plga: an biodegradable polymer

40
STES’s Sinhgad College of Pharmacy, Vadgaon Bk, Pune “PLGA: Biodegradable Polymer” Seminar on: Presented By : Mr. ROHIT GURAV M. Pharm (1 st Sem.) Roll no. 511 Guided By: Prof. V. M. GAMBHIRE M. Pharm Department of Pharmaceutics

Upload: rohit-gurav

Post on 22-Mar-2017

241 views

Category:

Health & Medicine


4 download

TRANSCRIPT

Page 1: PLGA: an biodegradable polymer

STES’s Sinhgad College of Pharmacy, Vadgaon Bk, Pune

“PLGA: Biodegradable Polymer”

Seminar on:

• Presented By : Mr. ROHIT GURAV M. Pharm (1st Sem.) Roll no. 511

• Guided By: Prof. V. M. GAMBHIRE

M. PharmDepartment of Pharmaceutics

Page 2: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer

Roh

it G

urav

*

Introduction

• Polymer is derivation of ancient Greek word ‘Polus’ which means many, much and ‘Meros’ means parts

• The term was coined in 1833 by Jons Jacob Berzelius.

2

Page 3: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 3

Roh

it G

urav

*

Biodegradable Polymer

They are broken down into biologically acceptable molecules that are metabolized and removed from the body via normal metabolic pathways.

Example:-Polylactic AcidPolyglycolic acidChitosan

Poly(lactic-co-glycolic acid)

Page 4: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 4

Roh

it G

urav

*

Poly(lactic-co-glycolic-acid))

PLGA is a synthetic polymer made from monomers of lactide and glycolide.

1960: PGA was used in the first totally biodegradable Sutures developed. 1970: marketed under the name Dexon.

1970:PLGA (10:90) Sutures, were marketed as Vicryl.

Page 5: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 5

Roh

it G

urav

*

• Solubility:- (High Lactic acid) Soluble in organic solvent such as Chloroform and

Dichloromethane, Ethyl acetate, Acetone.(High Glycolic acid)

It is insoluble in most organic solvents. Soluble in Highly fluorinated solvents, such as

hexafluoroisopropanol.• Glass Transition Temp. (Tg) : 44-550 C

Properties

Page 6: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 6

Roh

it G

urav

*

tin (II) 2-ethylhexanote, tin (II) alkoxides

Two different monomers, Glycolic acid Lactic acid

• Catalyst.: a. tin (II) 2-ethylhexanote, b. tin (II) alkoxides c. aluminium isoproxide

• Ester linkages gives the formation of PLGA.

Synthesis

*Fang Wang, 2016, Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers, Journal of Biomaterials Applications,1–9

Page 7: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer

Roh

it G

urav

*

7

85% aqueous solution of lactic acid and glycolic acid were put into a 100mL three-necked flask

The reaction system was hydrated at the constant temperature of 1500C

Viscous oligomers were formed

a mechanical stirrer and a reflux condenser packed

then 13,300 Pa for 2 h, and 1300 Pa for 4 h.atmospheric pressure for 2 h,

TiCl2 and TSA (1:1) were added into the reaction system.

pressure 100Pa, 1800C with mechanical stirring for 12 h

Product dissolved in chloroform and subsequently precipitated into diethyl ether

filtered and dried under vacuum at 650C

PLGA

• Process

Page 8: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 8

Roh

it G

urav

*

• The PLGA co-polymer undergoes Hydrolytic degradation through cleavage of its backbone ester linkages

• The degradation products are easily metabolized in the body via the Krebs cycle and are eliminated

Biodegradation

Page 9: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 9

Roh

it G

urav

*

Factor affecting

Degradation

Compo

sition

Crysta

llinit

y

pH

Size

and

Shap

e

Mole

cular

weight

Shweta Sharma, et. al, 2015, PLGA-based nanoparticles: a new paradigm in biomedical applications, Trends in Analytical Chemistry, 32, pp 176-184

Page 10: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 10

Roh

it G

urav

*

Fig. 3: release profiles for 50:50, 65:35, 75:25 and 85:15 poly lactic-co-glycolic acid.

Effect of composition on Shelf life poly lactic-co-glycolic acid.

*Gadad A.P. et.al, 2012, “Study of Different Properties and Applications of Poly Lactic-coglycolicAcid (PLGA) Nanotechnology: An Overview”, Indian Drugs, 49(12), pp. 5-22.

Page 11: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 11

Roh

it G

urav

*

Cardiovascular disease

Diagnosis

Immunology & Vaccines

Cancer

Devices

APPLICATIONS

Tissue engineering

Shweta Sharma, et. al, 2015, PLGA-based nanoparticles: a new paradigm in biomedical applications, Trends in Analytical Chemistry, 32, pp 176-184

Page 12: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 12

Roh

it G

urav

*

Modification of PLGA

I. Polyethylene glycol

II. Polysorbate

III. Vitamin E TPGS

Page 13: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 13

Roh

it G

urav

*

• PEG is a non ionic, hydrophilic polymer. • PEGylation prevent the

interaction of the nanoparticles with the macromolecules present in the body.• PEGylation enhances the

aqueous solubility and stability.

