierstraß elliptic function is given by the hypergeometricfunction of Gauß6:

ω =1

√e1−e3

π

2F

(12,12, 1,

e2 − e3

e1 − e3

)(103)

Having determined θS by the procedure we just described we determine theazimuthial position of the source φS by the second equation of (21):

−φS = R2(xi, yi) + A2(xi, yi, xS , yS , m) (104)

Let us give an example. For the choice Q = 24.64563G2M2

c4 , Φ = −2.719110GMc2 , a =

0.6GMc2 we determine zS = 0.3161007914992452,m = 3 and ∆φ = −11.086, φS =

95.1794. Keeping fixed the value of the Kerr parameter we solved the lens equa-tions for different values of Carter’s constant Q and impact factor Φ. We exhibitour results in table 17.

Let us at this point, present a solution with a higher value for the Kerrparameter in Table 2.

The positions of the images of Tables 1 and 2 on the observer’s image planeare displayed in fig.2 and fig.3 respectively. In the same figures the boundary ofthe shadow of the spinning black hole is also displayed.

8.2 Closed form calculation for the magnifications.

We outline in this subsection, the closed-form calculation, of the resulting mag-nification factors. It turns out that the derivatives involved in the expressionfor the magnification are elegantly computed using the beautiful property ofthe hypergeometric functions: namely, that the derivatives of the hypergeo-metric functions of Appell-Lauricella are again hypergeometric functions of thesame type with a different set of parameters. It is a powerful property of ourformalism which we exploit to the full in what follows.

6The three roots are given in terms of the first integrals of motion by the expressions:e1 = 1

24(−a2 +Q+Φ2 +3

p4a2Q + (−a2 + Q + Φ2)2), e2 = 1

12(a2 −Q−Φ2), e3 = 1

24(−a2 +

Q + Φ2 − 3p

4a2Q + (−a2 + Q + Φ2)2)7Assuming that the galactic centre region, SgrA* , is a Kerr black hole with mass: MBH =

106Mand a distance from the observer to the galactic centre: rO = 8Kpc, the secondsolution in Table 1will require an angular resolution of 19.3102µarcs . This is in the range ofexperimental accuracy for both the TMT and GRAVITY experiments.

25

Page 27: Precise analytic treatment of Kerr and Kerr-(anti) de

a = 0.6,Q = 24.64563, Φ = −2.719110 a = 0.6,Q = 0.128, Φ = 3.839αi (GM

c2 ) 2.719110 −3.839βi (GM

c2 ) −4.9644365239 0.357770876399xi

(2

rO

GMc2

)1.359555 −1.9195

yi( 2rO

GMc2 ) −2.48221826 0.178885

m 3 3

zS 0.3161007914992452 0.0026145818604θS 55.79 87.069

∆φ(rad) −11.086 7.09441φS 95.1794 133.52

ω 0.5545341990201503500 0.824718843878947ω′ 1.3278669366032567973i 2.9400828459149726i

Table 1: Solution of the lens equations in Kerr geometry and the predictionsfor the source and image positions for an observer at θO = π/2, φO = 0. Thenumber of turning points in the polar variable is three. The values for the Kerrparameter and the impact factor Φ are in units of GM

c2 while those of Carter’sconstant Q are in units of G2M2

c4 .

Figure 2: The two images of Table 1 on the observer’s image plane. The valueof the Kerr parameter is a = 0.6GM

c2 , while the observer is located at θO = π/2.With red is the image solution, first column of Table 1 and with green the imagesolution, second column of table 1.

26

Page 28: Precise analytic treatment of Kerr and Kerr-(anti) de

a = 0.9939, Q = 27.0220588123, Φ = −2.29885534αi (GM

c2 ) 2.29885534βi (GM

c2 ) 5.198274599547431xi

(2

rO

GMc2

)1.14942767

yi( 2rO

GMc2 ) 2.5991372997737154

m 3

zS 0.01378435185109θS 83.2575

∆φ(rad) −11.243φS 104.177

ω 0.5505433970950226ω′ 1.1288708298860726 i

Table 2: Solution of the lens equations in Kerr geometry and the predictions forthe source and image positions for an observer at θO = π/2, φO = 0 for a highvalue for the spin of the black hole. The number of turning points in the polarvariable is three. The values for the Kerr parameter and the impact factor Φare in units of GM

c2 while those of Carter’s constant Q are in units of G2M2

c4 .

Figure 3: The lens solution of Table 2 as it will be detected on the observerimage plane by an equatorial observer. The boundary of the shadow of theblack hole is also exhibited.

