patterns of genetic, phenotypic, and acoustic variation

12
Ecology and Evoluon. 2017;7:2169–2180. | 2169 www.ecolevol.org Received: 17 August 2016 | Revised: 30 December 2016 | Accepted: 5 January 2017 DOI: 10.1002/ece3.2782 ORIGINAL RESEARCH Paerns of genec, phenotypic, and acousc variaon across a chiffchaff (Phylloscopus collybita abienus/triss) hybrid zone Daria Shipilina 1 | Maksym Serbyn 2 | Vladimir Ivanitskii 1 | Irina Marova 1 | Niclas Backström 3 This is an open access arcle under the terms of the Creave Commons Aribuon License, which permits use, distribuon and reproducon in any medium, provided the original work is properly cited. © 2017 The Authors. Ecology and Evoluon published by John Wiley & Sons Ltd. 1 Department of Vertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia 2 Department of Physics, University of California, Berkeley, CA, USA 3 Department of Evoluonary Biology, Evoluonary Biology Centre (EBC), Uppsala University, Uppsala, Sweden Correspondence Niclas Backström, Department of Evoluonary Biology, Evoluonary Biology Centre (EBC), Uppsala University, Uppsala, Sweden. Email: [email protected] Funding informaon Royal Swedish Academy of Science (KVA), Grant/Award Number: FOA13H-088; Vetenskapsrådet, Grant/Award Number: 2013-4508; Kungliga Fysiografiska Sällskapet i Lund; Helge Ax:son Johnsons Foundaon; Lars Hierta Memorial Foundaon; Russian Foundaon of Basic Research (RFBR), Grant/ Award Number: 14-04-01259 and 15-29- 02771; Russian Science Foundaon (RSF), Grant/Award Number: 14-50-00029; Gordon and Bey Moore Foundaon’s EPiQS Iniave Grant, Grant/Award Number: GBMF4307. Abstract Characterizing paerns of evoluon of genec and phenotypic divergence between incipient species is essenal to understand how evoluon of reproducve isolaon proceeds. Hybrid zones are excellent for studying such processes, as they provide op- portunies to assess trait variaon in individuals with mixed genec background and to quanfy gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole-genome sequence data and analyze variaon across a sym- patric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abienus/triss) to study how gene exchange between the lineages affects trait varia- on. Our results show that chiffchaff within the sympatric region show more extensive trait variaon than allopatric birds, with a large proporon of individuals exhibing intermediate phenotypic characters. The genomic differenaon between the subspe- cies is lower in sympatry than in allopatry and sympatric birds have a mix of genec ancestry indicang extensive ongoing and past gene flow. Paerns of phenotypic and genec variaon also vary between regions within the hybrid zone, potenally reflect- ing differences in populaon densies, age of secondary contact, or differences in mate recognion or mate preference. The genomic data support the presence of two disnct genec clades corresponding to allopatric abienus and triss and that genec admixture is the force underlying trait variaon in the sympatric region—the previ- ously described subspecies (“fulvescens”) from the region is therefore not likely a dis- nct taxon. In addion, we conclude that subspecies idenficaon based on appearance is uncertain as an individual with an apparently disnct phenotype can have a considerable proporon of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have impli- caons for understanding speciaon processes and for the idenficaon of specific chiffchaff individuals based on phenotypic characters. KEYWORDS Chiffchaff, genec differenaon, hybrid zone, hybridizaon, introgression, speciaon

Upload: others

Post on 04-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Ecology and Evolution. 2017;7:2169–2180.  | 2169www.ecolevol.org

Received:17August2016  |  Revised:30December2016  |  Accepted:5January2017DOI:10.1002/ece3.2782

O R I G I N A L R E S E A R C H

Patterns of genetic, phenotypic, and acoustic variation across a chiffchaff (Phylloscopus collybita abietinus/tristis) hybrid zone

Daria Shipilina1 | Maksym Serbyn2 | Vladimir Ivanitskii1 | Irina Marova1 |  Niclas Backström3

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.© 2017 The Authors. Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.

1DepartmentofVertebrateZoology, LomonosovMoscowStateUniversity,Moscow,Russia2DepartmentofPhysics,UniversityofCalifornia,Berkeley,CA,USA3DepartmentofEvolutionaryBiology,EvolutionaryBiologyCentre(EBC),UppsalaUniversity,Uppsala,Sweden

CorrespondenceNiclasBackström,DepartmentofEvolutionaryBiology,EvolutionaryBiologyCentre(EBC),UppsalaUniversity,Uppsala,Sweden.Email:[email protected]

Funding informationRoyalSwedishAcademyofScience(KVA),Grant/AwardNumber:FOA13H-088;Vetenskapsrådet,Grant/AwardNumber:2013-4508;KungligaFysiografiskaSällskapetiLund;HelgeAx:sonJohnsonsFoundation;LarsHiertaMemorialFoundation;RussianFoundationofBasicResearch(RFBR),Grant/AwardNumber:14-04-01259and15-29-02771;RussianScienceFoundation(RSF),Grant/AwardNumber:14-50-00029;GordonandBettyMooreFoundation’sEPiQSInitiativeGrant,Grant/AwardNumber:GBMF4307.

AbstractCharacterizingpatternsofevolutionofgeneticandphenotypicdivergencebetweenincipientspecies isessential tounderstandhowevolutionof reproductive isolationproceeds.Hybridzonesareexcellentforstudyingsuchprocesses,astheyprovideop-portunitiestoassesstraitvariationinindividualswithmixedgeneticbackgroundandtoquantifygeneflowacrossdifferentgenomicregions.Here,wecombineplumage,song,mtDNAandwhole-genomesequencedataandanalyzevariationacrossasym-patriczonebetweentheEuropeanandtheSiberianchiffchaff(Phylloscopus collybita abietinus/tristis)tostudyhowgeneexchangebetweenthelineagesaffectstraitvaria-tion.Ourresultsshowthatchiffchaffwithinthesympatricregionshowmoreextensivetraitvariation thanallopatricbirds,witha largeproportionof individualsexhibitingintermediatephenotypiccharacters.Thegenomicdifferentiationbetweenthesubspe-ciesislowerinsympatrythaninallopatryandsympatricbirdshaveamixofgeneticancestryindicatingextensiveongoingandpastgeneflow.Patternsofphenotypicandgeneticvariationalsovarybetweenregionswithinthehybridzone,potentiallyreflect-ing differences in population densities, age of secondary contact, or differences inmaterecognitionormatepreference.Thegenomicdatasupportthepresenceoftwodistinctgeneticcladescorrespondingtoallopatricabietinusandtristisandthatgeneticadmixture is the forceunderlying traitvariation in thesympatric region—theprevi-ouslydescribedsubspecies(“fulvescens”)fromtheregionisthereforenotlikelyadis-tinct taxon. In addition, we conclude that subspecies identification based onappearance isuncertainasan individualwithanapparentlydistinctphenotypecanhaveaconsiderableproportionofthegenomecomposedofmixedalleles,orevenamajorpartofthegenomeintrogressedfromtheothersubspecies.Ourresultsprovideinsightsintothedynamicsofadmixtureacrosssubspeciesboundariesandhaveimpli-cationsforunderstandingspeciationprocessesandforthe identificationofspecificchiffchaffindividualsbasedonphenotypiccharacters.

K E Y W O R D S

Chiffchaff,geneticdifferentiation,hybridzone,hybridization,introgression,speciation

2170  |     SHIPILINA et AL.

1  | INTRODUCTION

Populationdivergenceandspeciationaretheultimatesourcesofbio-diversity,andcharacterizationofpatternsandmechanismsduringthespeciationprocessisessentialtounderstandhowbiodiversityisgen-eratedandmaintained(Schluter,2009).Speciationcanbedrivenbydifferentfactors;aratherdistinctpartitionispresentbetween(1)spe-ciationasaresultofstochasticaccumulationofmutationsthatcon-tribute to reproductive isolation between geographically separatedtaxaand(2)speciationasaresultofdivergentnaturalselection,thatisthatlocaladaptationbyitselfdrivesthespeciationprocess(Bierne,Gagnaire,&David,2013;Coyne&Orr,2004;Nosil&Feder,2012;Nosil, Harmon, & Seehausen, 2009; Price, 2008; Schluter, 2009).Distinguishingbetween these scenariosmakes itpossible tounder-stand themechanisms underlying variation in observed patterns ofbiodiversityacross regions.Hybrid zones,geographic regionswherethereisanoverlapbetweendistributionrangesandgeneflowoccursbetweentaxonomicunits,canserveas“naturallaboratories”allowingforcloseobservationofmicroevolutionaryprocessesthatmayleadtopopulationdifferentiationand,ultimately,speciation(Abbott,Barton,&Good,2016;Barton&Hewitt,1989;Payseur&Rieseberg,2016).InthePalearcticandNearcticregions,suchhybridzonesarenaturallymostoftensecondarycontactzones,theresultsofdistributionrangeexpansionsfollowingthelatestglaciationperiod(Hewitt,2004,2011).Bystudyingthesecondarycontacthybridzonesclosely,wemayinves-tigateifthereareanybarrierstogeneflowbetweenthetaxainvolvedand combine that with information about potential forces behinddivergence,that is iftaxahavedivergedbecauseofrandomacquisi-tionof incompatibility alleles (observed trait differences not relatedtoecology)orifadaptationhasplayedamajorroleinthedivergenceprocess (potential trait differences clearly associated with ecology)(Toews&Irwin,2008).Inaddition,studyingsecondarycontactzonescangive informationabout thedesignationof lineageswithuncleartaxonomicstatusbyallowingforquantificationofgeneticdifferentia-tionandpotentialintrogressionbetweeninvolvedtaxa(Abbottetal.,2016;Delmoreetal.,2015;Payseur&Rieseberg,2016).

