part 2c. individual demand functions 3. slutsky equations

22
Part 2C. Part 2C. Individual Demand Functions Individual Demand Functions 3. 3. Slutsky Equations Slutsky Equations Slutsky Equations Slutsky Equations Slutsky Slutsky 方程式 方程式 Own Own-Price Effects Price Effects Own Own Price Effects Price Effects A A Slutsky Slutsky Decomposition Decomposition Cross Cross-Price Effects Price Effects Cross Cross-Price Effects Price Effects Duality and the Demand Concepts Duality and the Demand Concepts 1 2014.11.20

Upload: others

Post on 12-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Part 2C. Part 2C. Individual Demand FunctionsIndividual Demand Functions

3.3.Slutsky EquationsSlutsky EquationsSlutsky EquationsSlutsky EquationsSlutsky Slutsky 方程式方程式

OwnOwn--Price EffectsPrice Effects

yy

OwnOwn Price EffectsPrice Effects A A SlutskySlutsky DecompositionDecomposition CrossCross--Price EffectsPrice Effects CrossCross--Price EffectsPrice Effects Duality and the Demand Concepts Duality and the Demand Concepts

12014.11.20

OwnOwn Price EffectsPrice EffectsOwnOwn--Price EffectsPrice Effects

QQ Wh t h t h f d h hQ: Q: What happens to purchases of good x change when px changes?

x/px

Differentiation of the F O Cs from utilityDifferentiation of the F.O.Cs from utility maximization could be used.H thi h i b dHowever, this approach is cumbersome and provides little economic insight.

2

The Identity b/w The Identity b/w MarshallianMarshallian & Hicksian & Hicksian Demands:Demands:Since x* = x(px, py, I) = hx(px, py, U) y y

Replacing I by the EF, e(px, py, U), and U by givesg

x(px, py, e(px, py, )) = hx(px, py, )

Diff ti ti b ti t h

hx x e

Differentiation above equation w.r.t. px, we have

x

x x x

hx x ep e p p

xp

x

= constantx Up

= hx = x

x x x I

= constantx x U

xp p I

3

x x x

= constantx x U

xp p I

S.E.( – )

I.E.( ?)

The S E is always negative h

Th L f D d Th L f D d h ld

The S.E. is always negative as long as MRS is diminishing.

0x

x

hp

The Law of Demand The Law of Demand holds as long as x is a normal goodnormal good. 0 0

x

x xI p

If x is a GiffenGiffen goodgood, hen x must be an inferiorinferior goodgood

0 0x xp I

hen x must be an inferiorinferior goodgood. xp I

E/px = hx = xA $1 i i i ditA $1 increase in px raises necessary expenditures by x dollars. 4

Compensated Demand ElasticitiesCompensated Demand ElasticitiesCompensated Demand ElasticitiesCompensated Demand ElasticitiesThe compensated demand function: h (p , p , U)The compensated demand function: hx(px, py, U)

dh Compensated OwnCompensated Own--Price Elasticity of DemandPrice Elasticity of Demand

x

x x xh p

dhh h pe d h

,x xh px x x

x

dp p hp

Compensated CrossCompensated Cross--Price Elasticity of DemandPrice Elasticity of Demand

xdh

,x y

x

yx xh p

ph he dp p h

y y x

x

dp p hp

5

OwnOwn--Price Elasticity form of the Price Elasticity form of the SlutskySlutsky EquationEquationyy yy qq

xhx xxI

x xp p I

x x x xp h p px x Ix

x x

xp x p x I x I

h Ie e s e , , ,x x xx p h p x x Ie e s e

where Expenditure share on x.xx

p xsI

I

The Slutsky equation shows that the t d d t d icompensated and uncompensated price

elasticities will be similar ifthe share of income devoted to x is small

6

the share of income devoted to x is small.the income elasticity of x is small.

