pitch of unresolved harmonics: evidence against autocorrelation

14
Pitch of unresolved harmonics: Evidence against autocorrelation Christian Kaernbach and Carsten Bogler Institut für Allgemeine Psychologie, Universität Leipzig Talk presented at “Pitch: Neural Coding and Perception” 4th-18th August, 2002, Hanse-Wissenschaftskolleg, Delmenhorst, Germany Introduction Pitch of unresolved harmonics The ur-model Licklider, 1951 The argument Kaernbach & Demany, 1998 Confirmation Kaernbach & Bering, 2001 Trying to convince Pilot data Failure Short survey on current models G rumble G rumble

Upload: anthony-dunn

Post on 31-Dec-2015

24 views

Category:

Documents


0 download

DESCRIPTION

Pitch of unresolved harmonics: Evidence against autocorrelation. G rumble. Talk presented at “Pitch: Neural Coding and Perception” 4th-18th August, 2002, Hanse- Wissenschaftskolleg , Delmenhorst, Germany. - PowerPoint PPT Presentation

TRANSCRIPT

Pitch of unresolved harmonics: Evidence against autocorrelationPitch of unresolved harmonics: Evidence against autocorrelation

Christian Kaernbach and Carsten BoglerInstitut für Allgemeine Psychologie, Universität Leipzig

Talk presented at

“Pitch: Neural Coding and Perception”4th-18th August, 2002, Hanse-Wissenschaftskolleg, Delmenhorst, Germany

• Introduction Pitch of unresolved harmonics

• The ur-model Licklider, 1951

• The argument Kaernbach & Demany, 1998

• Confirmation Kaernbach & Bering, 2001

• Trying to convince Pilot data

• Failure Short survey on current models Grumble

Grumble

InterludeInterlude

Fugue G-major by Johann Matthesonfrom “Wohlklingende Fingersprache”performed by Gisela Gumz, Clavichord

single note of a clavichord, 518 Hz

0

5

10

15

20

25

30

35

0 0.5Time [s]

Dis

tanc

e fr

om S

tape

s [m

m]

0

5

10

15

20

25

30

35

0 20 40 60Time [ms]

Dis

tanc

e fr

om S

tape

s [m

m]

Pitch of unresolved harmonicsPitch of unresolved harmonics

Spectrogram

0123456789

10

0 0.5 1Time [s]

Fre

quen

cy [

kHz]

Excitation pattern in the cochlea (LUT Ear)

0

5

10

15

20

25

30

35

0 0.5Time [s]

Dis

tanc

e fr

om S

tape

s [m

m]

0

5

10

15

20

25

30

35

0 20 40 60Time [ms]

Dis

tanc

e fr

om S

tape

s [m

m]

0123456789

10

0 0.5 1Time [s]

Fre

quen

cy [

kHz]

0

5

10

15

20

25

30

35

0 20 40 60Time [ms]

Dis

tanc

e fr

om S

tape

s [m

m]

simplification:

slightly more complex:

Processing of temporal structureProcessing of temporal structure

see Poster by Carsten Bogler

Frequency

En

erg

y

Studying temporal processing with clicksStudying temporal processing with clicks

simple periodic:

complex periodic:

aperiodic:

Time

Time

Frequency

Ene

rgy

Autocorrelation: The ur-modelLicklider, 1951

Autocorrelation: The ur-modelLicklider, 1951

from cochlea

delay line

fast line

coincidencecells

Autocorrelation in generalAutocorrelation in generals(t) s(t-)

w(t-t0)

dt(s(t)) s(t-): triggered correlation (AIM)

s(t) = the stimuluscochlea excitationsimulated spike trains + coincidencerecorded spike trains + coincidence

AC(,t0) =

0

20

40

60

80

100

0 10 20 30delay [ms]

Au

toco

rre

latio

n

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

0

20

40

60

80

100

0 10 20 30delay [ms]

