phasor - wikimediaphasor acos t acos t = re{aei t } = re{aei ⋅ei t} a θ amplitude angular...

28
Young Won Lim 05/19/2015 Phasor

Upload: others

Post on 03-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Young Won Lim05/19/2015

Phasor

Page 2: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Young Won Lim05/19/2015

Copyright (c) 2009 - 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 3 Young Won Lim05/19/2015

Phase Lags and Leads

f x = sin x dd x

f x = cos x leads

f x = cos xdd x

f x = −sin x leads

f x = sin x ∫ f x dx = −cos x C lags

f x = cos x∫ f x dx = sin x C lags

f xdd x

f x leads

f x∫ f x dx lags

2by

2by

Page 4: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 4 Young Won Lim05/19/2015

Derivative of sin(x)

f x = sin x

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

dd x

f x = cos x

leads

Page 5: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 5 Young Won Lim05/19/2015

Derivative of cos(x)

f x = cos x

0 -1 0 +1 0 -1 0 +1 0 -1 0 +1 slope

dd x

f x = −sin x

leads

Page 6: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 6 Young Won Lim05/19/2015

Integral of sin(x)

f x = sin x

0 1 2 1 0 1 2 1 0 1 2 1 area

∫ f x dx = −cos x C

-1 0 +1 0 -1 0 +1 0 -1 0 +1 0 area - 1

∫0

/2sin t d t = 1

C = 0

C = 1 ∫0

xsin t d t

∫0

xsin t d t − 1

= − cos x lags

Page 7: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 7 Young Won Lim05/19/2015

Integral of cos(x)

f x = cos x

0 1 0 -1 0 1 0 -1 0 1 0 -1 area

∫ f x dx = sin x C

∫0

/2cos x d x = 1

lags

∫0

xcost d t

= − sin x

Page 8: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 8 Young Won Lim05/19/2015

Sinusoid

cos x

sin x

Same Amplitude

Same Angular Frequency

cos x 1⋅cos 1⋅t

sin x 1⋅sin 1⋅t Acos t

Page 9: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 9 Young Won Lim05/19/2015

Phasor

Acos t

Acos t = Re {Aei t } = Re {Aei ⋅ei t}

A θ

Amplitude

Angular Frequency

Angle at t = 0

A

Sinusoid (Sine Waves)

1. Representation using Euler’s Formula

2. Representation using Real Part

Acos t =A2⋅ei t

A2⋅e−i t

Aei ⋅ei t

Aei

Page 10: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 10 Young Won Lim05/19/2015

Phasor

A cos(ω t + θ)

A cos(ω t + θ) = ℜ{A ei(ω t + θ)}

= ℜ{eiω t⋅Aeiθ

}

Aeiθ= A cosθ + j A sinθ

A

A

A θ

π /4

π /4

A

ω rad /sec

Page 11: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 11 Young Won Lim05/19/2015

Phasor Example (1)

A cos(ω t + 0)

A cos(ω t + π/2)

A cos(ω t − π/2)

A cos(ω t − π)

A 0

A +π/2

A −π/2

A −π

A

A

A

π/2

−π/2

−π

Page 12: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 12 Young Won Lim05/19/2015

Phasor Example (2)

A cos(ω t + 0)

2 A cos(ω t − π/2)

A 0

2 A −π/2

Page 13: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 13 Young Won Lim05/19/2015

Phasor

A cos(ω t + θ)

A cos(θ) = X

= A cos(ω t)cos(θ) − A sin(ω t )sin(θ)

= A cos(θ)cos(ω t) − A sin(θ)sin(ω t)= X cos(ω t) − Y sin(ω t )

A sin(θ) = Y

A θ

(X , Y ) = (A cosθ , A sinθ)

X+ j Y = A cosθ+ j A sinθ

A = √X 2+Y 2

tanθ =YX

θ > 0 θ < 0leading lagging

Page 14: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 14 Young Won Lim05/19/2015

X cos(ω t )+Y sin(ω t)

= √X 2+Y 2 [ X

√X 2+Y 2 cos(ω t )+ Y

√X 2+Y 2 sin (ω t )]

= √X 2+Y 2 [cos (θ)cos(ω t )+sin(θ)sin (ω t) ]

= √X 2+Y 2cos(θ−ω t)

= √X 2+Y 2cos(ω t−θ)

√X 2+Y 2cos(ω t−θ)

X cos(ω t )+Y sin (ω t)

= √X 2+Y 2cos(ω t−θ)

cos(θ)=X

√X 2+Y 2

sin(θ) =Y

√X 2+Y 2

X cos(ω t)+Y sin(ω t)

√X 2+Y 2cos(ω t+θ)X cos(ω t)−Y sin(ω t)

Linear Combination of cos(ωt) & sin(ωt)

Page 15: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 15 Young Won Lim05/19/2015

Phasor as a starting point

cos(0)

cos(π /2)

cos(−π/2)

cos(−π)

sin (0)

sin (π /2)

sin (−π/2)

sin (−π)

A cos(ω t + 0)

A cos(ω t + π/2)

A cos(ω t − π/2)

A cos(ω t − π)

(+1)cos(ω t ) − (0)sin(ω t )

(0)cos(ω t) − (+1)sin(ω t )

(−1)cos (ω t) − (0)sin (ω t)

(0)cos(ω t) − (−1)sin (ω t)

Page 16: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 16 Young Won Lim05/19/2015

Phase Angles

Page 17: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 17 Young Won Lim05/19/2015

Phasor Arithmetic

A +π/4

A −π/4

√2 A +0

Page 18: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 18 Young Won Lim05/19/2015