A Slutsky DecompositionA Slutsky DecompositionA Slutsky DecompositionA Slutsky Decomposition

Example: Example: CobbCobb Douglas utility functionDouglas utility function Example: Example: CobbCobb--Douglas utility functionDouglas utility functionU(x,y) = x0.5y0.5

1 I 1 IThe Marshallian Demands: 12 x

Ixp

0 5 0 5

12 y

Iyp

The IUF: 0.5 0.5

0.5 0.5

1 1( , , )2 2 2x y

x x x y

I I Ip p Ip p p p

x x x yp p p p

The EF: 0.5 0.5( , , ) 2x y x ye p p p p

The Hicksian Demands:0.5pe 0.5pe0.5y

xx x

pehp p

0.5

xy

y y

pehp p

7

The Slutsky Decomposition: The Slutsky Decomposition: y py p

1 0x IT E 2. . 0

2x x

T Ep p

0.5 0.5

1.5 1.5 0.5 0.5 2

1 1 1. . 02 2 2 4

y yx p ph I IS Ep p p p p p

2 2 2 4x x x x y xp p p p p p

1 1 1 1I I 2

1 1 1 1. . 02 2 4x x x

x I II E xI p p p

8

Numerical Example: Numerical Example: CobbCobb--Douglas utility functionDouglas utility functionpp g yg yU(x,y) = x0.5y0.5

Let $1 $4 I $8

The Marshallian Demands:

Let px = $1, py = $4, I = $8

1 4Ix 1 1Iy The Marshallian Demands: 4

2 x

xp

The IUF: 0.5 0.5( ) 4 1 2p p I

12 y

yp

The IUF: ( , , ) 4 1 2x yp p I

The EF: ( , , ) 8x ye p p I x y

The Hicksian Demand for x:0.5 0.5

0.5 0.5

4 2 41

yx

ph

p

0.5 0.5

0.5 0.5

1 2 14

xy

php

1xp 4yp

9

Suppose that px : $1 $4pp px

The Marshallian Demands:1 8' 12 4

x 1 8' 12 4

y 2 4

The IUF: 0.5 0.5( , , ) 1 1 1x yp p I

h l i 0 5 0 5The real income: 0.5 0.5' ( , , ') 2 4 1 2 16x ye e p p

The Hicksian Demand for x:The Hicksian Demand for x:0.5

0.5

4 2 24xh

0.5

0.5

4 2 24yh

4 0.54y

The Slutsky Decomposition: . . : 1 4 3T E x

. . : 2 4 2xS E h x

. . . . . . ( 3) ( 2) 1I E T E S E 10

Figure: Figure: The Slutsky Decomposition The Slutsky Decomposition

px : $1 $4

y

px

. . : 1 4 3T E x

2 4 2S E h4

. . : 2 4 2xS E h . . . . . . ( 3) ( 2) 1I E T E S E

I

2

I I = –2y

IC1

1IC0

xS.E.I.E.

1 42 8

11

Figure: Figure: The Slutsky Decomposition The Slutsky Decomposition

px : $1 $4

px

px

. . : 1 4 3T E x

2 4 2S E h4

. . : 2 4 2xS E h

. . . . . . ( 3) ( 2) 1I E T E S E . . . . . . ( 3) ( 2) 1I E T E S E

xhx

1

xS.E.I.E.

1 42

12

CC P i Eff tP i Eff tCrossCross--Price EffectsPrice Effects The identity b/w The identity b/w MarshallianMarshallian & & HicksianHicksian The identity b/w The identity b/w MarshallianMarshallian & & HicksianHicksian

Demands:Demands:x(p p e(p p )) = h (p p )x(px, py, e(px, py, )) = hx(px, py, )

Diff ti ti b ti t h

hx x e

Differentiation above equation w.r.t. py, we have

x

y y y

hx x ep e p p

xp

x

= constanty Up

= hy = y

x x x I

= constanty y U

yp p I

13

CrossCross--Price Elasticity form of the Price Elasticity form of the SlutskySlutskyyy yyEquationEquation

hx x x

y y

hx xyp p I

y y yx

y y

p p phx x Iyp x p x I x I

y yp p

, , ,y x yx p h p y x Ie e s e

where Expenditure share on y.yy

p ys

I

I

14

Definition: Definition: Gross SubstitutesGross SubstitutesTwo goods are (gross) substitutes(gross) substitutes if one good may replace the other in use. i.e., ifreplace the other in use. i.e., if