Au

toco

rre

latio

n

abx

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

1st- versus 2nd-order temporal regularityKaernbach and Demany, 1998

1st- versus 2nd-order temporal regularityKaernbach and Demany, 1998

kxx: k = 5ms, x [0,10] ms

k k k

abx: a [0,10] ms, b = 10 - a, x [0,10] ms

a b a b a b

kxxx kxxxx

high-pass filtered, low-pass masked, Fc = 6 kHz

x

kxx

1st- versus 2nd-order temporal regularityKaernbach and Demany, 1998

1st- versus 2nd-order temporal regularityKaernbach and Demany, 1998

0

20

40

60

80

100

num

ber

of r

egul

ar in

terv

als

at t

hres

hold

chance performanceJLRSCSLLD

target type: kxx kxxx kxxxx abxx [0,10] [0,10] [0,10] [0,10] ms

AC peak at 5 5 5 10 ms

task: discriminate regular sequence from random sequenceprocedure: adaptive reduction of the length of the sequence

abx[0,5]

5

0

20

40

60

80

100

0 10 20 30delay [ms]

Au

toco

rre

latio

n

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

abx

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

1st- versus 2nd-order temporal regularityKaernbach and Demany, 1998

1st- versus 2nd-order temporal regularityKaernbach and Demany, 1998

kxx: k = 5ms, x [0,10] ms

k k k

abx: a [0,10] ms, b = 10 - a, x [0,10] ms

a b a b a b

kxxx kxxxx

high-pass filtered, low-pass masked, Fc = 6 kHz

x

kxx

=

Reducing the cut frequencyKaernbach and Bering, 2001

Reducing the cut frequencyKaernbach and Bering, 2001

0

1

2

3

0 10 20 30 40 50 60Cut frequency in mutiples of f0

JND

[%]

Fo = 100 HzFo = 150 HzFo = 250 HzHoutsma & Smurzynski

pitch JNDs for periodic click sequences,high-pass filtered, low-pass masked,

for 15 subjects

50

60

70

80

90

100

kxx abx

corr

ect

in 2

IFC

[%

]

completesemidichotic

confirm Kaernbach & Demanywith cut frequency = 2 kHz

(x [0,15] ms)

SimplifyingSimplifying• abx & kxx too complicated.• ab = periodic sequence + interfering clicks

– Kaernbach & Demany 1998: vary amplitude of interfering clicks– vary cut frequency, compare with jnd (cf. Kaernbach & Bering, 2001)

ab with a [0,4], b = 8 - a, versus xy with x [0,4], y [4,8].

0

1

0 5 10 15Cut frequency in mutiples of f0

JND

[%]

50

60

70

80

90

100

2IF

C c

orre

ct [%

]

K&B 2001

2nd order

0

20

40

60

80

100

0 10 20 30delay [ms]

Au

toco

rre

latio

n

abx

Summary of evidenceSummary of evidence

0

20

40

60

80

100

0 10 20 30A

uto

corr

ela

tion kxxx

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n kxxxx

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n

x

0

20

40

60

80

100

0 10 20 30

Au

toco

rre

latio

n kxx

=

Further evidence:• Carlyon, 1996

mixture of two complex tonescomposed of unresolved harmonicswith different F0 produces no clear-cut pitch percept

• Plack & White, 2000pitch shifts due to variations of a gapbetween two click sequencesare incompatible with autocorrelation

0

40

80

120

160

200

0 10 20 30

Aut

ocor

rela

tion ab

0

40

80

120

160

200

0 10 20 30

Aut

ocor

rela

tion xy

Survey on current modelsSurvey on current models

JASA online searchautocorrelation <not> (abstract <in> type)

psychological acousticsrevised after 9/1998

applying/advocating autocorrelation

AppealAC modelers: test your models

with 2nd-order regularities

publish results (positive or negative)

eventually: modify your models

AppealAC modelers: test your models

with 2nd-order regularities

publish results (positive or negative)

eventually: modify your models

The Pisa effectThe Pisa effect