TheOldWorldleafwarblergroup(genusPhylloscopus)containsalargesetofspeciesthatexpressconsiderableresemblanceinplumagecolorationandmorphology(delHoyo,Elliot,&Christie,2006).Thelargenumberofspecieswithinthegenusincombinationwithasubstantialvariationinthedegreeofphenotypicdifferentiationbetweenspeciespairshashelpedprovideunderstandingofwhat typesofprematingreproductive isolationbarriers act at different stages of the specia-tionsuccession(Bensch,Grahn,Müller,Gay,&Åkesson,2009;Price,2010).For instance,pioneeringworkfocusingongenus levelphylo-geneticanalyses(Bensch,Irwin,Irwin,Kvist,&Åkesson,2006;Helbigetal.,1996),targetedanalysisofthegeneticunderpinningsofmigra-torybehavior (Bensch,Åkesson,& Irwin,2002;Benschetal.,2009;Lundberg,Åkesson,&Bensch,2011;Lundbergetal.,2013),theroleofsex-chromosomesindrivingdivergence(Helbig,Salomon,Bensch,&Seibold,2001)andgenomicdifferentiationbetweenpopulationsofa“ringspecies”(Alcaide,Scordato,Price,&Irwin,2014;Irwin,Alcaide,

Delmore, Irwin, & Owens, 2016) has increased the understandingof the forces underlying reproductive isolation between some taxawithinthegenus,butwearestillfarfromadetailedunderstandingofthemechanismsunderlyingthedivergenceprocesses.

The chiffchaff superspecies complex contains four distinct spe-ciesandasetofsubspecieswidelydistributedwithin thePalearcticregion (Figure S1). The Canarian chiffchaff (P. canariensis), includ-ingsubspeciescanariensisand,asofnowextinct,exsul, inhabits theCanaryIslands.ThedistributionrangeoftheIberianchiffchaff(P. iberi-cus)spanstheIberianPeninsulaandthePyreneesandsouthwesternFrance.Themountainchiffchaff (P. sindianus)breeds inhigh-altitudehabitatsintheCaucasusMountains(P. s. lorenzii)andinpartsofeast-ern–centralAsia (P. s. sindianus). The common chiffchaff (P. collybita)has traditionally been separated into six different subspecies: colly-bita(distributedthroughoutsouthernandcentralEurope),brevirostris (northern Asia Minor), caucasicus (lowlands in Caucasus),menzbieri (KopetDaghandsouthwesternTranscaspia),abietinus(north-easternEurope to the Ural Mountains), and tristis (Ural Mountains to eastSiberia;Stepanyan,1990;Svensson,1992).However,thetaxonomicstatusoftristishasbeenatopicofsomedebateoverwhetherornotitshouldbedesignatedfullspeciesstatus(delHoyoetal.,2006).Inthisstudy,wewill refertobothabietinusandtristisassubspeciesofthecommonchiffchaff(P. collybita).

In some areas of the superspecies distribution range, chiffchaffspecies and/or subspeciesoccur in sympatry.The largest such zonewasidentifiedalreadyinthelatenineteenthcentury(Sushkin,1897).Thisregionislikelyasecondarycontactzoneformedduringtherecol-onizationfromglacialrefugiafollowingtheretractionoftheicecoverafterthelatestglaciationperiod,butithasstillnotbeendescribedinmuchdetail.ThezonemoreorlesscoincideswiththeUralMountainsall theway from the southern edge to theWhite Sea (Komarova&Shipilina, 2010; Marova, Fedorov, Shipilina, & Alekseev, 2009) andincludes two subspecies of the common chiffchaff: the “Siberian”chiffchaff(P. c. tristis)andthe“European”commonchiffchaff(P. c. abi-etinus)–twosubspecieswithdifferencesinhabitatpreference,bodysize,plumagecharacteristics,songtype,andmigrationroutes/winter-ingquarters (Dean&Svensson,2005;Helbigetal.,1996;Marova&Alekseev,2008;Ticehurst,1938).Theinterindividualvariationinplum-agecoloration,bodysize,andsongtypeismorepronouncedwithinthesympatricregionthanwithinallopatricpopulationsofeitherabietinus or tristis.Inparticular,someindividualsperformingintermediatesong,so-calledmixedsingers(Lindholm,2008;Marova&Leonovich,1993)andintermediateplumagephenotypeshavepreviouslybeenidentifiedinthesympatriczone(Marovaetal.,2009).Thisparticularregionhasalsobeenthoughttobe inhabitedbyathirdsubspecies,“P. c. fulves-cens”, expressing intermediate characters (plumage phenotype andsongtype)tothoseobservedinabietinusandtristis(Dean&Svensson,2005; Severtsov, 1873; Stepanyan, 1990).However, a set of recentstudies are not consistentwith this hypothesis: aweak associationbetweensongtype,plumagecolor,andmitochondrialhaplotypehasbeenfoundwithinthesympatricregionbutaconsiderableproportionofbirdsdeviatedfromthepattern(Marova&Alekseev,2008;Marova,Shipilina,Fedorov,& Ivanitskii,2013;Marovaetal.,2009).This is in

     |  2171SHIPILINA et AL.

agreement with recurrent intercrossing between subspecies in theregion.Infurthersupportofthat,asmall-scalegeneticanalysisusingrestriction enzymedigestionof a singlemitochondrial gene showedhaplotype differentiation between abietinus and tristis (Helbig etal.,1996;Marova etal., 2009), but birdswith distinct abietinus pheno-typesometimescarriedthetristismitochondrialhaplotypeorhadthetypicaltristissongdialectandviceversa(Marovaetal.,2009,2013).However, information from a single, maternally inherited geneticmarkerdoesnotnecessarilyprovideconclusiveevidence forgeneticadmixtureandruleoutthepresenceofathirdsubspecies.Tomakeamoredetailedinvestigationofthegenomicconsequencesofadmixturebetweenabietinusandtristisinregionsofsympatryandtoultimatelytestthevalidityofthepreviouslydescribed“fulvencens”subspecies,wecombinepreviouslyavailabledataonmorphology,acoustics,andmito-chondrialDNA(Marovaetal.,2009,2013)withnovelwhole-genomesequence data.We hypothesize that reproductive barriers betweenabietinus and tristis are incomplete and that genetic admixture hasgivenrisetotheintermediatephenotypesfrequentlyobservedwithinthesympatriczone. Inaddition,totest if relativepopulationdensityandtimesincerecolonizationmayaffectpatternsofgeneticvariationinintermixedpopulations,weanalyzesamplesfromtwodistinctgeo-graphiclocationsthatdifferinrelativedensitiesofabietinusandtristis andindistancetopotentialglacialrefugia:thesouthernmost(southernUralmountains,predominantlymixed forest,closer toglacial refuge)and northernmost (Arkhangelsk region, boreal forest, further awayfromglacialrefuge)partsofthesympatriczone.

2  | METHODS

2.1 | Capture of specimens and DNA extractions

Activechiffchaffmaleswerecapturedbyplaybackandmistnettingduringbreedingseasonsof2007–2009(seeFigureS1forsamplinglocationsandsamplesizes).Thedatawerecollected inthefollow-ingway: first,male songwas recorded for at least threeminutes.Then, individualswerecaught inamistnetbysoundtrapping.Wequantifiedplumagecoloration(morphotype)andtookabloodsam-ple.Thekeyfor themorphological identificationof thesubspeciesisyellow(lipochrome)colorationintensityontheventralsideofthebody: throat, breast, and belly (Svensson, 1992; Ticehurst, 1938).Individualswereclassifiedasabitinusiftheyhadbrightyellowstripesonthebreastandyellowandgreentonesinoverallcolorationandastristisiftheyshowedabsenceofanyyellowhuesincolorationexceptontheunderwing(Svensson,1992;Ticehurst,1938).Birdsclassifiedasintermediatehadyellowishfeatherstovaryingextents,butalwaysclearlylessthanabietinusormorethantristis(Marovaetal.,2009).Intotal,245individualswereincludedinthisstudy;however,duetospecificsofthesamplingprocess,wewerenotabletocharacterizeallofthemforallsetsofparameters:morphotype,acoustics,mtDNAhaplotype,andnuclearSNPs.Of the245sampled individuals,228birdswerecharacterizedasabietinus, tristis, or intermediatebasedon morphological characters (Marova & Alekseev, 2008; Marovaetal.,2009).

For 138 birds,we could record the song andmake high-qualitysonogramsforquantificationofacousticpatterns(Marova&Alekseev,2008;Marovaetal.,2009).Songsoftristisandabietinuscanbeeasilydistinguishedbyearorbysonogramanalysisduetosignificantdiffer-encesintempoandstructure(Ticehurst,1938;Marovaetal.,2009).Acleardistinctionbetweensongtypesisthepresenceofascendingnotesinthetypicaltristissongandtheabsenceofsuchnotesinthesongofabietinus,theconsiderablyshorterintervalbetweennotesintristis(4.7–7.2notespersecond)thaninabietinus(2.8–3.3notespersecond), and the almost nonoverlapping frequency ranges of notes(abietinus: 3.7–4.6kHz; tristis: 2.9–3.7kHz). To designate recordedbirdstoaspecificsongtype,wecalculatedthepercentageofascend-ingelements inthreerandomlyselectedthree-second long intervalsofsongsofeachrecordedmale(visualanalysisofspectrograms)andmeasuredthefrequencyrangeandnoterateusingSyrinx2.3(J.Burt,Seattle,WA,USA).