27

Page 29: Precise analytic treatment of Kerr and Kerr-(anti) de

∂(58)∂xS

=∂(58)∂zS

∂zS

∂xS,

∂(58)∂zS

2|a|1

zm

1(1 − zm)

1√zm − z3

(zm − zS

zm

)−1/2

×

FD

(12, β4

3,32, z1

S

)+

−Φ

2|a|2

√(zm − zS)

zm

12√

zm − z3

2(1 − zm)

×

FD

(32, β1

3,52, z1

S

)1

1 − zm+

FD

(32, β2

3,52, z1

S

)−1zm

+ FD

(32, β3

3,52, z1

S

)−1

zm − z3

+

(1 − sign(θS θmS) (−1)

[[ 1zm

zS − zm

1 − zS

1√zS(zS − zm)(z3 − zS)

+

zS

zm

z3(zm − 3zSzm + 2z2S) − zS(zm(2 − 4zS) + zS(−1 + 3zS))

2(1− zS)2zS(z3 − zS)√

zS(zS − zm)(z3 − zS)

FD

(1, β7

3,32, z2

S

)+

zS

zm

zS − zm

(1 − zS)1√

zS(zS − zm)(z3 − zS)

FD

(2, β5

3,52, z2

S

)1 − zm

zm(1 − zS)2+

FD

(2, β4

3,52, z2

S

)1

zm+ FD

(2, β6

3,52, z2

S

)(−z3(zm − z3)zm(zS − z3)2

)]

(105)

Thus,

∂(58)∂xS

= (105) ×

−2 cos θS sin θS

r2S sin θS cos θS sin φS

(rO−rS sin θS cos φS)2

J1

(106)

28

Page 30: Precise analytic treatment of Kerr and Kerr-(anti) de

Now we calculate the term:∂(64)∂zS

. Indeed, calculating the derivatives w.r.t. zS

we derive the expression:

∂(64)∂zS

=1

2|a|Γ(1)Γ(1/2)

Γ(3/2)

(−

12√

zm(zm − z3)√

zm − zS

)F1

(12, βra

A ,32, z1S

A

)+

12|a|

Γ(1)Γ(1/2)Γ(3/2)

√(zm − zS)

zm(zm − z3)×

[F1

(32, βa1

A ,52, z1S

A

)(−1zm

)+

F1

(32, βa2

A ,52, z1S

A

)(−1

zm − z3

)]+

[1 − sign(θS θmS)]

[1

2|a|

(zS(zm − z3)zm(zS − z3)

)− 12

(−z3)√

zm − z3

zm(zS − z3)2

×

F1

(12, βra

A ,32, z2S

A

)+

1|a|

√zS(zm−z3)zm(zS−z3)√zm − z3

×[F1

(32, βa1

A ,52, z2S

A

)(−z3

(zS − z3)2

)+

F1

(32, βa2

A ,52, z2S

A

)((−z3)(zm − z3)zm(zS − z3)2

)]](107)

Now:

α1 =∂A1

∂xS= (107)× ∂zS

∂xS= (107) ×

(−2 cosθS sin θS ×

r2S sin θS cos θS sin φS

(rO−rS sin θS cos φS)2

J1

)

(108)and

α2 =∂A1

∂yS= (107)× ∂zS

∂yS= (107)×

(−2 cos θS sin θS ×

−[rOrS sin θS cos φS−r2S sin2 θS]

(rO−rS sin θS cos φS)2

J1

)

(109)While for the α3, α4 terms which contrbute to the expression for the magni-

fication, equation (26), we derive the expressions:

α3 = −∂φS

∂xS− ∂A2

∂xS= −

(−

(rOrS sin θS−r2S cos φS)

(rO−rS sin θS cos φS)2

J1

)− (105) ×

( r2S sin θS cos θS sin φS

(rO−rS sin θS cos φS)2

J1

)

(110)

α4 = −∂φS

∂yS−

∂A2

∂yS= −

rOrS cos θS sin φS

(rO−rS sin θS cos φS)2

J1− (105)×

−[rOrS sin θS cos φS−r2S sin2 θS ]

(rO−rS sin θS cos φS)2

J1

)

(111)

29

Page 31: Precise analytic treatment of Kerr and Kerr-(anti) de

where J1 denotes the Jacobian:

J1 =∂(xS , yS)∂(θS , φS)

(112)

and

∂θS

∂xS=

(r2S sin θS cos θS sin φS)/((rO − rS sin θS cosφS)2)

J1

∂θS

∂yS=

−[rOrS sin θS cosφS − r2S sin2 θS ]/((rO − rS sin θS cosφS)2)

J1

∂φS

∂xS= − (rOrS sin θS − r2

S cosφS)/((rO − rS sin θS cosφS)2)J1

∂φS

∂yS=

rOrS cos θS sin φS/((rO − rS sin θS cosφS)2)J1

(113)

In producing the results exhibited in eqns (105),(107) in our calculationsfor the magnification factors we made use of the important identity of Appell’shypergeometric function F1 :

∂m+nF1(α, β, β′, γ, x, y)∂xm∂xn

=(α, m + n)(β, m)(β′, n)

(γ, m + n)× (114)

F1(α + m + n, β + m, β′ + n, γ + m + n, x, y)and its corresponding generalization for the fourth hypergeometric function ofLauricella. Similar calculations that we do not exhibit in this paper, lead to thederivation of the coefficients β1, β2, β3, β4 in terms of the generalized hypergeo-metric functions of Appell-Lauricella.

A phenomenological analysis of our exact solutions for the magnifications inKerr spacetime will be a subject of a separate publication [16].