Phasor Addition

1 +π/4

2 −π/4

√5 +0

cos (ω t + π/4)

2cos(ω t − π/4)

√5cos(ω t + 0)

Page 19: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 19 Young Won Lim05/19/2015

Phasor Addition Rule

x (t ) = ∑k=1

N

Ak cos(ω t + θk )

= A cos(ω t + θ)

∑k=1

N

Ak ej(θk) = A e j θ

= ∑k=1

N

ℜ{Ak ej (ω t + θk)}

= ℜ{∑k=1

N

Ak ej (ω t )e j(θk)}

= ℜ{∑k=1

N

Ak ejθk e j(ω t )

}

= ℜ{∑k=1

N

Ak ejθk e j(ω t )

}

= ℜ{∑k=1

N

A e jθ e j (ω t )}

= ℜ{∑k=1

N

A e j(ω t+θ)}

= A cos(ω t + θ)

adding complex numbers

a complex number

Page 20: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 20 Young Won Lim05/19/2015

Phasor Multiplication & Division

x (t ) = A1 cos(ω t + θ1) = ℜ{A1 ej (ω t + θ1)}

no more rotating !

y (t) = A2cos (ω t + θ2) = ℜ{A2 ej(ω t + θ2)}

x (t )∗y (t ) = A1 A2cos(ω t + θ1)cos(ω t + θ2)

= ℜ{A1 A2ej (2ω t + θ1 + θ2)}

x (t )y (t)

=A1

A2

cos(ω t + θ1)

cos(ω t + θ2)

different angular frequency !

= ℜ{A1

A2

e j (θ1 − θ2)}

Page 21: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 21 Young Won Lim05/19/2015

Phasor Multiplication

1 +π/4

2 −π/4

2 +0

cos (ω t + π/4)

2cos(ω t − π/4)

2cos(ω t + 0)

Page 22: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 22 Young Won Lim05/19/2015

Phasor Scaling

1 +π/4

2 −π/4

2 +0

cos (ω t + π/4)

2cos(ω t + 0)

ℜ{A1 ej (ω t + θ1)}

ℜ{A2ej(θ2)}

ℜ{A1 A2ej (ω t + θ1 + θ2)}

not a phasorjust a scaling complex number

2 −π/4

Page 23: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 23 Young Won Lim05/19/2015

Vector Space

V: non-empty set of objects

defined operations: addition

scalar multiplication

u + v

k u

if the following axioms are satisfied

for all object u, v, w and all scalar k, mV: vector space

objects in V: vectors

1. if u and v are objects in V, then u + v is in V2. u + v = v + u3. u + (v + w) = (u + v) + w4. 0 + u = u + 0 = u (zero vector)5. u + (–u) = (–u) + (u) = 0 6. if k is any scalar and u is objects in V, then ku is in V7. k(u + v) = ku + kv8. (k + m)u = ku + mu9. k(mu) = (km)u10. 1(u) = u

Page 24: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 24 Young Won Lim05/19/2015

Basis

k1 e+ jθ

+ k2 e+ j θ

every complex number can be represented by

linear combination of and which are one set of linear independent two vectors

Basis : a set of linear independent spanning vectors

e+ jθ e+ jθe+ j θ

e− j θ

jsinθ

cosθ

e+ j θ

e− j θ

cosθ

j sinθl1 cosθ + l2 j sinθ

every complex number can also be represented by

Page 25: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 25 Young Won Lim05/19/2015

Basis (2)

k1 e+ jθ

+ k2 e+ j θ

Basis : a set of linear independent spanning vectors

e+ j θ

e− j θ

jsinθ

cosθ

cosθ

j sinθ

l1 cosθ + l2 j sinθ

e+ j θ

e− j θ

k2e− jθ

k1e+ j θ

l2 j sinθ

l1 cosθ

Page 26: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 26 Young Won Lim05/19/2015

C1 and R2 Spaces

c3 = (c1 + c2)

c4 = i(c1 − c2)

c3cos(ω t) + c4 sin (ω t )

c1 = (c3−c4 i )/2c2 = (c3+c4 i)/2 complex number

real number

real number

conjugate+2∗real part

−2∗imag part

c3 = (c1 + c2)

c4 = (c1 − c2)

c3cos(ω t) + c4 i sin(ω t )c1e+iω t

+ c2e−i ω t

c1 = (c3+c4)/2c2 = (c3−c4)/2

real number

real number

real number

real number

C1

R2

c1e+iω t

+ c2e−i ω t

cos (ω t)

isin (ω t )

cos (ω t)

sin(ω t)

Page 27: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Phasors 27 Young Won Lim05/19/2015

√X 2+Y 2cos(ω t−θ)

X cos(ω t)+Y sin(ω t)

Linear Combination of cos(ωt) & sin(ωt)

√X 2+Y 2cos(ω t+θ)

X cos(ω t)−Y sin(ω t)

36.06 cos(ω t−0.588)

20cos(ω t )+30sin (ω t)

36.06 cos(ω t+0.588)

20cos(ω t )−30sin (ω t)

(20,30)

cos(ω t )

sin(ω t ) (20,30)

cos(ω t )

sin(ω t ) (20+ j30)

cos(ω t )

sin(ω t )

36.06 0.588

Page 28: Phasor - WikimediaPhasor Acos t Acos t = Re{Aei t } = Re{Aei ⋅ei t} A θ Amplitude Angular Frequency Angle at t = 0 A Sinusoid (Sine Waves) 1. Representation using Euler’s Formula

Young Won Lim05/19/2015

References

[1] http://en.wikipedia.org/[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003