Bloodsampleswerecollectedfromspecimensbycarefulpiercingof thebrachialveinusing standard syringes. In total, blood samplesfrom197of the245chiffchaffswere collectedand storedonfilterpaper.Samplingsitesweredistributedbothwithintheallopatricrangesofabietinus (n=16)andtristis (n=37)andwithinboththenorthern(intotal67samples;basedonplumagecharacters,thesewere24tristis,18 abietinus,and21withintermediateplumagephenotype,for4birdsmorphologywasnotdetermined)andthesouthern(intotal125sam-ples;41tristis,44abietinus,and27withintermediatephenotype,for13birdsphenotypewasnotdetermined)partofthesympatriczone(FigureS1).All samples fromthenorthernsympatriczonearenoveltothisstudywhilethemajorityofthedatafromallopatricregionsandthesouthernsympatriczonehavebeenusedintwopreviousstudiesofplumage,song,andmtDNAvariation(Marovaetal.,2009,2013).Intotal,therewere105individualsthatwereanalyzedusingallthreecharacteristics:morphotype,songtype,andmtDNAhaplotype.DNAfromwhole blood sampleswas extracted using a standard phenol–chloroformprotocol(Sambrook,Fritsch,&Maniatis,1989).Thequan-tityandqualityoftheDNApreparationswasassessedwithagarosegel (1%) electrophoresis andmeasurementwith theQubit (ThermoFisherScientificInc.)andtheNanoDrop(ThermoFisherScientificInc.)instruments.

2.2 | mtDNA analyses

Onehundredandninety-twobirdscouldbescoredformtDNAhap-lotype at a region in the Cytochrome B (CytB) locus by restrictionanalysis.Weanalyzed the same389-bp-long region thathasprevi-ouslybeenpublished for thechiffchaff (GenBankaccessionentries:Z73479.1,Z73482.1).WithinthisregionofCytB,fiveSNPshavepre-viouslybeenfoundtobediagnosticbetweenallopatricEuropeanandSiberian chiffchaff (Helbig etal., 1996). For restriction analysis, wechosetwoofthosediagnosticSNPswhichallowedustodistinguishbetweendistinctallopatrichaplotypesandathirdSNPthatmade itpossibletoidentifythepresenceofapreviouslyidentifiedhaplotypethatalsohasbeenfoundtobeuniquetotristisandthatdifferstothemostcommontristishaplotypeatasinglenucleotideposition(Marova

2172  |     SHIPILINA et AL.

etal.,2009).Restrictionanalysiswasperformedusingtheendonucle-aseHinfI(GANTC).Foreachsample,weused0.3μlofHinf1mixedwithBufferR(1μl)andbi-distilledwater(4μl),and5μlofextractedDNAwasaddedtothemix.Therestrictionreagentmixwasheldat37°Cfor12hr,andfragmenttypeswerescoredbyregularpolyacryla-midegelelectrophoresis.AllscoredmtDNAvariantshavebeensub-mittedtodatadryad.organdareavailableunderdoi:10.5061/dryad.g74v0.

2.3 | Whole- genome sequencing and SNP detection

Ofthe223sampledspecimensthatwerescoredforplumagecolor,we selected 10 individuals with the highest DNA yield from eachsubspeciesandeacharea (i.e.,10allopatric tristis, 10allopatricabi-etinus, 10 sympatric tristis, and 10 sympatric abietinus) and pre-pared standard insert size (380bp) libraries for 100bp paired-endsequencing on the Illumina HiSeq2000 platform. Library prepara-tion and sequencing was performed by the SNP&SEQ TechnologyPlatform inUppsala. The sequencingyieldwas in total 147Gbandvariedbetween2.7and5.1Gbforeachsample.Therangefor indi-vidualsampleswas1.6–4.3GbafterfilteringoutbaseswithQ-scores<30usingConDeTri(Smeds&Künstner,2011),intotal113Gb.Thequality-filterednuclearsequencereadsweremappedtotheFicedula albicollis genome sequence (Ellegren etal., 2012; Kawakami etal.,2014)usingtheBurrows–Wheeleralgorithmas implemented inthesoftwareBWA(version0.5.9,Li&Durbin,2010).SAMtools(Lietal.,2009)wasusedtoconvertfilestoBAMformatandtovisuallyinspectsomeofthealignments.Wesubsequentlymergedallmappedreadsfrom individual samples into a single BAM file using Picard Tools(http://broadinstitute.github.io/picard/). We applied the methodsin the packageGATK (McKenna etal., 2010) for nucleotide qualityscorerecalibration,localinsertion/deletionrealignmentandremovalofduplicates,andcalledSNPsacrossallsamplesusingfilteringparam-etersandSNPqualityrecalibrationrecommendedintheGATKBestPractices(DePristoetal.,2011;VanderAuweraetal.,2013),withoutatrainingsetasnogenomicSNPdatawerepreviouslyavailableforthesesubspecies.Specifically,thiswasperformedintwosteps:first,the RealignerTargetCreator and IndelRealigner packageswere usedforlocalrealignmenttopurgereadsthatmighthavebeenerroneouslymapped, and then, theUnifiedGenotyper packagewas used to callhigh-qualitySNPs(criteria:Q-score>30,minimumcoverage5readsperSNPper individual)andsave these invcf formatfiles.TheSNPcallingprocedureresultedin4.9millionhigh-qualitySNPsthatcouldbeusedfordownstreamanalysis(FigureS2).

2.4 | Analyses of genomic SNP variation

Processingofvcffileswasperformed in thepackagePyVCF in thePythonenvironment (https://github.com/jamescasbon/PyVCF).Twofurtherfilteringstepswereperformedtogeneratethefinaldatasetsusedforanalysis.WeinitiallyappliedstringentcriteriaandselectedasetofSNPs,inwhichwehadhigh-qualitySNPscoreinformationfromat least 9 of the 10 individuals from each population, respectively.

After this filtering step, only 18,014 SNPs were retained—this isfromhereonreferredtoasthe“high-stringencydataset”.Thishigh-stringencydatasetwassubsequentlyusedtoquantifyandvisualizepatternsofdifferentiationbetweenpopulationsbutdidnotcontainmorethan50fixeddifferences(50fixeddifferences/18,014SNPsintotal=0.3%)betweenabietinus and tristis. Toobtain a larger setofpolymorphismsforassessmentofratesoffixed,private,andsharedpolymorphismsbetweenandwithinabietinusandtristis,respectively,andforanalysisofgenomiccompositionofbirdssampledinthesym-patricregion,weselectedsitesthatwerepresentinatleastsixdiffer-ent individuals inbothallopatricabietinusandallopatrictristis.Afterthatfilteringstep,1,233,236high-qualitySNPswereretained—fromhereonreferredtothe“low-stringencydataset”.Itshouldbenotedthat the relative frequency of fixed differences did not change forthe lowerstringencydataset (3,555fixedSNPs/1,233,236SNPs intotal=0.3%). All genotypes have been submitted to datadryad.organdareavailableunderdoi:10.5061/dryad.g74v0.

We used in-house developed Python scripts (available uponrequest) to calculate the number of fixed substitutions betweenallopatricpopulations,aswellasprivateandsharedpolymorphismswithin populations using the larger set of SNPs (1,233,236 SNPs).Fixation indices (FST) were calculated for both allopatric and sym-patric population comparisons (allopatric abietinus versus allopat-ric tristis and sympatricabietinus versus sympatric tristis) using thehigh-stringencydataset(18,014SNPs)andthepackagePopGenome(http://popgenome.weebly.com) in the R environment (Pfeifer,Wittelsbuerger, Ramos-Onsins, & Lercher, 2014). Error estimateswere generated by jackknife resampling over sets of 50 SNPs. Inaddition to overall FST-estimates, the degree of genetic differenti-ationbetween all 40 samples thatwerewhole-genome sequencedgrouped as (1) allopatricabietinus, (2) allopatric tristis, (3) southernsympatricsamples (sample id:sS1-S10),and (4)northernsympatricsamples (sample id:sN1-N10),respectively)wasvisualizedbyusingaprincipalcomponentanalysisofgeneticvariationas implementedinthepackagesmartPCA(EigenSoft)forR(Patterson,Price,&Reich,2006).Preparationofdatafilesforthatanalysiswascarriedoutusingthe program PyVCF (https://github.com/jamescasbon/PyVCF), andgraphswereconstructedusingtheggplot2 library inR. Inaddition,weappliedapopulationassignmentanalysisbasedonallelefrequen-ciesacrossthehigh-stringencySNPsasimplementedintheprogramSTRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) usingthe admixturemodel.We ran Structure for 50,000 iterations afteraburn-inof20,000iterations,fivetimesforeachofsevenKvalues(K = 1 to K=7populations)andevaluatedtheoptimalKasdescribedinEvannoetal.(2005).AllfiveindependentrunsforeachK resulted inconsistentresults.AsummaryofalldatatreatmentsandanalyticalstepsforeachdatasetispresentedinFigureS2.