1. Polyethylene glycol

*Tania B., 2008,PEGylation strategies for active targeting of PLA/PLGA nanoparticles, Journal of Biomedical Materials Research Part A, pp 263-277

Page 14: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 14

Roh

it G

urav

*

Conjugation of PEG to the surface of premade PLGA NPs.

*Tania B., 2008,PEGylation strategies for active targeting of PLA/PLGA nanoparticles, Journal of Biomedical Materials Research Part A, pp 263-277

Page 15: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 15

Roh

it G

urav

*

2. Polysorbate

• It is non ionic surfactant and emulsifier often used in foods and cosmetics. • It enhance ability to cross the

Blood Brain Barrier.

*Tania B., 2008,PEGylation strategies for active targeting of PLA/PLGA nanoparticles, Journal of Biomedical Materials Research Part A, pp 263-277

Page 16: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 16

Roh

it G

urav

*

3. Vitamin E TPGS

• It is a synthetic water soluble form of Vitamin E. • TPGS is a polyethylene glycol

derivative of α-tocopherol that enables water solubility.• The molecule has shown to

improve the nanoparticle adhesion to the cells

*Tania B., 2008,PEGylation strategies for active targeting of PLA/PLGA nanoparticles, Journal of Biomedical Materials Research Part A, pp 263-277

Page 17: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 17

Roh

it G

urav

*

Crosslinking• Radiation has been used as a processing technique

to modify the properties of polymers 1. Chain scission 2. Crosslinking.

Crosslinking.• Poly-functional monomers (PFM), such as

triallylisocyanurate (TAIC) can be used to cross-link PLGA.

*Lester Phong et. al, 2010, Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation, Polymer Degradation and Stability 95 (2010), pp 771-777

Page 18: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 18

Roh

it G

urav

*

Water uptake of cross-linked (CL - black symbols) and non-cross-linked (non-CL - white symbols) PLGA and PLLA films with degradation time.

Mass loss of cross-linked (CL - black symbols) and non-cross-linked (non-CL - white symbols) PLGA and PLLA films with degradation time.

*Lester Phong et. al, 2010, Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation, Polymer Degradation and Stability 95 (2010), pp 771-777

Effect of Crosslinking on Degradation

Page 19: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 19

Roh

it G

urav

*

Case Study

Page 20: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 20

Roh

it G

urav

*

Materials

• Puerarin (NIFDC, Beijing, China).

• Acetylpuerarin (Shandong Academy Jinan,China)

• PLGA 50:50, (JDB Co., Ltd. (Jinan, China).

• Polysorbate 80 (SCR Co., Ltd. ,Shanghai, China).

Page 21: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 21

Roh

it G

urav

*

Method

Page 22: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 22

Roh

it G

urav

* In-vitro release profiles of acetylpuerarin from PLGA-NPsand solution in phosphate-buffered saline containing 1% polysorbate80 (pH 7.4) at 37°C

In-Vitro Release of Acetylpuerarin

Page 23: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 23

Roh

it G

urav

* (a) acetylpuerarin and (b) puerarin plasma concentration–time profiles following intravenous administration of acetylpuerarin solution and AP-PLGA-NPs

PDC of Acetylpuerarin (i. v.)

Page 24: PLGA: an biodegradable polymer

PLGA: Biodegradable Polymer 24

Roh

it G

urav

*

The concentrations of (a) acetylpuerarin and (b) puerarin in the brain in mice at different times following intravenous administration of acetylpuerarin solution and AP-PLGA-NPs

02/05/2023

Acetylpuerarin Concn in Brain

Page 25: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 25

Roh

it G

urav

*

Conclusion :Case Study

• Polysorbate 80-coated AP-PLGA-NPs. PLGA-NPs significantly enhanced the distributions of Drug in Brain• It can be concluded that Polysorbate 80-coated PLGA-

NPs can improve the permeability of AP cross the BBB.

Page 26: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 26

Roh

it G

urav

*

Recent Application

Page 27: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 27

Roh

it G

urav

*

Materials

• PLGA (Lakeshore Biomaterials, Birmingham, USA.)

• DCM and DMF (Merck, India)

• TFE (Sigma-Aldrich, Bangalore, India)

• RADA 16-I-BMHP1 (Bioconcept Labs Pvt Ltd, Gurgaon)

• Rat Schwan Cells (ATCC, Virginia, USA)

• PBS Solution pH 7.4 (Gibco, Grand Island, NewYork, USA)

Page 28: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 28

Roh

it G

urav

*

Method

• Fabrication of PLGA and PLGA-Peptide electrospun scaffolds

PLGA + DCM DMF (8:2), 12%

(w/v)

Peptide + DCM DMF (8:2), 0.1%

(w/v)

PLGA-P

eptid

e

mixtur

e

Page 29: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 29

Roh

it G

urav

*

Electrospun Scaffolds

Polymer Soln

20 kV

5ml Syringe and 24G blunt needle

0.001 mL/min

fibers were collected

stored in vacuum desiccator for further characterization

Page 30: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 30

Roh

it G

urav

*

Cell Adhesion and Cell Proliferation

SEM showing the adhesion of Schwann cells on the surface of the PLGA and PLGA-peptide

PLG

A-P

eptid

e

PL

GA

1 Day 3 Days 7 Days

Page 31: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 31

Roh

it G

urav

*

Cell Adhesion

DMEM supplemented with 10% FBS and 1% P/S and maintained at 37˚C in 5% carbon dioxide.