8.3 Source and image positions for an observer located atθO = π

3.

In this case, the coordinates on the observers image plane are related to the firstintegrals of motions as follows:

Φ = −αi

√3

2, Q = β2

i +(

4Φ2

3− a2

)14. (115)

Furthermore, our solution for the first lens equation (94) takes the form:

30

Page 32: Precise analytic treatment of Kerr and Kerr-(anti) de

2∫ ∞

α

1√R

dr = A1(xi, yi, xS , yS , m) ⇔ 2√(α − γ)(α − δ)

Γ(1/2)Γ(3/2)

F1

(12, βra

A ,32, zr

A

)=

2(m − 1)1

2|a|

√zm

zm(zm − z3)πF

(12,12, 1,

zm

zm − z3

)+

+1

2|a|

2√

(zm − zS)2√

zm(zm − z3)F1

(12, βra

A ,32, z1S

A

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(θS θmS)]1|a|

2

√zS(zm−z3)zm(zS−z3)

2√

zm − z3× F1

(12, βra

A ,32, z2S

A

)

+1

2|a|

2

√(zm − 1

4 )2√

zm(zm − z3)F1

(12, βra

A ,32, z1/4

AO1

)Γ( 1

2 )Γ(1)Γ(3/2)

+ [1 − sign(π

3 θmO)]

1|a|

2

√(1/4)(zm−z3)zm((1/4)−z3)

2√

zm − z3× F1

(12, βra

A ,32, z1/4

AO2

).

(116)

Let us give now examples of solutions for the images and source positions ofequations (116),(90).

For the initial conditions Q =25.64563, a = 0.9939, Φ = −3.11 we calculatethe parameter zS of the source latitude position to be: zS = 0.09097820848(θS = 72.4447) for m = 3. The position at the fundamental period parallelo-gram that provides the above value of zS as a solution of (116),(90) for threeturning points in the polar variable is located at: ω

1.2995480690017123 + ω′, wherethe fundamental half-periods of the Weierstraß elliptic function ℘(x, g2, g3) werecalculated to be:

ω = 0.52792338858688228, ω′ = 1.119903617249492 i (117)

Also the azimuthial position of the source was calculated to be using (95) andthe calculated value of zS: φS = 2.67231589rad = 153.112 = 551205′′8.

The first solution is shown on the image plane of the observer, Fig.4. Weobserve that the solution lies close to the boundary of the shadow of the blackhole.

9 Exact solution of the angular integrals in the

presence of the cosmological constant Λ.

There has been a discussion in the literature as to whether or not the cosmolog-ical constant contributes to the gravitational lensing. However, the debate has

8∆φ = R2(xi, yi) + A2(xi, yi, xs, ys,m) was calculated to be: ∆φ = −12.0971rad so thatthe photons perform more than one loop and a half around the black hole.

31

Page 33: Precise analytic treatment of Kerr and Kerr-(anti) de

a = 0.9939,Q = 25.64563, Φ = −3.11 a = 0.52,Q = 23.64563, Φ = −2.85αi (GM

c2 ) 3.591118674 3.29089βi (GM

c2 ) −4.7611506980 −4.58320084657xi

(2

rO

GMc2

)1.79556 1.64545

yi( 2rO

GMc2 ) −2.38058 −2.2916004

m 3 3

zS 0.09097820848 0.5980171072414θS 72.4447 39.3474

∆φ(rad) −12.0971 −11.8577φS 153.112 139.395

ω 0.52792338858688228 0.5571026427501503ω′ 1.119903617249492 i 1.389041935594241i

Table 3: Solution of the lens equations in Kerr geometry and the predictionsfor the source and image positions for an observer at θO = π/3, φO = 0. Thenumber of turning points in the polar variable is three. The values for the Kerrparameter and the impact factor are in units of GM

c2 .

Figure 4: The solution, 1st column of Table 3 as it will be detected on theobserver image plane by an observer at θO = π/3, φO = 0. The boundary of theshadow of the black hole is also exhibited.

32

Page 34: Precise analytic treatment of Kerr and Kerr-(anti) de

been restricted to the Schwarzschild-de Sitter spacetime [17], [18],[19]. Let usdiscuss now the more general case of gravitational lensing in the Kerr-de Sitterspacetime.

The generalized solution for the angular integral (57) in the presence of Λ isgiven by:

±∫ θmin / max

θS

=Ξ2

2|H |zm − zS

(1 − ηzm)1

2√

zm(zm − zS)(zm − z3)×

(1 − zm)FD

(12, βΛ1

4 ,32, za1

Λ

)Γ(

12

)

Γ(

32

) − aFD

(12, β4

3,32, za2

Λ

)Γ(

12

)

Γ(

32

)

+ (1 − sign(θS θmS))

[Ξ2

|H |zS

zm

zm − zS

1 − ηzS

1√zS(zS − zm)(z3 − zS)

×

−aFD

(1, β7

3,32, za4

Λ

)+

Φ1 − zS

FD

(1, βΛ2

4 ,32, za3

Λ

)]

(118)

where:

η := −a2Λ3

, µ =zS

zm

zm − z3

zS − z3, λ =

zS

zm

(1 − ηzm

1 − ηzS

), ν =

zS

zm

(1 − zm

1 − zS

)(119)

and

za1Λ :=

(η(zS − zm)1 − ηzm

,zS − zm

1 − zm,zm − zS

zm,zm − zS

zm − z3

),

za2Λ :=

(η(zS − zm)1 − ηzm

,zm − zS

zm,zm − zS

zm − z3

),

za3Λ :=

(λ, ν,

zS

zm, µ

), za4

Λ :=(

λ,zS

zm, µ

)(120)

Also the integrals ±∫ θmax / min

θmin / max= 2

∫ zm

0contribute the term:

2(m − 1) ×

Ξ2Φ2|H |

zm

(1 − ηzm)(1 − zm)1√

z2m(zm − z3)

× FD

(12, βΛ1

4 ,32, za1

Λ0

)2

+−Ξ2a

2|H |zm√

z2m(zm − z3)

11 − ηzm

× FD

(12, β4

3 ,32, za2

Λ0

)2

(121)

where the tuples of numbers za1Λ0, za2

Λ0 appearing in (121) are defined by settingzS = 0 in the tuples of numbers za1

Λ , za2Λ respectively. Notice that for Λ = 0

this reduces to equation (56).

33

Page 35: Precise analytic treatment of Kerr and Kerr-(anti) de

9.1 Closed-form solution for the radial integrals in thepresence of the cosmological constant Λ.

Assume Λ > 0. We need to calculate radial integrals of the form:∫

aΞ2

∆r((r2 + a2) − aΦ))

dr2√

R(122)

We use the technique of partial fractions from integral calculus:

aΞ2

∆r((r2 + a2) − aΦ)) =

A1

r − r+Λ

+A2

r − r−Λ+

A3

r − r++

A4

r − r−(123)

where r+Λ , r−Λ , r+, r− are the four real roots of ∆r.

For instance, for rO , rS < r+Λ one of the integrals we need to calculate is:

1√13 (QΛ + 3Ξ2(1 + Λ

3 (a − Φ)2)

∫ r+Λ /2

α

A1dr

(r − r+Λ )√

(r − α)(r − β)(r − γ)(r − δ)

(124)Indeed, we compute in closed-form:

∫ r+Λ /2

α

A1dr

(r − r+Λ )√

(r − α)(r − β)(r − γ)(r − δ)=

ρ1√ρ1

H+Λ × FD

(12, βΛ3

4 ,32, zr

Λ+

)Γ(1/2)Γ(3/2)

(125)

where

ρ1 :=r+Λ − β

r+Λ − α

r+Λ − 2α

r+Λ − 2β

,

zrΛ+ :=

(r+Λ − 2α

r+Λ − 2β

,β − γ

α − γ

r+Λ − 2α

r+Λ − 2β

,β − δ

α − δ

r+Λ − 2α

r+Λ − 2β

,r+Λ − β

r+Λ − α

r+Λ − 2α

r+Λ − 2β

)

H+Λ :=

α − β

|β − α|1

rΛ+ − β

1√ω(γ − α)(δ − α)

(126)

Also the radial integral involved on the LHS in the “balance” lens equation(4) is computed exactly in terms of the hypergeometric function of Appell F1 :

1√13 (QΛ + 3Ξ2(1 + Λ

3 (a − Φ)2)

∫ r+Λ /2

α

dr√(r − α)(r − β)(r − γ)(r − δ)

=ρ1√E

1√ω(γ − α)(δ − α)

Γ(1/2)Γ(3/2)

F1

(12, βra

A ,32, zr

AΛ+

)

(127)

34

Page 36: Precise analytic treatment of Kerr and Kerr-(anti) de

where E := 13 (QΛ+3Ξ2(1+Λ

3 (a−Φ)2), ω := r+Λ−α

r+Λ−β

, zrAΛ+ =

(β−γα−γ

r+Λ−2α

r+Λ−2β

, β−δα−δ

r+Λ−2α

r+Λ−2β

)

and α, β, γ, δ denote the roots of the quartic polynomial R in the presence of Λeqn(6).

Likewise, the generalization of Eq.(90) is given by:

ξS = ℘(2 × (127) + · · · + ε) (128)

where the Weierstraß invariants take the form:

g2 =112

(αΛ + βΛ)2 −QαΛ

4,

g3 =1

216(αΛ + βΛ)3 −Q

α2Λ

48−

QαΛβΛ

48(129)

andαΛ := −H2, βΛ := Q + Φ2Ξ2 (130)

A complete phenomenological analysis of our exact solutions in the presenceof the cosmological constant Λ will be a subject of a separate publication [16].Nevertheless, it is evident from the closed form solutions we derived in this workthat the cosmological constant does contribute to the gravitational bending oflight.