3  | RESULTS

Within the allopatric regions, all birds were scored as typical abi-etinus or tristis, respectively,both regardingplumagecharacteristics

     |  2173SHIPILINA et AL.

andsongtype.Inthesympatricregions,thevariationinplumageandsong typewasgreaterwithseveral individuals scoredas intermedi-ate/mixedphenotypes(summarizedinTable1).Specifically,wefoundthat33%ofallsampledindividualshadintermediateplumagecharac-ters(onlypaleyellowhueandnegligibleamountofyellowfeathersonventralside)inthenorthernsympatricregion,andthecorrespondingvalueforthesouthernsympatricregionwas24%.Forthedistributionofsongtypes,therewasagainaconsiderableproportionofindividu-alsinthesympatricregionsperformingmixedsong—thatisamixtureoftypicaltristisandabietinusnotesandintermediatefrequencyrangeandsongspeed(notespertimeunit)—63%inthenorthernand40%inthesouthernsympatricregion.

Weobtainedhigh-qualitydataforthemitochondrialCytBgeneforthreepositions(SNPs)usingrestrictionanalysisin193individualsofallopatricabietinus (n=12)andtristis (n=37)andbirdsfromboththenorthern(n=53)andthesouthernpart(n=91)ofthesympatriczone.AllopatricbirdsallhaddistinctmtDNAhaplotypes(asinglehaplotypeinEuropeandasinglehaplotypeinSiberia).Bothinthenorthernandin the southern sympatric regions,we observed amixture of thesehaplotypes,alongwithapreviouslyidentifiedthirdhaplotype(tristis-2,haplotypefoundin21birds)thatdiffersfromthediagnostictristishap-lotypefoundinallopatryatasinglenucleotideposition(Marovaetal.,2009).Distributionofhaplotypeswithin thegeographic regionsareshowninFigure1wherethetwosimilartristishaplotypesaremergedinasinglegroup.

Fromourdataandpreviousanalysesofmorphologicalandacous-ticcharacteristics(Marova&Alekseev,2008;Marovaetal.,2009),weknowthatthesouthernUrals(southernsympatriczone)isacleartran-sitionzoneofmorphotypesanddialects.Wechecked ifthispattern

fittedourdistributionofmitochondrialhaplotypesandthetrendwasapparentwithahigherfrequencyofdiagnosticEuropeanhaplotypesinthewesternpart (65%;n=13/20)than intheeasternpart (11%;n=6/55)(χ2=19.9,df=1,p-value=8.1×10−6).Inthenorthernsym-patric region, only three of the 53males had the abietinusmtDNAhaplotype, and a quantification of frequency differences across thezonehadnopower.Adetailedsummaryofthecountsofmitochon-drialhaplotypes,morphotypes,anddialectsinthesympatricregionispresentedinTable1.

Northern part (%) Southern part (%) Total (%)

Morphotype(n=175)

 Abietinus 18(28.6) 44(39.3) 62(35.4)

 Tristis 24(38.1) 41(36.6) 65(37.1)

 Intermediate 21(33.3) 27(24.1) 48(27.4)

Songtype(n=80)

 Abietinus 3(11.1) 10(18.9) 13(16.3)

 Tristis 7(25.9) 22(41.5) 29(36.3)

 Mixed 17(63.0) 21(39.6) 38(47.5)

mtDNA(n=144)

 Abietinus 3(5.7) 20(22.0) 23(16.0)

 Tristis 50(94.3) 71(78.0) 121(84.0)

NuclearSNPs(n=20)

 Diagnosticabietinus,% 17.4 34.8 26.1

 Diagnostictristis,% 68.2 59.5 63.9

 Heterozygoussites,% 14.4 5.7 10.1

Numbersarecounts (percentagesoftotal inbrackets)of individualswithineachrespectiveclassofcharacters.ForthenuclearSNPs(totaln=1,233,236SNPs,low-stringencydataset),theaveragepro-portionsofdiagnosticandheterozygousSNPsacrossindividualsaregivenforeachrespectivesympa-tricregionandintotal.

TABLE  1 Summaryofmorphotype,songtype,andgeneticcharacteristicsofchiffchaffsampledwithinthesympatriczone(northernandsouthernpartandintotal)

F IGURE  1 DistributionofscoredmitochondrialhaplotypesacrosstheEuropeanandSiberianchiffchaffrangeswithparticularfocusonthesympatriczone.Thetwoidentifiedtristishaplotypesthatonlydifferatasinglenucleotidepositionhavebeengroupedandarepresentedinyellow,andthediagnosticabietinushaplotypeisgiveningreen

2174  |     SHIPILINA et AL.

Our combination of quantification of song and morphologytogether with mtDNA haplotyping and characterization of nuclearSNPsallowustocharacterizeeachmalechiffchaffinthesamplefromthe sympatric zoneusinga combinationof characteristics:morpho-type(plumagecharacteristics),acoustics/songtype,andgeneticdata(mtDNAhaplotype,nuclearSNPalleles). Insummary,wefindapro-nouncedmosaicinthedistributionofcharacteristics(Table1).Someexamples topointout relate to thedifferencebetweenappearanceand genomic composition. First, a large proportion of individualswith distinct abietinus morphotype had tristis mtDNA (58%), whiletheoppositewasfoundtoberare(1sample,1.8%).Second,allbirdsexceptone(97.5%)withintermediatemorphotypehadtristismtDNAtype.Third,15of43maleswiththetristismtDNAsangthedistincttristissongwhilethreemalesperformedpureabietinussong,andasmanyas25werescoredasmixedsingers.Of10maleswithabietinus mtDNAandmorphotype,threewerescoredasmixedsingers,sevenwere singingpureabietinus song type, andnonewas found toper-formtristissongtype.Thus,of53maleswithknownmtDNAtypeandscoreddialect,asmanyas28(53%)performedmixedsongandthreemales (5.6%) performed typicalabietinus song, despite having tristis mtDNA.

To compare the genomic composition of whole-genomesequencedsamples fromwithinthesympatriczonewiththeirphe-notypes,weassessedthepresenceofSNPsfoundtobefixed(low-stringencydataset,n=3,555)betweenallopatricabietinusandtristis. ThisissummarizedinFigure2.Forbirdswiththetristismorphotype,amajorityofthenuclearSNPswerehomozygousfordiagnostictristis alleles,whiletherewasmuchmorevariationforbirdswiththeabiet-inusmorphotype, and therewas a strong association between theproportionofdiagnosticSNPsandthemtDNAhaplotype.However,morphotype,mtDNAtype,andgenomiccompositiondidnotalwaysmatch.Forexample,sampleN1hadtypicalabietinusmorphotype,butavery large fractionof tristis diagnostic SNPs and a tristismtDNAhaplotype, and sample S4 had typical tristis morphotype and washomozygous for >95% of diagnostic tristis alleles but actually hadabietinusmtDNA(Figure2).Amongthesamplesfromthesympatriczonethatwerescoredforgenome-wideSNPpolymorphisms,wehad

acoustic information for 14. Two performed typical abietinus songandbothofthesehadalargefractionofabietinusdiagnosticgeneticmarkers(>95%)andabietinusmtDNAtype.Ofthe12individualswithmixedsongtype,sixhadtristismorphotypeandsixhadabietinusmor-photype.Amajorityofthese individuals (10/12)hadacombinationwithahighfractionoftristisdiagnosticSNPsandtristismtDNA,whileonebird(S6)hadabietinusmtDNAandalargeproportionofabietinus diagnostic SNPs.Another bird (S4 again) hadabietinusmtDNAbut>95%ofdiagnostictristisnuclearSNPalleles(Figure2).

Toquantifytheproportionofsharedgeneticvariationinallopat-ricandsympatricregions,wecalculatedthepercentageoffixed,pri-vate,andsharedpolymorphisms (low-stringencydataset)betweenbothallopatricandsympatricpopulations.Forsamplesfromthesym-patricregion,wegroupedthedatabasedonmorphotype,regardlessoffromwhatpartoftheareainthesympatriczonethesampleorig-inated.Wefoundthatthepercentageoffixeddifferencesbetweenrepresentativesof theabietinus and tristismorphotypeswas lowerbetween sympatric (0.03%) than between allopatric populations(0.3%), and the proportion of shared polymorphisms was higherbetween sympatric (60.9%) than between allopatric populations(48.2%)(testofproportions,χ2=3452,df=1,p-value<2.2×10−16; Table2).Afurtherassessmentofthelevelofgeneticdifferentiationbetweenabietinusandtristiswasperformedbyestimatingthefixa-tionindex(FST)forallnuclearSNPs.AsummaryoftheseestimatesispresentedinTable3.Thelevelofdifferentiationwashigherbetweenallopatric (FST=0.062)thanbetweensympatric (FST=0.006)abieti-nus and tristis.Wealsocomparedpopulationssampled indifferent

F IGURE  2 TheproportionofdiagnosticSNPsinthe20samplesfromthesympatriczonethatwereselectedforwhole-genomesequencing.Thebarsindicatetheproportionsthatareofeitherabietinus (green)ortristis(yellow)origin.ThefractionofheterozygousSNPsinanindividualismarkedwithbarredgreen.Samplesaregroupedbymorphotype,mtDNAhaplotype,andsongtype.IndividualsS1–S10aresamplesfromthesouthernsympatricregion,andindividualsN1–N10aresamplesfromthenorthernsympatricregion

TABLE  2 Summaryofproportions(in%)offixed,shared,andprivatepolymorphismsintheEuropean(abietinus)andtheSiberianchiffchaff(tristis)fromzonesofallopatryandsympatry,respectively(totaln=1,233,236SNPs,low-stringencydataset)

Fixed SharedPrivate (abietinus)

Private (tristis)

Allopatry 0.3 48.2 22.3 29.1

Sympatry 0.03 60.9 17.5 21.6

     |  2175SHIPILINA et AL.

partswithinthesympatriczone.Weobservedaslightlylowerlevelof genetic differentiation between sympatric abietinus and tristis populationswithinthesouthernregion(FST=0.013)thanwithinthenorthernregion(FST=0.016).

