power and temperature - ti training - power and... · power and temperature ... (10) maximum power...

24
Power and Temperature TIPL 1160 TI Precision Labs Op Amps Presented by Ian Williams Prepared by Art Kay, Ian Williams and Miro Oljaca

Upload: vuongphuc

Post on 14-Aug-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Power and Temperature TIPL 1160 TI Precision Labs – Op Amps

Presented by Ian Williams

Prepared by Art Kay, Ian Williams and Miro Oljaca

Page 2: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Power Dissipation – Quiescent Current

2

PQ = quiescent power = IQ * VS

IQ = quiescent current

VS = total supply voltage

VS = VCC – VEE = (15) – (-15V) = 30V

Example: worst case over temperature

PQ = IQ ∙ VS = (6mA)(30V) = 180mW

VCC +15V

-

+

OPA827

+

VIN

VOUT

RL 1

k

VEE -15V

Page 3: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Power Dissipation – DC Load

3

Effective load:

RL = RLoad || (RF + R1)

RL = (1kΩ)|| (900Ω + 100Ω)

RL = 500 Ω

+15V

-15V

-

+

+

Vin

1Vdc

VOUT

RLoad 1kΩ

R1 100Ω RF 900Ω

+

5V

-

20mA

+

10V

-

10mA

10mA

+ 9V -+ 1V -

10mA10mA

Page 4: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Maximum DC Power Dissipation

4

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14

Op

Am

p P

ow

er

Dis

ipai

ton

(W)

Vout dc Output Voltage (V)

Op Amp dc Power vs. Vout

Vcc2= 7.5V

Vcc2

4 ∙ RL= 113mW

Pdc =VoutRL

Vcc − Vout

Pdc _max = Pdc Vcc2

=Vcc

2

4 ∙ RL

DC Output Voltage (V)

Po

we

r D

issip

atio

n (

W)

Page 5: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Popa = Vcc − Vout ∙VoutRL

(1) Power dissipated in op amp

Popa (Vout ) =Vout ∙ VccRL

−Vout

2

RL (2) Dc output voltage

∂Popa

∂Vout=Vcc − 2 ∙ Vout

RL= 0 (3) Take the partial derivative. Set to zero and solve for maxima.

Vout =Vcc2

when ∂Popa

∂Vout= 0 (4) Solve (3) for value of Vout that yields maximum power

Pdc _max = Popa (Vcc2) =

Vcc2

4 ∙ RL (5) Substitute (4) into (2) to determine maximum dc power in Op Amp

Derivation of DC Maximum Power Transfer

5

Popa = Vcc − Vout ∙VoutRL

(1) Power dissipated in op amp

Popa (Vout ) =Vout ∙ VccRL

−Vout

2

RL (2) Dc output voltage

∂Popa

∂Vout=Vcc − 2 ∙ Vout

RL= 0 (3) Take the partial derivative. Set to zero and solve for maxima.

Vout =Vcc2

when ∂Popa

∂Vout= 0 (4) Solve (3) for value of Vout that yields maximum power

Pdc _max = Popa (Vcc2) =

Vcc2

4 ∙ RL (5) Substitute (4) into (2) to determine maximum dc power in Op Amp

Page 6: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Power Dissipation at AC

6

Effective Load:

RL = RLoad || (RF + R1)

RL = 500 Ω

+15V

-15V

-

++

VOUT

1VPK

VOUT

10VPK

RL 1kΩ

R1 100Ω RF 900Ω

+5V-

20mA

+

10V

-

10mA

10mA

+ 9V -+ 1V -

20mA10mA

T

Time (s)0.0 250u 500u 750u 1.0m

Vo

lta

ge

(V

)

-10.0

-5.0

0.0

5.0

10.0

T

Time (s)0.0 250u 500u 750u 1.0m

Vo

lta

ge

(V

)

-1.0

-0.5

0.0

0.5

1.0

10mA

Page 7: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Maximum Average AC Power Dissipation

7

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14

Op

Am

p a

c A

vera

ge P

ow

er

(W)

Peak ac Output Voltage (Vout)

Op Amp ac Average Power vs. Vout

2 ∙ Vcc2

π2 ∙ RL= 91mW

2 ∙ Vccπ

= 9.55V

Pac _avg (Voutpk ) =2 ∙ Vcc ∙ Voutpk

π ∙ RL−Voutpk

2

2 ∙ RL

Pac _max_avg = Popa _avg 2 ∙ Vcc

π =

2 ∙ Vcc2

π2 ∙ RL

Po

we

r D

issip

atio

n (

W)