10 Conclusions

In this work the precise analytic treatment of Kerr and Kerr-de Sitter black holesas gravitational lenses has been achieved. A full analytic strong-field calculationof the source, image positions and the resulting magnification factors has beenperformed. A full blend of important functions from Mathematical Analysissuch as the Weierstraß elliptic function ℘ and the generalized multivariablehypergeometric functions of Appell-Lauricella FD were deployed in derivingthe closed-form solution of the gravitational lens equations. From the exactsolution of the radial and angular Abelian integrals which are involved in thelens equations we concluded that Λ does contribute to the gravitational bendingof light. A full quantitative phenomenological analysis of gravitational lensingby a Kerr deflector in the presence of Λ is beyond the scope of this work andwill appear elsewhere [16]. We provided examples of image-source configurationsthat solve the gravitational Kerr lens equations and exhibited their appearanceon the observer’s image plane as they will be detected by an equatorial observer(θO = π/2, φO = 0) and an observer located at θO = π/3, φO = 0, for variousvalues of the Kerr parameter a, and the first integrals of motion Φ,Q. Theresulting solutions lie close to the boundary of the shadow of the black hole.

The theory produced in this work based on the exact solution of the nullgeodesic equations of motion in Kerr spacetime will have an important applica-tion to the Sgr A∗ galactic centre supermassive black hole [16]. It may serve the

35

Page 37: Precise analytic treatment of Kerr and Kerr-(anti) de

important goal of probing general relativity at the strong field regime throughthe phenomenon of gravitational bending of light induced by the spacetime cur-vature. It is complementary to other investigations which have the ambition toprobe gravitation at the strong-field regime through the relativistic effects ofperiastron precession and frame-dragging [20].

If, the now under development, near-infrared intereferometric GRAVITYexperiment [8] and the proposed thirty metre telescope (TMT) [7] reach theaimed accurary of 10 µarcs and in combination with Very Long Baseline Inter-ferometry (VLBI) observations, then it may be possible for these experimentsto detect the effects of strong light bending (the shadow) by the galactic centreblack hole [8]. The observation of this shadow would be direct evidence of anevent horizon.

Another interesting application of our work would be to investigate the polar-ization vector and the rotation of the plane of polarization of light rays passingnear the spinning black hole. In order to study the propagation of light polar-ization, the solution of parallel transport problem for null geodesics, is required[21]. Marck [23] has constructed a quasi-orthonormal tetrad that is parallelpropagated along null geodesics in Kerr spacetime. His approach makes use ofthe Killing-Yano tensor discovered by Penrose and Floyd [22]. The authors in[24] have investigated the rotation of the polarization plane for specific light raysin the weak-field approximation (slow rotation) in the Kerr metric by applyingthe null tetrad formalism of Newman-Penrose [25]. Also the authors in [26]performed a perturbative calculation of the rotation of the polarization plane inKerr spacetime utilizing the Penrose-Walker constant [21]. However, an inves-tigation of the problem of light polarization for generic null orbits beyond theweak-field limit is still lacking and it will require the exact (non-perturbative)solutions we derived in our paper. The resolution of this interesting problemis beyond the scope of the current work and will be the theme of a separatepublication.

There is a fruitful synergy of various fields of Science: general relativity,astronomy, cosmology and pure mathematics.

11 Acknowledgments

The author is oblidged to C. E. Vayonakis for discussions and comments on themanuscript. He would like to thank: L. Perivolaropoulos and P. Kanti for theirinterest in his work. He warmly thanks his colleagues and his undergraduatestudents at the Physics department, University of Ioannina, for a stimulatingacademic enviroment. He is grateful to the referees for their constructive com-ments which improved the presentation of this work. In addition, he thanks G.Kakarantzas for discussions and his friendship. Last but not least, he thankshis family for moral support during the early stages of this work.

36

Page 38: Precise analytic treatment of Kerr and Kerr-(anti) de

A Transformation properties of Lauricella’s hy-pergeometric function FD.

In this appendix we prove useful transformation properties of Lauricella’s hy-pergeometric function FD . We first introduce the function and its integral rep-resentation:

Lauricella’s 4th hypergeometric function of m-variables.

FD(α, β, γ, z) =∞∑

n1,n2,...,nm=0

(α)n1+···nm(β1)n1 · · · (βm)nm

(γ)n1+···+nm(1)n1 · · · (1)nm

zn11 · · · znm

m (131)

where

z = (z1, . . . , zm),β = (β1, . . . , βm). (132)

The Pochhammer symbol (α)m = (α, m) is defined by

(α)m =Γ(α + m)

Γ(α)=

1, if m = 0α(α + 1) · · · (α + m − 1) if m = 1, 2, 3 (133)

With the notations zn := zn11 · · · znm

m , (β)n := (β1)n1 · · · (βm)nm , n! = n1! · · ·nm!,|n| := n1+· · ·+nm for m-tuples of numbers in (132) and of non-negative integersn = (n1, · · ·nm) the Lauricella series FD in compact form is

FD(α, β, γ, z) :=∑

n

(α)|n|(β)n(γ)|n|n!

zn (134)

The series admits the following integral representation:

FD(α, β, γ, z) =Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0

tα−1(1 − t)γ−α−1(1 − z1t)−β1 · · · (1 − zmt)−βmdt

(135)which is valid for Re(α) > 0, Re(γ − α) > 0. . It converges absolutely insidethe m-dimensional cuboid:

|zj | < 1, (j = 1, . . . , m). (136)