Visualization/quantification of genetic differentiation acrosssamples was performed using both Principal component analysis(PCA)andclusteringanalysis (STRUCTURE)ofthehigh-stringencySNPdata.Figure3illustratestheoutcomeofthePCAanalysisusingthefirstandsecondprincipalcomponents(PC1andPC2explain17%and12%ofthetotalvariation,respectively).Allopatricabietinusandtristiswerewellseparatedfromeachother,especiallyalongtheaxisrepresentingprincipalcomponent1andbothclusteredtogetherindensegroupswiththeexceptionofonetristissamplethatshowedconsiderabledifferentiationfromothertristissamples,mainlyalongthePC2axis.Samplesfromthesympatricregionsclearlyoccupyanintermediatepositionbetween theallopatric individuals, the sam-plesfromthenorthernsympatriczoneratherclosetotheallopat-ric tristis samples,while the samples from the southern sympatriczonearemorescatteredwithsomecloserclusteringtogetherwithallopatricabietinus samples (Figure3).TheSTRUCTURE (Pritchardetal.,2000)analysisclearlyseparatedallopatricabietinusandtristis andagain,samplesfromthesympatriczoneshowedvaryingdegreesof allele sharing to either subspecies indicating that the samplesfromthesympatriczonehavemixedancestrybetweenabietinusandtristis(Figure4,K=2).Totestthehypothesisofpresenceofathirdsubspecies(fulvescens),wemodeledthepresenceofdifferentnum-bersofdiscretecladeswithintheinvestigatedregion(K = 1 to K =7)andevaluatedthenumberofcladeswithhighestlikelihood(Evannoetal. 2005).The results showed thatK=2 had the highest likeli-hood(Figure4,detailedresultsforK=2andK=3aregiven),andtherewasnosupportforthepresenceofadistinctcladethatdiffersfromabietinusandtristis,againsupportingthehypothesisthatbirdsinthesympatricregionhaveagenomiccompositionwithadmixedabietinusandtristisalleles(Figure4).

4  | DISCUSSION

Inthisstudy,alargenumberofmalechiffchaffweresampledacrossthedistributionrangesofsubspeciesabietinusandtristis.Bycombin-ingdataonmorphologyandacousticswithmtDNAhaplotypeinfor-mation and a set of genome-wide SNPs, we analyzed patterns ofphenotypicandgeneticdiversityanddifferentiationwithinallopatric

andsympatricregions.Belowwediscussthesepatternsofvariationinlightofspecieshistoryandidentificationissues.

Inallopatricregions,weobservedlimitedvariationinmorphotypeand song type across individuals within abietinus and within tristis andeachsubspecieswascarryingadistinctmtDNAhaplotype.Inthesympatricregion,however,sampledindividualsshowedconsiderable

TABLE  3 Estimatesofthemeanfixationindices(FST)betweendifferentEuropean(abietinus)andSiberian(tristis)chiffchaffpopulationsfornuclearSNPs(high-stringencydataset)

Populations compared FST

Allopatrictristisvsallopatricabietinus 0.062±0.003

Sympatrictristisvssympatricabietinus 0.006 ± 0.0008

N.sympatriczonetristis vs abietinus 0.013±0.0009

S.sympatriczonetristis vs abietinus 0.016 ± 0.0011

F IGURE  3 Principalcomponentanalysis(PCA)illustratingthegeneticdifferentiationacrosssamplesfromboththeallopatric(green=abietinus(A1–A10),yellow=tristis(T1–T10)),andthesympatric(purple=samplesfromN.sympatriczone(N1–N10),blue=samplesfromS.sympatriczone(S1–S10))regions(n=18,014SNPs).Themapillustratesthegeographiclocationsofsamplesfromeachrespectivegroup

F IGURE  4  IllustrationoftheSTRUCTUREanalysisusingthehigh-stringencydataset(n=18,014SNPs)forK=2(toppanel)andK=3(bottompanel)clusters.TheallopatricsamplesarerepresentedinSections1(abietinus:A1–A10)and2(tristis:T1–T10),andsamplesfromthesympatricregionarepresentedinsections3(North:N1–N10)and4(South:S1–S10).ThegraphatthebottomshowstheevaluationofoptimalKfromK = 1 to K=7asdescribedinEvannoetal.(2005)

2176  |     SHIPILINA et AL.

variation in both traits andwe found amixture of the two distinctmtDNAhaplotypes(togetherwith21caseswherebirdscarriedathirdmtDNAhaplotypethatpreviouslyhasbeenshowntodifferfromthetypical tristis haplotype at a single position).This supports previousstudiesindicatingpresenceofmtDNAintrogressionbetweenthetwosubspecies(Marovaetal.,2009,2013)butdoesnotprovideanyinfor-mationaboutpotentialnucleargenomicgeneexchange.Toinvestigatethepatternsofadmixture inmoredetail,weanalyzedgenome-widegenetic variation using SNP data.We conducted a set of differenttypesofanalysesusingthenuclearSNPsthatallsupportconsiderablegenetic admixture: principal component analysis, assignment tests,assessmentofgeneticdifferentiation,andanalysisofthecontributionofsubspeciesspecific“diagnostic”geneticmarkerstosampleswithinthe zone of sympatry. The principal component analysis showed aclear separationof the allopatric populations ofabietinus and tristis intotwodistinctclustersandanintermediatepositionformostoftheinvestigated samples fromwithin the sympatric zone.This indicatesthat gene flow between the two subspecies has resulted in higherdegreeofallelesharingbetweenindividualsinsympatry.Supportforthis also comes from our clustering analysiswhich has the highestlikelihoodfortwodistinctpopulations(allopatricabietinusandtristis,respectively),whilesamplesfromthesympatriczonehaveageneticset-upbuiltupbyintermixedcontributionsfromthetwosubspecies.Whenassessingthefractionsofsharedandfixedpolymorphismsandestimatingtheglobalgeneticdifferentiation(FST),weobservedasub-stantially lower leveloffixeddifferences (highergeneticdifferentia-tion)andhigherfractionofsharedpolymorphisms(lowergeneticdif-ferentiation)betweensubspeciesinsympatrythaninallopatry,againsupportingascenariowithadmixtureandallelesharingintheregionwheresubspeciesrangesoverlap,althoughthisshouldbetakenascir-cumstantialratherthanhardevidence,asthegroupingofindividualsinthesympatricregionwasbasedonmorphotypealone.

ItshouldbenotedthatthePCAanalysisrevealedthatonetristis sample showedcleardifferentiation to all other tristis samples.ThissampleoriginatesfromtheChukotkaregioninfareasternSiberiaandishenceconsiderablygeographically separated fromallother tristis. Inaddition,thetristis-2mtDNAhaplotypewasnotfoundinallopat-ric tristis.Theseobservations indicatethatthere isgeneticstructurealsowithinthetristissubspecies,butextendedsamplingisobviouslynecessarytoquantifythedegreeofpotentialdifferentiationbetweentristispopulationsandhowthatrelatestoobserved“intrasubspecific”variationinphenotypictraitssuchassongandplumagecolor(Marovaetal.,2009,2013).Wealsoobservedasomewhathigherfractionofprivate polymorphisms in tristis (29% of all SNPs) than in abietinus (22%ofallSNPs).Thatindicatesaslightlylargereffectivepopulationsizeintrististhaninabietinusandisinagreementwiththelargerdis-tributionrangebutcouldalsobeaconsequenceofthatcurrenttristis populationsexpandedfrommultipleglacialrefugia(Nazarenko,1982,1985;Vorontsov,1949).