Peak AC Output Voltage (V)

Page 8: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Popa = Vcc − Vout ∙VoutRL

(1) Power dissipated in op amp

Vout (t) = Voutpk ∙ sin(ω ∙ t) (2) ac sinusoidal wave out

Pac (t) = Vcc − Voutpk ∙ sin(ω ∙ t) ∙Voutpk ∙ sin(ω ∙ t)

RL

(3) Substitute (2) into (1)

Pac (t) =VccVoutpk ∙ sin(ω ∙ t)

RL−Voutpk

2 ∙ sin2(ω ∙ t)

RL

(4) Power dissipated in op amp as a function of time

ω =2π

T

(5) Angular frequency as a function of period

Pac (t) =VccVoutpk ∙ sin(

2πT ∙ t)

RL−Voutpk

2 ∙ sin2(2πT ∙ t)

RL

(6) Substitute (5) into (4)

Pac _avg =1

T 2

VccVoutpk ∙ sin(2πT ∙ t)

RL−Voutpk

2 ∙ sin2(2πT ∙ t)

RL

T/2

0

dt

(7) Find the average power

Pac _avg (Voutpk ) =2 ∙ Vcc ∙ Voutpk

π ∙ RL−Voutpk

2

2 ∙ RL

(8) Average power as a function of peak output voltage

∂Popa _avg

∂Voutpk=2 ∙ Vccπ ∙ RL

−Voutpk

RL

(9) Take the partial derivative to find maxima. Set to zero and solve for maxima.

Pac _max _avg = Popa _avg 2 ∙ Vcc

π =

2 ∙ Vcc2

π2 ∙ RL

(10) Maximum power and the peak output voltage where max power occurs

Derivation of AC Maximum Power Transfer

8 Derivation courtesy of Miro Oljaca

Page 9: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Device Model – No Heat Sink

9

θJA Ambient Junction PCB

Op amp

package

θJA includes the effects of the package and PCB!

Page 10: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Analogous Electrical Model – No Heat Sink

10

PD

θJA

TA

TJ

TA

TJ = (PD*ΘJA) + TA

T voltage

θ resistance

P current

Page 11: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Temperature Rise – Maximum DC Load

11

PQ = IQ ∙ VS = 6mA ∙ 30V = 180mW

Pdc _max =Vcc

2

4 ∙ RL=

15V 2

4 ∙ (500Ω)= 113mW

Ptotal = PQ + Pdc _max = 180mW+ 113mW = 293mW

TJ = Ptotal ∙ θJA + TA = 293mW ∙ 150 W + 25 = 67.5

+15V

-15V

-

+

OPA827

+

VIN_DC

VOUT

RL 1

R1 100Ω RF 900Ω

Page 12: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Absolute Maximum Ratings

12

Page 13: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Protection

13

50 75 100 125 1502525

30

35

40

45

Temperature (°C)

PT

AT

Cu

rre

nt (µ

A)

PTAT Current (µA) vs. Temperature

-

+

Comparator

with hysteresis

RS

PTAT

current

-

+

+VS

-VS

+VS

Disconnects power at 160⁰CReconnects power at 140⁰C

VREF

Page 14: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Model – Device with Heat Sink

14

θSA

Ambient

Case Junction

Heat sink

θCS

θJC

Fins

Page 15: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Analogous Electrical Model – Device with Heat Sink

15

θJC

θCS

θSA

TJ

TC

TS

TA

PD

TJ = PD*(θJC + θCS + θSA) + TA

PD = total power dissipation

TJ = junction temperature

TC = case temperature

TS = heat sink temperature

TA = ambient temperature

Page 16: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Resistance – ΘJC (Junction to Case)

16

TJ = PD*(θJC + θCS + θSA) + TA

Page 17: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Resistance – ΘCS (Case to Sink)

17

Typical Interface Resistances for Various Mounting

Methods with a TO-220 (interface area = 1 in2):

Thermal Joint Compound only (0.001 thick) θ = 0.056/W

Mica (0.005) and Joint Compound (0.002) θ = 0.44 /W

Series 177 Beryllium Oxide Wafers (0.062)

And joint Compound (0.002) θ = 0.13 /W

DeltaPadTM 173-9 (0.009) θ = 0.50 /W

Dry Mounting (0.001 assumed) θ = 1.2 /W

TJ = PD*(θJC + θCS + θSA) + TA

Page 18: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Resistance – ΘSA (Sink to Ambient)

18

Example: Aavid Thermalloy 6398BG

TJ = PD*(θJC + θCS + θSA) + TA

100

80

60

40

20

0

5

4

3

2

1

00 4 8 12 16 20

0 200 400 600 800 1000

Heat Dissipated (W)

Air Flow Velocity (Ft./Min.)