Rat Schwann cells

sterilized under UV light for 1 hour

washed with PBS solution

Page 32: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 32

Roh

it G

urav

*

Scanning electron micrographs of (A) PLGA and (B1) PLGA-peptide blended nanofibers (B2) Higher magnification of B1 (50,000 X). Arrows indicating self-assembled peptide nanostructures on top of PLGA nanofibers.

Surface Morphology

Page 33: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 33

Roh

it G

urav

*

Spectroscopic Analysis

EDX spectra confirming (A) absence of nitrogen peak in PLGA indicating the absence of peptide; (B) presence of nitrogen peak in the PLGA-peptide indicating the presence of peptide;

Page 34: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 34

Roh

it G

urav

*

Immunocytochemistry

Rhodamine-phalloidin staining for the Schwann cells showing actin cytoskeletal morphology on the PLGA and PLGA-peptide samples after 3 days of culture

Anti S-100 staining for the Schwann cell phenotype on the (A) PLGA and (B)PLGA peptide blended samples after 3 days of culture.

Nucleus Actin Merged

Page 35: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 35

Roh

it G

urav

*

Conclusion

• Novel hybrid scaffolds made up of PLGA and the self-assembling peptide, RADA16-IBMHP1 were successfully fabricated by electrospinning.

• Schwann cell extension and spreading was significantly improved in the peptide blended scaffolds when compared to the PLGA scaffolds.

• Our results indicate that the designed composite of PLGA+RADA16-I-BMHP1 blended nanofibrous scaffold would pave way for successful and functionary recovery in peripheral nerve tissue engineering applications

Page 36: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 36

Roh

it G

urav

*

Conclusion

• PLGA polymers have been shown to be excellent delivery carriers for controlled administration of drugs, peptides and proteins due to their biocompatibility and biodegradability.• These polymers are increasingly becoming feasible

candidates for drug delivery systems, anticancer agents and vaccine immunotherapy.• Modified PLGA helps to enhanced the permeability of

Drugs.

Page 37: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer

Roh

it G

urav

* References

• Gadad A.P. et.al, 2012, “Study of Different Properties and Applications of Poly Lactic-coglycolicAcid (PLGA) Nanotechnology: An Overview”, Indian Drugs, 49(12), pp. 5-22.• Kumar A et.al, “Biodegradable Polymers and Its Applications”

International Journal of Bioscience, 2011, vol.1, no.3, pp. 173-176.• Leja K and Lewandowicz G., 2010, “Polymer Biodegradation and

Biodegradable Polymers – a Review”, Polish J. of Environ. Stud., vol. 19, no.2, pp. 255-266.• Nune M et. Al, 2016, “PLGA nanofibers blended with designer

self-assembling peptides for peripheral neural regeneration” Materials Science and Engineering C, 62, pp. 329–337.

37

Page 38: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 38

Roh

it G

urav

*

• Yanbin Suna,et.al, 2014, Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel Colloids and Surfaces B: Biointerfaces 123 716–723 • Deqing Suna et. al, 2015, Polysorbate 80-coated PLGA

nanoparticles improve the permeability of acetylpuerarin and enhance its brain-protective effects in rats, Journal of Pharmacy And Pharmacology, 67, pp. 1650–1662• Fang Wang, 2016, Synthesis and characterization of poly(lactic

acid-co-glycolic acid) complex microspheres as drug carriers, Journal of Biomaterials Applications,1–9• Lester Phong et. al, 2010, Properties and hydrolysis of PLGA and

PLLA cross-linked with electron beam radiation, Polymer Degradation and Stability 95 , pp 771-777• Tania Betancourt, 2008,PEGylation strategies for active targeting of

PLA/PLGA nanoparticles, Journal of Biomedical Materials Research Part A, pp 263-277

Page 39: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 39

Roh

it G

urav

*

• Shweta Sharma, et. al, 2015, PLGA-based nanoparticles: a new paradigm in biomedical applications, Trends in Analytical Chemistry, 32, pp 176-184• Zhang K, et. al, 2014, “PEG–PLGA copolymers: Their

structure and structure-influenced drug delivery applications”, Journal of Controlled Release, vol. 183, pp. 77–86• Zhiqiang L., 2016, A novel and simple preparative method for

uniform-sized PLGA microspheres: Preliminary application in antitubercular drug delivery, Colloids and Surfaces B: Biointerfaces 145, pp 679–687

Page 40: PLGA: an biodegradable polymer

02/05/2023 PLGA: Biodegradable Polymer 40

Roh

it G

urav

*