Withinthesympatricregion,wefoundstrongassociationbetweengeneticset-upandappearanceinsomeindividuals,twobirdswithabi-etinusmorphotypeandsongalsohadtheabietinusmtDNAandcloseto 100% abietinus diagnostic nuclear SNPs, and 9 birdswith tristis

morphotypehadtristismtDNAandamajorfractionoftristisdiagnosticnuclearSNPs.(Itshouldbenotedthatwealsoobserveasmallfractionof heterozygous sites and sites diagnostic for the other subspecies(i.e.,abietinus alleles in a tristis sample) in these particular individu-als. Itcouldeither indicate that i) thesesamplesare representativesformulti-generation recurrent backcrossings into oneof the paren-tal subspecies, and/or ii) thatour selectionofdiagnosticSNPscon-tainsaminorproportionofmarkersthatinfactaresharedorprivate).However,sixbirdsthatwerescoredastristisbasedonplumagechar-actersandmtDNAperformed themixedsong type,and therewerealsoseveralexampleswheretheappearanceandsongdidnotmatchthegeneticset-up.Themostevidentcasesincludefivebirdswithtyp-icalabietinusmorphotypethatactuallyhadthetristismtDNA,andamajorityofdiagnostictristisnuclearSNPsthatalsoperformedmixedsongandonebird,alsoamixedsinger,thathadthetypicaltristismor-photypeandalmost100%tristisdiagnosticnuclearSNPsbutabietinus mtDNA.ThisisinlinewithpreviousanalysisofcorrelationsbetweenmtDNAandphenotypeinchiffchaffsampledacrossringingstationsinNetherlandswherealargeproportionofbirdsidentifiedasabietinusinhandactuallyhadatypicaltristismtDNAtype(DeKnijff,vanderSpek,&Fischer,2012)and indicates that speciesdeterminationbasedonmorphologycanbeuncertain.Hence,manybirdsthatappearasobvi-ous,distinctabietinus or tristiscanharborageneticset-upthatisamixbetweenspeciesorevenalmostcompletelyfixedforforeignalleles.Weconcludefromthecombinedanalysesofphenotypes,mtDNA,andgenome-wideSNPsinbothallopatryandsympatrythatextensivehis-toricalandongoinggeneflowbetweenthesubspecieshaveresultedinatransitionzoneofmorphotypesandsongtypes.

Onarelatednote,itmightbeofinteresttouseourresultstospec-ulateinmoredetailaroundthetaxonomicstatusofchiffchaffpopula-tions,inhabitingthe1,500kmlongregionfromtheArkhangelskregionin the north to the southernUralMountains in the south and alsotheregioncoveringpartsofthewestSiberianplain.Basedonspear-heading naturalist work during the nineteenth century (Severtsov,1873),ithasbeensuggestedthattheregionharborsadistinctchiff-chaff taxon, “fulvescens”, described as expressing intermediate char-acters (morphotype,song)comparedtoabietinusandtristis (Dean&Svensson,2005).LaterobservationssuggestedthatchiffchaffsampledinthewestSiberianplainarea(betweentheUralmountainsandtheYeniseiriver)sometimesshowedamorphotypethatdeviatedslightlyfromtristissamplesfromeastoftheYeniseiriver,inessenceshowingpartlymoreyellowishplumage (Dean&Svensson,2005).AdditionalstudiesinthesouthernUralsconcludedthatbirdsinthisregionshow-ingintermediatemorphotypeandmixedsongprobablywerehybridsand/orbackcrossesbetweenabietinusandtristis(Marovaetal.,2009,2013;Ticehurst, 1938), initially these formswere named “riphaeus” (Ticehurst,1938).Asmentionedabove,weobservedacleartransitionzonebetweendistinctabietinusandtristisacrossthisregion,thediag-nosticmtDNAhaplotypeswere intermixedintheareaandgenome-widenuclearSNPvariationdidnot indicateanyadditional structur-ingbesidesthatallopatricabietinusandtristisaregeneticallydistinct,butexchangesubstantialportionsofthegenomewheredistributionranges overlap. This leads to the conclusion that the “fulvescens”

     |  2177SHIPILINA et AL.

(“riphaeus”) form represents individualswith amixed genetic set-upfrombothtristisandabietinusratherthanadistincttaxonandthatthemostplausibleexplanationfortheoccurrenceof“fulvescens”typebirdseastoftheimmediatecontactzoneisthattheserepresentindividualswithintrogressedabietinusallelesonatristisgenomicbackground(seealsodiscussionondirectionalgeneflowbelow).This scenariocouldeasily be envisioned if hybrids and backcrosses preferentially inter-breedwith“pure”tristisgeneratingamoredilutedtransitionzoneeastoftheimmediatecontactzone.

Theevolutionofreproductiveisolationisgenerallyalong-drawn-out process, initiated by divergence in traits related to prezygoticbarriersandendingwithpostzygoticgeneticincompatibilities(Coyne&Orr,2004;Price,2008).Thetwosubspeciesabietinusandtristisdif-ferinplumagecolor,vocalizations,size,andhabitatpreference,andtheyhavedistinctbreedingandwinteringgroundsexceptforazonearoundtheUralmountainswheretheyco-occurduringbreedingsea-son (delHoyoetal., 2006;Komarova&Shipilina, 2010;Marova&Alekseev,2008;Marovaetal.,2009,2013;Svensson,1992).Giventhe specific characteristics of each subspecies and the relativelydeep divergence (1.5–2%mtDNA divergence; Helbig etal., 1996),onecanassumethatbothlocaladaptationandstochasticprocessesduringallopatricseparationhaveplayedaroleindrivingphenotypicdivergenceandthatindividualswithintermediatecharactersresult-ing from hybridization and backcrossingmay have reduced fitnessas a consequence of lower attractiveness to mates, intermediatemigration patterns, and nonoptimal utilization of specific habitats(Rundle&Nosil,2005).Insupportofthat,allopatrictristisandabiet-inusshownegligiblereactionstotheothersubspecies’vocalizations(Marovaetal.,2009;Marovaetal.2017;Martens&Meinche,1989),indicating that song recognition could be a strong prezygotic bar-rier.However,withinsympatricregions,chiffchaffofbothsubspeciesrespondmore actively to alien song types—theunderlyingmecha-nismbehind that difference is not known (Marova etal., 2009). Inaddition, both abietinus and tristis females have been observedpairingupwithmaleswith intermediateplumagecharacters in thefield(unpublishedobservations)indicatingthatpotentialprezygoticbarriers related tobothvocalizationsandmorphologyarestillper-meable. Our analysis of genomic composition of birds within thesympatric zone showed that several individuals express diagnosticplumagecharactersandperformdiagnosticsongdespiteharboringtheforeignmtDNAtypeand/oraconsiderableproportionofforeignnuclearalleleswhichindicatesthatthegeneticelementsunderlyingmorphologicalandvocalizationdifferencesoccurinarestrictedpor-tionofthegenome.Itistooearlytospeculateiftheseregionsalsocontain genes of importance for reproductive isolation. However,investigatingthegenome-widepatternofdifferentiationforamuchlargersetofnuclearmarkersand investigatingthegenomicadmix-ture proportions in birdswith intermediate phenotypeswill give achance to identify regions that show elevated differentiation andassess ifthosehaveappearedasaresultofrestrictedgeneflowinparticulargenomicregionsorasaconsequenceofadaptationtodif-ferenthabitatsduringseparation(Harrison&Larson,2016;Wolf&Ellegren,2016).

Itislikelythatthecurrentregionofsympatryisasecondarycon-tact zone formedafter recolonization fromglacial refugia, and suchzonesmight have formed recurrently duringwarmer periods duringthe Pleistocene glaciation cycles allowing for episodic interspe-cificgeneflow.Wefoundthatintrogressionseemtobebiasedwitha higher proportionof tristismtDNAhaplotypes and nuclear alleleswithin the sympatric region meaning that backcrossing predomi-nantlyoccursintothetristislineage.Thisdirectionalintrogressionmayexplainthepresenceofbirdswithsomewhatyellowishplumageinthewest Siberianplain (seediscussion aboveon “fulvescens”), as thesecouldcarryafractionofabietinusallelesthathavespreadthroughthetristispopulationeastwardsbyrecurrentbackcrossings.Asoursam-plingwasrestrictedtoonly includemales,weareunfortunatelynotabletocomparetothegeographicdistributionofmtDNAhaplotypesandcorrelationbetweenmtDNAandgenomiccompositioninfemales.As many avian taxa have female-biased dispersal (Mabry, Shelley,Davis,Blumstein,&VanVuren,2013)andacomparativelyhighrateofmtDNAintrogressionacrossdivergent lineages(reviewedinRheindt& Edwards, 2011), it is plausible that additional analyses includingfemale samples fromacross thedistribution rangesofabietinus andtristiswouldprovidemorequantitative informationonthepresenceandpotentialbiasinintrogressionpatternsacrossthetwosubspecies.

The introgressionbias into tristis appeared tobestronger in thenorthernsympatricregion.ItisknownfrompreviousanalysesthatthesouthernUralsprobablyservedasarefugiumwithforestvegetationthatpreglacialfaunaofEuropeinhabitedduringglaciation(Vorontsov,1949).ItispossiblethattheancestorsofcurrentEuropeanchiffchaffhave been present in this region also during glacial maxima. Afterthe retreatof the ice cover, Siberian chiffchaff thenprobably recol-onizedSiberiafromthesoutheastfromone(orboth)oftheSiberianAltai/Sayanrefugia (Nazarenko,1982,1985)coming incontactwithEuropeanchiffchaffinthesouthernUralsrelativelyearlyaftertheicesheetretracted.TheArkhangelskregion,incontrast,wasfullycoveredby glaciation, and both European and Siberian chiffchaff probablycolonized thatareamuch later indicating that thenorthernsympat-ricregionisyoungerthanthesouthernzone.Ifhybridizationreducesfitness, asmight be expected given the considerable differences inplumage, song, andmigration routes, a longer history of secondarycontactmayhaveledtoincreasedreinforcementofprezygoticbarriersinthesouthernsympatricregion,decreasingtherateofbackcrossingintotristis,butitisnottheonlyexplanationforthispattern.Anotheraspect,albeitnotmutuallyexclusive,relatestotheabundanceofeachsubspeciesindifferentregionsofthesympatriczone.Inthenorthernzone,thepredominanthabitattypeisboreal(coniferous)forestwhilethehabitat ismore fragmented in the southern zonewith apatchydistributionofmixedandborealforest.Abietinusisbreedinginhigherdensitiesinmixedforestwhiletristisismorecommoninboreal(conif-erous)forestandtherelativedensityoftristisishigherinthenorthernzone(Komarova&Shipilina,2010).Thislikelyallowsformoreoppor-tunities for backcrossing into tristis in the northern zone. Anotherquestionrelatedtothebiasedintrogressioniswhetherabietinusandtristis differ in the ability to distinguish pure “consubspecifics” fromhybrids/backcrosses.Theobservedpatternwould thensuggest that

2178  |     SHIPILINA et AL.

tristis aremoreprone tomatewithhybridsbutmoredataonmatepreferencewillbeneededbeforethiscanbeelucidated.