Mo

un

tin

g S

urf

ace

Te

mp

Ris

e A

bo

ve

Am

bie

nt (°

C)

Th

erm

al R

esis

tan

ce

fro

m

Su

rfa

ce

to

Am

bie

nt (°

C/W

)

Page 19: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Resistance in Natural Convection*

19

Device

Power

(W)

θcs Thermal

Resistance

(°C/W)

2 7.5

4 7.0

6 6.33

8 6.0

10 5.5

θSA =ΔTmountPtotal

=15

2W= 7.5 W Using Graph

100

80

60

40

20

0

5

4

3

2

1

00 4 8 12 16 20

0 200 400 600 800 1000

Heat Dissipated (W)

Air Flow Velocity (Ft./Min.)

Mo

un

tin

g S

urf

ace

Te

mp

Ris

e A

bo

ve

Am

bie

nt (°

C)

Th

erm

al R

esis

tan

ce

fro

m

Su

rfa

ce

to

Am

bie

nt (°

C/W

)

*air flow ≤ 100 ft./min

Page 20: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Thermal Resistance in Forced Airflow

20

Air

Velocity

(ft./min)

θcs Thermal

Resistance

(°C/W)

200 3

400 2

600 1.8

800 1.1

100

80

60

40

20

0

5

4

3

2

1

00 4 8 12 16 20

0 200 400 600 800 1000

Heat Dissipated (W)

Air Flow Velocity (Ft./Min.)

Mo

un

tin

g S

urf

ace

Te

mp

Ris

e A

bo

ve

Am

bie

nt (°

C)

Th

erm

al R

esis

tan

ce

fro

m

Su

rfa

ce

to

Am

bie

nt (°

C/W

)

Page 21: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Example – Calculate Total Power

21

Pdc =Vcc

2

4 ∙ RL=

(15V)2

4 ∙ (25Ω)= 2.25W Maximum dc Power

Vs = Vcc − Vee = 15V− −15V = 30V Total Supply Voltage

IQ = 25mA From OPA541 Data Sheet

PQ = IQ ∙ Vs = 25mA ∙ 30V = 0.75W Quiescent Power

Ptotal = Pdc + PQ = 2.25W+ 0.75W = 3W Total Power

+15V

-15V

-

+

OPA541

+

VIN

VOUT

RL 25Ω

Page 22: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

22

Ptotal = 3W

θSA =ΔTmountPtotal

=22

3W= 7.33 W

Example – Calculate θSA for Given Power

100

80

60

40

20

0

5

4

3

2

1

00 4 8 12 16 20

0 200 400 600 800 1000

Heat Dissipated (W)

Air Flow Velocity (Ft./Min.)

Mo

un

tin

g S

urf

ace

Te

mp

Ris

e A

bo

ve

Am

bie

nt (°

C)

Th

erm

al R

esis

tan

ce

fro

m

Su

rfa

ce

to

Am

bie

nt (°

C/W

)

(3W, 22°C)

Page 23: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

Example – Calculate Junction Temperature

23

θJC = 3°C/W from OPA541 data sheet (TO-220)

θCS = 0.44°C/W (Mica and joint compound)

θSA = 7.33°C/W (Heat sink specification at 3W)

TA = 25°C

PD = 3W

TJ = PD*(θJC + θCS + θSA) + TA

TJ = (3W)*(3°C/W + 0.44°C/W + 7.33°C/W) + 25°C

TJ = 57.3°C

+15V

-15V

-

+

OPA541

+

VIN

VOUT

RL 25Ω

Page 24: Power and Temperature - TI Training - Power and... · Power and Temperature ... (10) Maximum power and the peak output voltage where ... Thermal Protection 13 25 50 75 100 125 150

24

Thanks for your time! Please try the quiz.