0i

j

xp

e.g, tea & coffee, butter & margarinejp

Definition: Definition: Gross ComplementsGross ComplementsTwo goods are (gross) complements(gross) complements if they are usedTwo goods are (gross) complements (gross) complements if they are used together. i.e., if

0ix 0i

jp

e.g., coffee & cream, fish & chips15

FigureFigure: : Gross Substitutes Gross Substitutes

When the price of y falls the

y

When the price of y falls, the substitution effect may be so large that the consumer purchases less xy

In this case we call x and y gross gross

and more y.

In this case, we call x and y gross gross substitutes.substitutes.y1

y0 U1x/py > 0

x x

U0

xx1 x0

16

FigureFigure: : Gross ComplementsGross Complements

When the price of y falls the

y

When the price of y falls, the substitution effect may be so small that the consumer purchases more x and y pmore y.

In this case we call x and y gross gross

y1

In this case, we call x and y gross gross complements.complements.

y0

U1Ux/py < 0

xx

U0

xx1x0

17

Definition: Definition: Net SubstitutesNet SubstitutesTwo goods are net substitutesnet substitutes if

h

constant

or 0i

j U

xp

0i

j

hp

Definition: Definition: Net ComplementsNet Complements

constantj U

ppTwo goods are net complements net complements if

xh

constant

or 0i

j U

xp

0i

j

hp

Note: The concepts of net substitutes and net substitutes and ll tt f l l b tit ti ff tb tit ti ff tcomplemencomplements ts focuses solely on substitution effectssubstitution effects.

18

x x x

= constanty y U

yp p I

S.E.( + )

I.E.( ?)

The S E is always positive 0xh

If i l dl d I E 0

The S.E. is always positive if DMRS and n = 2.

0x

yp

If x is a normal goodnormal good, I.E. < 0. The combined effect is ambiguous. 0x

S.E. > |I.E.| Gross Substitutes

S E < |I E | Gross Complements

yp

0xS.E. < |I.E.| Gross Complements 0

yp

If x is an inferiorinferior goodgood both S E > 0 If x is an inferiorinferior goodgood, both S.E. > 0 and I.E. >0 Gross Substitutes 0

y

xp

19

Case of Many Goods (Case of Many Goods (nn > > 22))y (y ( ))The Generalized Slutsky Equation is:

x x x

=constant

i i ij

j j U

x x xxp p I

When n > 2, hi/pj can be negative.i.e., xi and xj can be net complementsnet complements.If the utility function is quasi-concave, then the the crosscross--netnet--substitution effectssubstitution effects are symmetricsymmetric. i.e., yy ,

ji

j i

hhp p

j ip p Proof:Proof:

2j jii

e p he ph e j jii

j j i j i i

pp ep p p p p p

20

Asymmetry of the Gross CrossAsymmetry of the Gross Cross--Price Effects Price Effects y yy yThe gross definitions of substitutes and complements are not symmetric.complements are not symmetric. It is possible for xi to be a substitute for xj and at the same time for x to be a complement of xthe same time for xj to be a complement of xi.

21

D lit d th D d C t D lit d th D d C t UMP EMP

“Dual” ProblemDuality and the Demand Concepts Duality and the Demand Concepts

Slutsky Equation*

xhx xxI* ( , , ) x yx x p p I

R ’ Id tit Shephard’s

( , , )x x yh p p U x xp p I*

x

y y

hx xyp p I

( , , )x x yh p p U

Roy’s Identity Shephard sLemma

( , , )

x yx p p I

( , , ) ( , , ( , , ))x y x x y x yx p p I h p p p p I

x

ep

xp

I( , , ) ( , , ( , , ))x x y x y x yh p p U x p p e p p U

* ( , , ) x yU p p I * ( , , ) x ye e p p U* ( , , ( , , )) x y x ye e p p p p I I( ( ))x y x yp p p p* ( , , ( , , )) x y x yU p p e p p U U

22