In many avian study systems, there is clear evidence for male-biasedgeneflowasaresultofreducedfitnessinfemalehybridsduetoexposureofrecessiveincompatibilityallelesontheZ-chromosome(Haldane’s rule, Haldane, 1922; Price, 2008). This has also beenreportedinanothercontactzoneinvolvingadifferentpairofchiffchaffspecies(Bensch,Helbig,Salomon,&Seibold,2002).Ourobservationthatonebirdwith tristismorphotypeand>95% tristisnuclearSNPsactuallyharboredabietinusmtDNAindicatesthatfemalehybridsresult-ingfromacrossbetweenamaletristisandafemaleabietinusarefer-tileandcaninterbreedwithtristisallowingforabietinusmitochondrialintrogression into tristis.However, there isno individual inourdatasetthatshowstheoppositepattern(predominantlyabietinusnuclearallelesandtristismtDNA),allindividualswithtristismtDNAalsohavethe largest proportion of diagnostic tristis nuclear SNPs.This couldpotentiallybearesultoflowfitnessofhybridfemalesfromtherecip-rocalcross(maleabietinus,femaletristis),orthatthesehybridfemalesdonotmatewithabietinusmales,butthesamplesizeislimited,andextendedsamplingandmtDNAandnucleargenomeanalyseswouldbeneededbeforethiscanbeverified.

5  | CONCLUSION

Inthisstudy,wecombinegeneticdatawithmorphologyandvocaliza-tionsacrossahybridzonebetweenEuropean(abietinus)andSiberian(tristis)chiffchaff.Ourresultsindicatethattheoverallgeneticdiffer-entiationbetweensubspeciesislowdespiteconsiderablephenotypicdivergence.Alargeproportionofbirdsinthehybridzoneexhibitinter-mediatephenotypiccharactersandamixofgeneticancestry,indicat-ing extensive ongoing and past gene flow. Patterns of phenotypicand genetic variation vary between the northern and the southernpartofthehybridzone,probablyreflectingdifferencesinpopulationdensitiesand/orrelativeageofsecondarycontact.Thedataindicatethatbirdsshowingintermediatecharactersverylikelyrepresentindi-viduals resulting from recurrent backcrossings and introgression of(predominantly)abietinusallelesintoatristisgenomicbackground,andthepreviouslydescribedsubspecies“fulvescens”isthereforenottobeconsideredadistincttaxon.Thedataalsopointtothedifficultiesinidentificationofspecific individualsbasedonphenotypiccharactersalone.

ACKNOWLEDGMENTS

N.B. is supported by a Junior Research Grant from the SwedishResearchCouncil(VR2013-4508).Weacknowledgeadditionalfund-ingforDNAquantificationandqualitycontrol,librarypreparationandsequencing from Kungliga Fysiografiska Sällskapet i Lund (Nilsson-Ehle Donations), Helge Ax:son Johnsons Foundation and the LarsHierta Memorial Foundation. The SNP&SEQ Technology PlatformandUppsalaGenomeCenterperformedthelibrarypreparationsandthe sequencing supported by Science for Life Laboratory (SciLife,

Uppsala); anational infrastructure fundedby theSwedishResearchCouncil(VR-RFI)andtheKnutandAliceWallenbergFoundation.ThecomputationswereperformedonresourcesprovidedbySNICthroughUppsala Multidisciplinary Center for Advanced ComputationalScience(UPPMAX;Lampa,Dahlö,Olason,Hagberg,&Spjuth,2013)underProject#b2013146.SamplecollectionandprimaryprocessingweresupportedbytheRussianFoundationofBasicResearch(RFBR)(14-04-01259, 15-29-02771) and the Russian Science Foundation(RSF)(14-50-00029).M.S.issupportedbyGordonandBettyMooreFoundation’sEPiQSInitiativeGrant(GBMF4307).

CONFLICT OF INTERESTS

Theauthorsdeclarenofinancialornonfinancialconflictofinterests.

REFERENCES

Abbott,R.J.,Barton,N.H.,&Good,J.M.(2016).Genomicsofhybridizationanditsevolutionaryconsequences.Molecular Ecology,25,2325–2332.

Alcaide,M., Scordato, E. S., Price,T.D., & Irwin,D. E. (2014). Genomicdivergenceinaringspeciescomplex.Nature,511,83–85.

Barton,N.H.,&Hewitt,G.M. (1989).Adaptation,speciationandhybridzones.Nature,341,497–503.

Bensch,S.,Åkesson,S.,&Irwin,D.E.(2002).TheuseofAFLPtofindaninformativeSNP:Geneticdifferencesacrossamigratorydivideinwil-lowwarblers.Molecular Ecology,11,2359–2366.

Bensch,S.,Grahn,M.,Müller,N.,Gay,L.,&Åkesson,S.(2009).Genetic,mor-phological,andfeatherisotopevariationofmigratorywillowwarblersshowgradualdivergenceinaring.Molecular Ecology,18,3087–3096.

Bensch,S.,Helbig,A.J.,Salomon,M.,&Seibold,I.(2002).Amplifiedfrag-ment length polymorphism analysis identifies hybrids between twosubspeciesofwarblers.Molecular Ecology,11,473–481.

Bensch,S.,Irwin,D.E.,Irwin,J.H.,Kvist,L.,&Åkesson,S.(2006).Conflictingpatterns ofmitochondrial and nuclearDNA diversity inPhylloscopus warblers.Molecular Ecology,15,161–171.

Bierne,N.,Gagnaire,P.-A.,&David,P.(2013).Thegeographyofintrogres-sion inapatchyenvironmentandthe thorn in thesideofecologicalspeciation.Current Zoology,59,72–86.

Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: SinauerAssociates.

DeKnijff,P.,vanderSpek,V.,&Fischer,J.(2012).GeneticidentityofgreychiffchaffstrappedintheNetherlandsinautumnsof2009–11.Dutch Birding,34,386–392.

DePristo,M.A.,Banks,E.,Poplin,R.,Garimella,K.V.,Maguire,J.R.,Hartl,C.,…Daly,M.J.(2011).Aframeworkforvariationdiscoveryandgeno-typingusingnext-generationDNAsequencingdata.Nature Genetics,43,491–498.

Dean,A.R.,&Svensson,L.(2005).Siberianchiffchaffrevisited.British Birds,98,396–410.

Delmore,K.E.,Hubner,S.,Kane,N.C.,Schuster,R.,Andrew,R.L.,Camara,F.,···Irwin,D.E.(2015).Genomicanalysisofamigratorydividerevealscandidategenesformigrationandimplicatesselectivesweepsingen-eratingislandsofdifferentiation.Molecular Ecology,24,1873–1888.

Ellegren,H.,Smeds,L.,Burri,R.,Olason,P.,Backström,N.,Kawakami,T.,···Wolf, J. B.W. (2012). The genomics of species differentiation inFicedulaflycatchers.Nature,491,756–760.

Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number ofclustersofindividualsusingthesoftwarestructure:asimulationstudy.Molecular Ecology,14: 2611–2620.

Haldane,J.B.S.(1922).Sexratioandunisexualsterilityinhybridanimals.Journal of Genetics,12,279–281.

     |  2179SHIPILINA et AL.

Harrison,R.G.,&Larson,E.L.(2016).Heterogeneousgenomedivergence,differentialintrogression,andtheoriginandstructureofhybridzones.Molecular Ecology,25,2454–2466.

Helbig, A. J., Martens, J., Seibold, I., Henning, F., Schottler, B., &Wink,M. (1996). Phylogeny and species limits in the Palaearctic chiffchaffPhylloscopus collybita complex: Mitochondrial genetic differentiationandbioacousticevidence.Ibis,138,650–666.

Helbig,A. J., Salomon,M., Bensch, S., & Seibold, I. (2001).Male-biasedgene flow across an avian hybrid zone: Evidence from mitochon-drial and microsatellite DNA. Journal of Evolutionary Biology, 14, 277–287.

Hewitt,G.M.(2004).Thestructureofbiodiversity-insightsfrommolecularphylogeography.Frontiers in Zoology,1,4.

Hewitt, G. M. (2011). Quaternary phylogeography: The roots of hybridzones.Genetica,139,1–22.

delHoyo, J., Elliot,A.,&Christie,D.A. (2006).Handbook of the birds of the world. Old world flycatchers to old world warblers. Barcelona: LynxEdicions.

Irwin,D.E.,Alcaide,M.,Delmore,K.E.,Irwin,J.H.,&Owens,G.L.(2016).Recurrentselectionexplainsparallelevolutionofgenomic regionsofhighrelativebutlowabsolutedifferentiationinaringspecies.Molecular Ecology,25,4488–4507.