For m = 2 FD in the notation of Appell becomes the two variable hypergeometricfunction F1(α, β, β′, γ, x, y) with integral representation:∫ 1

0

uα−1(1−u)γ−α−1(1−ux)−β(1−uy)−β′du =

Γ(α)Γ(γ − α)Γ(γ)

F1(α, β, β′, γ, x, y)

(137)

37

Page 39: Precise analytic treatment of Kerr and Kerr-(anti) de

Proposition 2 The following holds:

FD(α, β, β′, β′′, γ, x, y, z) = (1 − z)−α ×

FD

(α, β, β′, γ − β − β′ − β′′, γ,

z − x

z − 1,z − y

z − 1,

z

z − 1

)

(138)

Proof. Applying the tranformation in equation (48):

u =ν

1 − z + νz=

ν

(1 − z)[1 − νz

z−1

] (139)

we get:

1 − u =1 − ν

1 − ν zz−1

, (1 − ux)−β =

([1 − ν(z−x)

z−1 ][1 − νz

z−1

)−β

(1 − u y)−β′=

([1 − ν(z−y)

z−1 ]1 − νz

z−1

)−β′

, (1 − uz)−β′′=

(1

[1 − νzz−1 ]

)−β′′

(140)

Thus

IRFD = (1 − z)−α ×∫ 1

0

dν να−1(1 − ν)γ−α−1(1 − νz − x

z − 1)−β(1 − ν

z − y

z − 1)−β′

(1 − νz

z − 1)−(γ−β−β′−β′′)

(141)

and proposition follows.

Proposition 3 The following identity holds:

1|a|

2

√zj

zm

2

√zm − z3

zj − z3

12√

zm − z3FD

(12, 1,

12,−1

2,32,zj(1 − z3)zj − z3

,zj

zm

(zm − z3)(zj − z3)

,zj

zj − z3

)

=1|a|

2

√zj

zm

2

√zm − z3

zj − z3

12√

zm − z3×

−z3

1 − z3FD

(12, 1,

12,12,32,zj(1 − z3)zj − z3

,zj

zm

(zm − z3)(zj − z3)

,zj

zj − z3

)+

11 − z3

F1

(12,12,12,32,

zj

zm

(zm − z3)(zj − z3)

,zj

zj − z3

)

(142)

38

Page 40: Precise analytic treatment of Kerr and Kerr-(anti) de

Proof. We start with the integral representation of Lauricella”s hypergeometricfunction:

FD

(12, 1,

12,−1

2,32, x1, x2, x3

)=

∫ 1

0

du u−1/2(1 − ux1)−1(1 − ux2)−1/2(1 − ux3)1/2 Γ(3/2)Γ(1/2)

=Γ(3/2)Γ(1/2)

∫ 1

0

du2√

u

11 − ux1

12√

1 − ux2

1 − ux3

2√

1 − ux3

=Γ(3/2)Γ(1/2)

[∫ 1

0

du2√

u(1 − ux1)1

2√

1 − ux2

12√

1 − ux3−

∫ 1

0

du u x3

2√

u(1 − ux1)1

2√

1 − ux2

12√

1 − ux3

](143)

with x1 := zj(1−z3)zj−z3

, x2 := zj

zm

(zm−z3)(zj−z3)

, x3 := zj

zj−z3.

B Time-delay assuming vanishing Λ .

For the time-delay, in the case of vanishing cosmological constant, we derive theequation:

ct =∫ r r2(r2 + a2)

±∆√

Rdr +

∫ r 2GMr

±c2∆√

R(a2 − Φa)dr +

∫ θ a2 cos2 θdθ

±√

Θ(144)

It is convenient to define:

ztdr+ =

(β − r+

α − r+

rS − α

rS − β,rS − α

rS − β

β − γ

α − γ,δ − β

δ − α

rS − α

rS − β

),

ztdr− =

(β − r−α − r−

rS − α

rS − β,rS − α

rS − β

β − γ

α − γ,δ − β

δ − α

rS − α

rS − β

),

ztdrS =

α

rS − α

rS − β,rS − α

rS − β,rS − α

rS − β

β − γ

α − γ,δ − β

δ − α

rS − α

rS − β

),

ztdAr =

(rS − α

rS − β

β − γ

α − γ,δ − β

δ − α

rS − α

rS − β

)(145)

In calculating the last angular term in (144) and using the variable z = cos2 θ,one of the integrals we need to calculate is:

12

a2

|a|

∫ zj

0

dz z√z(zm − z)(z − z3)

(146)

39

Page 41: Precise analytic treatment of Kerr and Kerr-(anti) de

Indeed, its calculation in closed analytic form gave us the result:

12

a2

|a|

∫ zj

0

dz z√z(zm − z)(z − z3)

=12

a2

|a|z2

j (zm − zj)

zm

√(zj − zm)(z3 − zj)zj

F1

(1,

32,12,52,

zj

zm,

zj

zm

zm − z3

zj − z3

)Γ(1)Γ(3/2)

Γ(5/2)