Kawakami,T.,Smeds,L.,Backström,N.,Husby,A.,Qvarnström,A.,Mugal,C.,···Ellegren,H.(2014).Ahigh-densitylinkagemapenablesasecond-generationcollaredflycatchergenomeassemblyandrevealsthepat-ternsof avian recombination ratevariationand chromosomal evolu-tion.Molecular Ecology.,23,4035–4058.

Komarova, A. F., & Shipilina, D. A. (2010). Hybrid population of eastern European and Siberian forms of chiffchaff (Phylloscopus collybita abieti-nus, Ph. (c.) tristis) in the Arkhangelsk area.XVIIInternationalconferenceofstudents,post-graduatestudentsandyoungscientists;Lomonosov:MAKSPress,211–212.

Lampa,S.,Dahlö,M.,Olason,P.I.,Hagberg,J.,&Spjuth,O.(2013).Lessonslearned from implementing a national infrastructure in Sweden forstorageandanalysisofnext-generationsequencingdata.Gigascience,25,9.

Li, H., & Durbin, R. (2010). Fast and accurate long-read alignmentwithBurrows-Wheelertransformation.Bioinformatics,26,589–595.

Li,H.,Handsaker,B.,Wysoker,A.,Fennell,T.,Ruan,J.,Homer,N.,···Durbin,R. (2009). The Sequence Alignment/Map format and SAMtools.Bioinformatics,25,2078–2079.

Lindholm,A. (2008).MixedsongsofchiffchaffsinnorthernRussia.Alula,3,108–115.

Lundberg,M.,Åkesson,S.,&Bensch,S.(2011).Characterizationofadiver-gent chromosome region in thewillowwarblerPhylloscopus trochilus using avian genomic resources. Journal of Evolutionary Biology, 24,1241–1253.

Lundberg,M.,Boss,J.,Canbäck,B.,Liedvogel,M.,Larson,K.W.,Grahn,M.,···Wright,A.(2013).Characterisationofatranscriptometofindsequence differences between two differentiallymigrating subspe-ciesofthewillowwarblerPhylloscopus trochilus. BMC Genomics,14,e330.

Mabry,K.E.,Shelley,L.E.,Davis,K.E.,Blumstein,D.T.,&VanVuren,D.H.(2013).Socialmatingsystemandsex-biaseddispersalinmammalsandbirds:Aphylogeneticanalysis.PLoS One,8,e57980.

Marova, I., Shipilina, D., Fyodorov, V., Alekseev, V., Ivanitskii, V. (2017).Mixed singing and hybridization between two chiffchaff taxa(Phylloscopuscollybitaabietinus -Ph.c. tristis) insecondarycontactzones.[SubmittedManuscriptInPress]

Marova,I.M.,&Alekseev,V.N.(2008).Populationstructureanddistribu-tionofvocaldialectsof chiffchaff (Phylloscopus collybita) in southernUralmountains.Proceedings of the South Ural State Natural Reserve,1,306–318.

Marova, I. M., Fedorov,V.V., Shipilina, D.A., &Alekseev,V. N. (2009).Genetic andvocal differentiation in hybrid zones of passerine birds:

SiberianandEuropeanchiffchaffs(Phylloscopus [collybita] tristisandPh. [c.] abietinus) in the southernUrals.Doklady Biological Sciences,427,384–386.

Marova, I.M.,&Leonovich,V.V. (1993).HybridizationbetweenSiberian(Phylloscopus collybita tristis) and east European (Ph. collybita abieti-nus)chiffchaffsintheareaofsympatry.Sbornik Trudov Zoologicheskogo Muzeya, Moskovskogo Gosudarstvennogo Universiteta,30,147–163.

Marova, I. M., Shipilina, D. A., Fedorov, V. V., & Ivanitskii, V. V. (2013).Siberian and East European chiffchaffs: Geographical distribution,morphological features, vocalization, phenomenon of mixed singing,andevidencesofhybridizationinsympatryzone.InN.R.Garcia&J.L.CJ (Eds.),El mosquitero ibérico (pp.119–139). Leon:Grupo IbericodeAnillamiento.

Martens,J.,&Meinche,C.(1989).Dersibirischezilpzalp(Phylloscopus col-lybita tristis):Gesangundreactioneinermitteleuropäischenpopulationimfreilandversuch.Journal of Ornithology,130,455–473.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K.,Kernytsky,A.,Garimella,K.,Altshuler,D.,Gabriel,S.,Daly,M.,etal.(2010). The genome analysis toolkit: AMapReduce framework foranalyzingnext-generationDNAsequencingdata.Genome Research,20,1297–1303.

Nazarenko, A. A. (1982). On faunistic cycles (extinction-expansion-extinction) of a woodland ornithofauna of the eastern Paleoarctic.Journal of Fundamental Biology,43,823–835.

Nazarenko,A.A.(1985).Selectedhistoricalandbiogeographicalproblems,relatedtoHimalayas(addressedforwoodlandornithofauna).Journal of Fundamental Biology,46,41–54.

Nosil, P., & Feder, J. L. (2012). Genomic divergence during speciation:Causes and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences,367,332–342.

Nosil, P., Harmon, L. J., & Seehausen, O. (2009). Ecological explana-tions for (incomplete) speciation. Trends in Ecology & Evolution, 24,145–156.

Patterson, N., Price,A. L., & Reich, D. (2006). Population structure andeigenanalysis.PLoS Genetics,2,e190.

Payseur,B.A.,&Rieseberg,L.H.(2016).Agenomicperspectiveonhybrid-izationandspeciation.Molecular Ecology,25,2337–2360.

Pfeifer,B.,Wittelsbuerger,U.,Ramos-Onsins,S.E.,&Lercher,M.J.(2014).PopGenome: An efficient Swiss army knife for population genomicanalysesinR.Molecular Biology and Evolution,31,1929–1936.

Price,T.D. (2008).Speciation in birds.GreenwoodVillage,CO:Roberts&CompanyPublishers.

Price,T.D.(2010).Therolesoftimeandecologyinthecontinentalradi-ation of the Old World leaf warblers (Phylloscopus and Seicercus).Philosophical Transactions of the Royal Society B: Biological Sciences,365,1749–1762.

Pritchard, J. K., Stephens,M., &Donnelly, P. (2000). Inference of pop-ulation structure using multilocus genotype data. Genetics, 155,945–959.

Rheindt, F. E., & Edwards, S. V. (2011). Genetic introgression: An inte-gral but neglected component of speciation in birds. The Auk, 128, 620–632.

Rundle,H.D.,&Nosil,P. (2005).Ecologicalspeciation.Ecology Letters,8,336–352.

Sambrook,J.,Fritsch,E.F.,&Maniatis,T.(1989).Molecular cloning: A labo-ratory manual.ColdSpringHarbor,NY:ColdSpringHarborLaboratoryPress.

Schluter,D.(2009).Evidenceforecologicalspeciationanditsalternative.Science,323,737–741.

Severtsov,N.A.(1873).Vertical and horizontal distribution of Turkestan ani-mals,Vol.2.MoscowRussianFederation:Proceedingsof society fornaturalhistory,anthropologyandethnography.

Smeds, L., & Künstner,A. (2011). ConDeTri - a content dependent readtrimmerforIlluminadata.PLoS One,6,e26314.

Stepanyan,L.S.(1990).List of ornithofauna of USSR.Moscow:Nauka.

2180  |     SHIPILINA et AL.

Sushkin,P.P.(1897).BirdsoftheUfaprovince.Proceedings of the knowledge about the flora and the fauna of the Russian Empire[InRussian],4,1–331.

Svensson, L. (1992). Identification guide to European passerines. Thetford,UK:BritishTrustforOrnithology.

Ticehurst,C.(1938).A systematic review of the genus Phylloscopus.London:OxfordUniversityPress.

Toews,D.P.,& Irwin,D.E. (2008).Crypticspeciation inaHolarcticpas-serinerevealedbygeneticandbioacousticanalyses.Molecular Ecology,17,2691–2705.

Van derAuwera, G.A., Carneiro,M.O., Hartl, C., Poplin, R., DelAngel,G.,Levy-Moonshine,A.,Jordan,T.,Shakir,K.,Roazen,D.,Thibault,J.,et al. (2013). From FastQ data to high confidence variant calls: Thegenome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics,11,11–33.

Vorontsov, E. M. (1949). Birds of Kama Urals (Molotov oblast), p. 431,Gorkiy:GorkovskyGosUniversitet.

Wolf,J.B.W.,&Ellegren,H.(2016).Makingsenseofgenomicislandsofdifferentiationinlightofspeciation.Nature Reviews Genetics(AdvanceOnlinePublication),18,87–100.

SUPPORTING INFORMATION

AdditionalSupportingInformationmaybefoundonlineinthesupport-inginformationtabforthisarticle.

Figure S1ApproximatedistributionrangesofP. c abietinus(green)andP. c. tristis(yellow) Figure S2AnillustrationofthedifferentstepsinthegenerationandanalysisofnuclearDNA

How to cite this article:ShipilinaD,SerbynM,IvanitskiiV,MarovaI,BackströmN.Patternsofgenetic,phenotypic,andacousticvariationacrossachiffchaff(Phylloscopus collybita abietinus/tristis)hybridzone.Ecol Evol. 2017;7:2169–2180. https://doi.org/10.1002/ece3.2782