(147)

In total we derive for the angular integrals in (144):

∫ θ a2 cos2 θdθ

±√

Θ≡ Atime−delay =

12

a2

|a|(zm − zS)zm√

zm(zm − zS)(zm − z3)F1

(12, βa3

A ,32, z1S

A

)Γ(1/2)Γ(3/2)

+

[1 − sign(θS θmS)]12

a2

|a|z2

S(zm − zS)zm

√(zS − zm)(z3 − zS)zS

×F1

(1, βa1

A ,52, ztd

AaS

)Γ(1)Γ(3/2)

Γ(5/2)

+12

a2

|a|(zm − zO)zm√

zm(zm − zO)(zm − z3)F1

(12, βa3

A ,32, z1O

A

)Γ(1/2)Γ(3/2)

+

[1 − sign(θO θmO)]12

a2

|a|z2

O(zm − zO)zm

√(zO − zm)(z3 − zO)zO

×F1

(1, βa1

A ,52, ztd

AaO

)Γ(1)Γ(3/2)

Γ(5/2)

+2(m− 1)12

a2

|a|z2

m√z2

m(zm − z3)Γ(3/2)Γ(1/2)

Γ(2)F

(12,12, 2,

zm

zm − z3

)

(148)

We now turn our attention to the calculation of the radial contribution totime-delay in equation (144). Assume rO = rS . The first term can be written:

∫ rS

α

r2(r2 + a2)∆√

Rdr

=∫ rS

α

r2dr√R

+∫ rS

α

2GMr

c2√

Rdr −

∫ rS

α

2a2GMrdr

c2∆√

R+

4G2M2

c4

∫ rS

α

(1 − a2− 2GM

c2r

)

√R

dr

(149)

40

Page 42: Precise analytic treatment of Kerr and Kerr-(anti) de

In total for this radial term the exact integration yields the result:∫ rS

α

r2(r2 + a2)∆√

Rdr =

α2Ω′′zS√rS−αrS−β

× FD

(12, β10

4 ,32, ztd

rS

)Γ(1/2)Γ(3/2)

+αΩ′′zS√

rS−αrS−β

2GM

c2FD

(12, β11

4 ,32, ztd

rS

)2

− zSΩ′′

(r+ − α)√

rS−αrS−β

(Atd

+ − 4G2M2

c4Atd

+1

)

×

FD

(12, β4

3,32, ztd

r+

)Γ(1/2)Γ(3/2)

− rS − α

rS − βFD

(32, β4

3,52, ztd

r+

)Γ(3/2)Γ(5/2)

− zSΩ′′

(r− − α)√

rS−αrS−β

(Atd

− − 4G2M2

c4Atd

−1

)

×

FD

(12, β4

3,32, ztd

r−

)Γ(1/2)Γ(3/2)

− rS − α

rS − βFD

(32, β4

3,52, ztd

r−

)Γ(3/2)Γ(5/2)

+4G2M2

c4

Ω′′zS√rS−αrS−β

F1

(12, βra

A ,32, ztd

Ar

)Γ(1/2)Γ(3/2)

(150)

In Eq.(150) Ω′′ is defined by:

Ω′′ :=ω(αµ+1 − αµ+2)√

(αµ+2 − αµ+1)(αµ+2 − αµ+1)(αµ−3 − αµ+1)(αµ − αµ+1)

=ω(α − β)√

(β − α)(β − α)(γ − α)(δ − α)

=δ − α

δ − β

α − β

|β − α|1√

(γ − α)(δ − α)(151)

The quantity zS is defined in terms of the source’s position and the roots ofthe quartic polynomial as follows:

zS :=rS − α

rS − β

≡ rS − α

rS − β

δ − β

δ − α(152)

Also we defined the coefficients:

Atd± = ±

2a2 GMc2 r±

r− − r+(153)

and

Atd±1 = ±

( 2GMc2 r± − a2)r− − r+

(154)

41

Page 43: Precise analytic treatment of Kerr and Kerr-(anti) de

The exact computation of the integral∫ rS

α

2GMc2

(a2−Φa)rdr

∆√

R(which stems from

the middle radial term in 144)) yields the result:

E2

∫ rS

α

rdr

∆√

R= E2

−Atd2+Ω′′zS

(r+ − α)√

rS−αrS−β

×

FD

(12, β4

3 ,32, ztd

r+

)Γ(1/2)Γ(3/2)

(rS − α

rS − β

)FD

(32, β4

3,52, ztd

r+

)Γ(3/2)Γ(5/2)

+ E2−Atd

2−Ω′′zS

(r− − α)√

rS−αrS−β

×

FD

(12, β4

3 ,32, ztd

r−

)Γ(1/2)Γ(3/2)

(rS − α

rS − β

)FD

(32, β4

3,52, ztd

r−

)Γ(3/2)Γ(5/2)

(155)

where E2 := 2GMc2 (a2 − Φa) and

Atd2± =

±r±r+ − r−

(156)

References

[1] A. Einstein, Erklarung der Perihelbewegung des Merkur aus der allge-meinen Relativitatstheorie, Sitzungsberichte der Preussischen Akademie derWissenschaften p831 (1915)

[2] P. Schneider, J. Ehlers, E.E. Falco Gravitational Lenses, (1992) A&A Li-brary, Springer

[3] A. Einstein, Science 84, 506 (1936)

[4] Hans C. Ohanian, American J. Physics. 55(5) 1987, 428-432

[5] G. V. Kraniotis, Frame dragging and bending of light in Kerr and Kerr-(anti) de Sitter spacetimes, Class. Quantum Grav.22 (2005) 4391-4424

[6] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili,Rend.Circ.Mat.Palermo 7 (1893), 111-158; P. Appell Sur les fonc-tions hypergeometriques de deux variables, J. Math.Pure Appl. 8 (1882)173-216

[7] Ghez, A. M. et al, Measuring Distance and Properties of the Milky Way’sCentral Supermassive Black Hole with Stellar Orbits, ApJ 689 (2008)1044, arXiv:0808.2870; Ghez, A. M. et al, ApJ 586 (2003) L127-31;Ghez, A. M. et al, The Galactic Center: A Laboratory for Fundamen-tal Astrophysics and Galactic Nuclei, An Astro2010 Science White Paper,

42

Page 44: Precise analytic treatment of Kerr and Kerr-(anti) de

arXiv:0903.0383v1 [astro-ph.GA]; Ghez, A. M. et al, Increasing the Sci-entific Return of Stellar Orbits at the Galactic Centre, arXiv:1002.1729[astro-ph.GA], Yelda S. et al, Improving galactic center astrometry by re-ducing the effects of geometric distortion, ApJ 725 (2010) 331-352, arXiv:1010.0064

[8] Eisenhauer F et al, Astro-ph/0508607, 2005, S. Gillessen et al, arXiv:1007.1612 (2010), Genzel R. et al arXiv:1006.0064, Rev.Mod.Phys. 82(2010) 3121-3195

[9] C. T. Cunningham and J. M. Bardeen, Astroph.Journal 183, (1973) 237

[10] Bray I., Phys.Rev.D. 34 (1986) 367; M. Sereno and F. De Luca, Phys.Rev.D.74 (2006) 123009, arXiv:astro-ph/0609435v2; M. Sereno and F. De Luca,Phys.Rev. D78 (2008), 023008; V. Bozza, F. De Luca and G. Scarpetta,Phys.Rev.D. 74 (2006) 063001; V. Bozza, Phys.Rev.D. 78 (2008) 063014;V. Bozza, arXiv:0911.2187

[11] S. E. Vazquez and E. P. Esteban, Nuov.Cim. 119 B (2004) 489

[12] R. P. Kerr, Phys. Rev. Lett.11 (1963) 237

[13] Z. Stuchlık and M. Calvani, Gen.Rel.Grav. 23 (1991) 507-519; P. Slanyand Z. Stuchlık, Class.Quantum Grav. 22 (2005) 3623-3651

[14] B. Carter, Commun.Math.Phys. 10 (1968) 280-310; M. Demianski, ActaAstron.23 (1973) 197-231; S. W. Hawking, C. J. Hunter and M. M. Taylor-Robinson, Phys.Rev.D 59 (1999) 064005

[15] E. Teo, Gen. Rel. Grav.35 (2003) 1909

[16] G. V. Kraniotis, Work in Preparation.

[17] K. Lake, arXiv:0711.0673v2[gr-qc]

[18] M. Sereno, Phys.Rev.D 77 (2008) 043004

[19] W. Rindler and M. Ishak, Phys.Rev.D 76 (2007) 043006

[20] G. V. Kraniotis, Classical and Quantum Gravity 24 (2007) 1775-1808,arXiv:gr-qc/0602056, C. M. Will, ApJ, 674 (2008) L25, D. Merritt, T.Alexander, S. Mikkola and C. M. Will, Phys. Rev.D 81(2010) 062002,L. Iorio,arXiv:1008.1720v4[gr-qc], also: Jaroszynski M. Acta Astronom-ica (1998) 48, 653, G. F. Rubilar and A. Eckart (2001) A&A 374, 95,P.C. Fragile and G. J. Mathews 2000, ApJ 542, 328, N. N. Weinberg, M.Milosavljevic and A. M. Ghez, (2005) ApJ 622, 878, Preto M. and P. Saha(2009) ApJ 703, 1743.

[21] M. Walker and R. Penrose, Commun.math.Phys.18 (1970),265

[22] R. Penrose, Ann. N.Y. Acad. Sci. 224 (1973) 125

43

Page 45: Precise analytic treatment of Kerr and Kerr-(anti) de

[23] J.-A. Marck, Phys. Lett.A 97 (1983) 140

[24] S. Pineault and R. C. Roeder, ApJ. 212 (1977) 541

[25] E. Newman and R. Penrose, Journal of Mathematical Physics 3, (1962)566

[26] P. A. Connors, T. Piran and R. F. Stark, ApJ. 235 (1980) 224, H. Ishihara,M. Takahashi and A. Tomimatsu, Phys. Rev. D 38 (1988) 472

44